
David Gay, Intel Research Berkeley

with Phil Levis, Vlado Handziski, Jonathan Hui,
Jan-Hinrich Hauer, Ben Greenstein, Martin Turon,

Kevin Klues, Cory Sharp, Robert Szewczyk,
Joe Polastre, David Moss, Henri Dubois-Ferrière,

Gilman Tolle, Philip Buonadonna, Lama Nachman,
Adam Wolisz and David Culler

TinyOS 2.0: A wireless sensor
network operating system

09.14.05 TinyOS 2.02

Sensor Networks

Sensor network are collections of small, battery operated computers with

• sensors, and possibly actuators, to sense and control their environment

• radios, to report data and receive instructions

• typical expected lifetimes range from a few months to several years

09.14.05 TinyOS 2.03

Some Typical Devices

mica2 (2002)

• 8MHz ATmega128

• 4kB RAM, 128kB flash

• 512kB external flash

• 20kb/s custom radio

• many different sensor boards

• 2 AA batteries:
– radio+cpu: 75mW
– sleep mode: 140µW

telosb (2004)

• 1MHz TI MSP430

• 10kB RAM, 48kB flash

• 512kB external flash

• 250kb/s 802.15.4 radio

• built-in sensors

• 2 AA batteries:
– radio+cpu mode: 63mW
– sleep mode: 30 µW

lifetime: a few days to several years

09.14.05 TinyOS 2.04

Sensor Networks

Sensor network are collections of small, battery operated computers with

• sensors, and possibly actuators, to sense and control their environment

• radios, to report data and receive instructions

• typical expected lifetimes range from a few months to several years

Suggested applications include:

• data collection, environmental or industrial monitoring, object tracking

Today:

• We’ll build a simple “anti-theft” application using TinyOS 2.0, which
– detects theft by light level or movement
– reports theft by blinking, beeping, to neighbours or to a central server
– is configurable from a central server

in less than 200 lines of code

09.14.05 TinyOS 2.05

Challenges

Driven by interaction with environment (“Am I being stolen?”)

• Data collection and control, not general purpose computation

• Requires event-driven execution

Extremely limited resources (“2 AA’s, 4kB of RAM”)

• Very low cost, size, and power consumption

Reliability for long-lived applications (“Don’t steal me in a year!”)

• Apps run for months/years without human intervention

• Reduce run time errors and complexity

Real-time requirements (“What is movement anyway?”)

• Some time-critical tasks (sensor acquisition and radio timing)

• Timing constraints through complete control over app and OS

Constant hardware evolution

09.14.05 TinyOS 2.06

Outline

TinyOS and nesC overview

Building a simple anti-theft application

• The Basics

• “Advanced” Networking

• “Basic” Networking

BREAK

• Managing Power

• For experts: implementing device drivers
– resource and power management
– low-level code and concurrency

Review and Conclusion

09.14.05 TinyOS 2.07

TinyOS and nesC

TinyOS is an operating system designed to target limited-resource sensor
network nodes

• TinyOS 0.4, 0.6 (2000-2001)

• TinyOS 1.0 (2002): first nesC version

• TinyOS 1.1 (2003): reliability improvements, many new services

• TinyOS 2.0 (2006): complete rewrite, improved design, portability,
reliability and documentation

TinyOS and its application are implemented in nesC, a C dialect:

• nesC 1.0 (2002): Component-based programming

• nesC 1.1 (2003): Concurrency support

• nesC 1.2 (2005): Generic components, “external” types

09.14.05 TinyOS 2.08

TinyOS in a nutshell

System runs a single application

• OS services can be tailored to the application’s needs

These OS services include

• timers, radio, serial port, A/D conversion, sensing, storage, multihop
collection and dissemination, …

Application and services are built as

• a set of interacting components (as opposed to threads)

• using a strictly non-blocking execution model
– event-driven execution, most service requests are split-phase

Implementation based on a set of OS abstractions

• tasks, atomic with respect to each other; interrupt handlers

• resource sharing and virtualisation, power management

• hardware abstraction architecture

09.14.05 TinyOS 2.09

nesC in a seashell
C dialect

Component based

• all interaction via interfaces

• connections (“wiring”) specified at compile-time

• generic components, interfaces for code reuse, simpler programming

“External” types to simplify interoperable networking

Reduced expressivity

• no dynamic allocation

• no function pointers

Supports TinyOS’s concurrency model

• must declare code that can run in interrupts

• atomic statements to deal with data accessed by interrupts

• data race detection to detect (some) concurrency bugs

09.14.05 TinyOS 2.010

The Basics

Goal: write an anti-theft device. Let’s start simple.

Two parts:

• Detecting theft.
– Assume: thieves put the motes in their pockets.
– So, a “dark” mote is a stolen mote.
– Theft detection algorithm: every N ms check if light sensor is below some

threshold

• Reporting theft.
– Assume: bright flashing lights deter thieves.
– Theft reporting algorithm: light the red LED for a little while!

What we’ll see

• Basic components, interfaces, wiring

• Essential system interfaces for startup, timing, sensor sampling

09.14.05 TinyOS 2.011

The Basics – Let’s Get Started

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16_t>;

}
implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);
}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error_t ok, uint16_t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

Programs are built out of named components
A component provides and uses interfaces
Interfaces contain commands and events,
which are just functions
A module is a component implemented in C

interface Boot {
/* Signaled when OS booted */
event void booted();

}

interface Timer<tag> {
command void startOneShot(uint32_t period);
command void startPeriodic(uint32_t period);
event void fired();

}

09.14.05 TinyOS 2.012

The Basics – Interfaces

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16_t>;

}
implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);
}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error_t ok, uint16_t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

interface Boot {
/* Signaled when OS booted */
event void booted();

}

Interfaces specify the interaction between
two components, the provider and the user.
This interaction is just a function call.
commands are calls from user to provider
events are calls from provider to user

interface Timer<tag> {
command void startOneShot(uint32_t period);
command void startPeriodic(uint32_t period);
event void fired();

}

09.14.05 TinyOS 2.013

The Basics – Interfaces and Split-Phase Ops

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16_t>;

}
implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);
}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error_t ok, uint16_t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

All long-running operations are split-phase:
• A command starts the op: read
• An event signals op completion: readDone

interface Read<val_t> {
command error_t read();
event void readDone(error_t ok, val_t val);

}

09.14.05 TinyOS 2.014

The Basics – Interfaces and Split-Phase Ops

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16_t>;

}
implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);
}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error_t ok, uint16_t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

All long-running operations are split-phase:
• A command starts the op: read
• An event signals op completion: readDone
Errors are signalled using the error_t type, typically
• Commands only allow one outstanding request
• Events report any problems occurring in the op

interface Read<val_t> {
command error_t read();
event void readDone(error_t ok, val_t val);

}

09.14.05 TinyOS 2.015

The Basics – Configurations

configuration AntiTheftAppC { }
implementation
{
components AntiTheftC, MainC, LedsC;

AntiTheftC.Boot -> MainC.Boot;
AntiTheftC.Leds -> LedsC;

components new TimerMilliC() as MyTimer;
AntiTheftC.Check -> MyTimer;

components new PhotoC();
AntiTheftC.Read -> PhotoC;

}
A configuration is a component built out of other
components.
It wires “used” to “provided” interfaces.
It can instantiate generic components
It can itself provide and use interfaces

generic configuration TimerMilliC() {
provides interface Timer<TMilli>;

}
implementation { ... }generic configuration PhotoC() {

provides interface Read;
}
implementation { ... }

09.14.05 TinyOS 2.016

The Basics

09.14.05 TinyOS 2.017

The Basics

Let’s improve our anti-theft device. A clever thief could still steal our
motes by keeping a light shining on them!

• But, however clever, the thief still needs to pick up a mote to steal it.

• Theft Detection Algorithm 2: Every N ms, sample acceleration at 100Hz
and check if variance above some threshold

What we’ll see

• (Relatively) high frequency sampling support

• Use of tasks to defer computation-intensive activities

• TinyOS execution model

09.14.05 TinyOS 2.018

The Basics – Advanced Sensing, Tasks

uses interface ReadStream;
uint16_t accelSamples[ACCEL_SAMPLES];
event void Timer.fired() {
call ReadStream.postBuffer(accelSamples, ACCEL_SAMPLES);
call ReadStream.read(10000);

}

event void ReadStream.readDone(error_t ok, uint32_t actualPeriod) {
if (ok == SUCCESS)
post checkAcceleration();

}

task void checkAcceleration() {
... check acceleration and report theft...

}

ReadStream is an interface for periodic sampling of
a sensor into one or more buffers.
• postBuffer adds one or more buffers for sampling
• read starts the sampling operation
• readDone is signalled when the last buffer is full

interface ReadStream<val_t> {
command error_t postBuffer(val_t* buf, uint16_t count);
command error_t read(uint32_t period);
event void readDone(error_t ok, uint32_t actualPeriod);

}

09.14.05 TinyOS 2.019

The Basics – Advanced Sensing, Tasks

uint16_t accelSamples[SAMPLES];
event void ReadStream.readDone(error_t ok, uint32_t actualPeriod) {

if (ok == SUCCESS)
post checkAcceleration();

}
task void checkAcceleration() {

uint16_t i, avg, var;

for (avg = 0, i = 0; i < SAMPLES; i++)
avg += accelSamples[i];

avg /= SAMPLES;

for (var = 0, i = 0; i < SAMPLES; i++)
{

int16_t diff = accelSamples[i] - avg;
var += diff * diff;

}
if (var > 4 * SAMPLES) theftLed();

}

In readDone, we need to compute the variance of
the sample. We defer this “computationally-
intensive” operation to a separate task, using post.
We then compute the variance and report theft.

09.14.05 TinyOS 2.020

The Basics - TinyOS Execution Model

RealMainP

AccelStreamC

AntiTheftC

RealMainP

Stack

AntiTheftC

Task Queue
Timer

Alarm

SchedulerP Timer

Alarm

serial
receive H/W timer A/D conv. Interrupt table

09.14.05 TinyOS 2.021

The Basics - TinyOS Execution Model

RealMainP

AccelStreamC

AntiTheftC Stack

Task Queue
Timer

Alarm

SchedulerP
Timer

SchedulerP

serial
receive H/W timer A/D conv. Interrupt table

timer task

Alarm

09.14.05 TinyOS 2.022

The Basics - TinyOS Execution Model

RealMainP

AccelStreamC

AntiTheftC

SchedulerP

Stack

Task Queue
Timer

Alarm

SchedulerP
Timer

AntiTheftC

AccelStreamC

timer task

serial
receive H/W timer A/D conv. Interrupt table

09.14.05 TinyOS 2.023

The Basics - Summary

Components and Interfaces

• Programs built by writing and wiring components
– modules are components implemented in C
– configurations are components written by assembling other components

• Components interact via interfaces only

Execution model

• Execution happens in a series of tasks (atomic with respect to each
other) and interrupt handlers

• No threads

System services: startup, timing, sensing (so far)

• (Mostly) represented by instantiatable generic components
– This instantiation happens at compile-time! (think C++ templates)

• All slow system requests are split-phase

09.14.05 TinyOS 2.024

“Advanced” Networking

TinyOS 2.0 contains two useful network protocols:

• dissemination, that disseminates a value to all nodes in the network
– use for reconfiguration, program dissemination, i.e., network control

• collection, that allows all nodes to report values to root nodes
– the simplest data collection mechanism

Dissemination Collection

09.14.05 TinyOS 2.025

“Advanced” Networking

Different anti-theft mechanisms may be appropriate for different times or
places. Our perfect anti-theft system must be configurable!

• We want to send some settings to all motes selecting between dark
and acceleration detection.

• We’ll also allow selection of siren-based alerts instead of the “bright
flashing light”, and of the theft check interval

• We’ll use the dissemination protocol to achieve this

What we’ll see:

• How to use the dissemination protocol

• How to start (and stop) services

• “External” types, and their use in networking

09.14.05 TinyOS 2.026

“Advanced” Networking – “External” Types
#include “antitheft.h”
module AntiTheftC {
... uses interface DisseminationValue<settings_t> as SettingsValue;
} implementation {
settings_t settings;
event void SettingsValue.changed() {

const settings_t *newSettings = call SettingsValue.get();
settings.detect = newSettings->detect;
settings.alert = newSettings->alert;

call Check.startPeriod(newSettings->checkInterval);
}

event void Timer.fired() {
if (settings.detect & DETECT_DARK)

call Read.read();
if (settings.detect & DETECT_ACCEL) {

call ReadStream.postBuffer(accelSamples, ACCEL_SAMPLES);
call ReadStream.read(10000);

}
}

#ifndef ANTITHEFT_H
#define ANTITHEFT_H
typedef nx_struct {
nx_uint8_t alert, detect;
nx_uint16_t checkInterval;

} settings_t;
#endif

External types (nx_...) provide C-like access, but:
• platform-independent layout and endianness
gives interoperability
• no alignment restrictions means they can easily
be used in network buffers
• compiled to individual byte read/writes

09.14.05 TinyOS 2.027

“Advanced” Networking – Dissemination
#include “antitheft.h”
module AntiTheftC {
... uses interface DisseminationValue<settings_t> as SettingsValue;
} implementation {
settings_t settings;
event void SettingsValue.changed() {

const settings_t *newSettings = call SettingsValue.get();
settings.detect = newSettings->detect;
settings.alert = newSettings->alert;
call Check.startPeriod(newSettings->checkInterval);

}

event void Timer.fired() {
if (settings.detect & DETECT_DARK)

call Read.read();
if (settings.detect & DETECT_ACCEL) {

call ReadStream.postBuffer(accelSamples, ACCEL_SAMPLES);
call ReadStream.read(10000);

}
}

interface DisseminationValue<t> {
command const t* get();
event void changed();

}

Dissemination is simple to use:
• The changed event is signalled when new settings
are received
• The get command is used to obtain the received
value
We can then simply read the received settings

09.14.05 TinyOS 2.028

“Advanced” Networking – Dissemination

configuration AntiTheftAppC { }
implementation
{
...
components ActiveMessageC,

new DisseminatorC(settings_t, DIS_SETTINGS);
AntiTheftC.SettingsValue -> DisseminatorC;
AntiTheftC.RadioControl -> ActiveMessageC;

}

Finally, we need to wire in the new functionality:
• We create a disseminator for the settings_t type
• We wire ActiveMessageC to start to the radio
(we’ll see why in a little bit)

09.14.05 TinyOS 2.029

Dissemination – How does it work?

Use local broadcasts and packet suppression

• Scale to a wide range of densities

• Control transmissions over space

100% eventual reliability

• Disconnection, repopulation, etc.

• Continuous process

Maintenance: exchange metadata (e.g., version numbers, hashes) at a
low rate to ensure network is up to date

Propagation: when a node detects an inconsistency, the network quickly
broadcasts the new data

[Slide Courtesy Phil Levis]

09.14.05 TinyOS 2.030

“Advanced” Networking – Starting Services

uses interface SplitControl as RadioControl;
...
event void Boot.booted() {
call Check.startPeriodic(1000);
call RadioControl.start();

}

event void RadioControl.startDone(error_t ok) { }
event void RadioControl.stopDone(error_t ok) { }

Whenever possible, TinyOS 2.0, starts and stops services automatically.
This isn’t possible for the radio (no knowledge of when messages might arrive),
so responsibility passed to the programmer.
Must turn on radio for dissemination service to work.
SplitControl is one of the interfaces for starting and stopping services
• Split-phase, used when start/stop may take a while

interface SplitControl {
command error_t start();
event void startDone(error_t ok);

command error_t stop();
event void stopDone(error_t ok);

}

09.14.05 TinyOS 2.031

“Advanced” Networking - Collection

What if thieves aren’t deterred by sirens and flashing lights?

We need to report the theft!

We’ll use the tree-based collection to send theft reports to a base station.

What we’ll see:

• collection protocol

• message_t, TinyOS’s message buffer type

• Send, TinyOS’s address-less send interface

09.14.05 TinyOS 2.032

“Advanced” Networking - Collection
interface Send as AlertRoot;
interface StdControl as CollectionControl;
...
message_t alertMsg;
event void RadioControl.startDone(error_t ok) {

if (ok == SUCCESS) call CollectionControl.start();
}
void theft() {

if (settings.alert & ALERT_LEDS)
theftLed();

if (settings.alert & ALERT_ROOT)
{

alert_t *newAlert = call AlertRoot.getPayload(&alertMsg);
newAlert->stolenId = TOS_NODE_ID;
call AlertRoot.send(&alertMsg, sizeof *newAlert);

}
}
event void AlertRoot.sendDone(message_t *msg, error_t ok) { }

Before we can report anything, we need to:
• Start the radio (already done)
• Start the collection service

interface StdControl {
command error_t start();
command error_t stop();

}

09.14.05 TinyOS 2.033

“Advanced” Networking - Collection
interface Send as AlertRoot;
interface StdControl as CollectionControl;
...
message_t alertMsg;
event void RadioControl.startDone(error_t ok) {

if (ok == SUCCESS) call CollectionControl.start();
}
void theft() {

if (settings.alert & ALERT_LEDS)
theftLed();

if (settings.alert & ALERT_ROOT)
{

alert_t *newAlert = call AlertRoot.getPayload(&alertMsg);
newAlert->stolenId = TOS_NODE_ID;
call AlertRoot.send(&alertMsg, sizeof *newAlert);

}
}
event void AlertRoot.sendDone(message_t *msg, error_t ok) { }

Collection messages are sent
• By placing data in a message_t buffer
• Using the Send interface

interface Send {
command error_t send(message_t* msg, uint8_t len);
event void sendDone(message_t* msg, error_t ok);

command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg);

}

09.14.05 TinyOS 2.034

Networking: packet abstract data type

message_t is a platform-defined type for holding packets

• a fixed size byte array

• capable of holding MTU of all data-link layers (platform-selected)

accessed only via interfaces:

• Packet: general payload access, provided at each layer

• xxPacket: information for layer xx

link-layer
header area

data, footer, metadata
area

application
data

cc1000
header

collection
header

cc1000
footer

cc1000
metadata

CollectionPacket

Packet

CC1000PacketAMPacket

09.14.05 TinyOS 2.035

Networking: packet abstract data type

message_t is a platform-defined type for holding packets

• a fixed size byte array

• capable of holding MTU of all data-link layers (platform-selected)

accessed only via interfaces:

• Packet: general payload access, provided at each layer

• xxPacket: information for layer xx

application
data

cc1000
header

collection
header

cc1000
footer

cc1000
metadata

CollectionPacket

Packet

CC1000PacketAMPacket

link-layer
header area

data, footer, metadata
area

09.14.05 TinyOS 2.036

“Advanced” Networking - Collection
interface Send as AlertRoot;
interface StdControl as CollectionControl;
...
message_t alertMsg;
event void RadioControl.startDone(error_t ok) {

if (ok == SUCCESS) call CollectionControl.start();
}
void theft() {

if (settings.alert & ALERT_LEDS)
theftLed();

if (settings.alert & ALERT_ROOT)
{

alert_t *newAlert = call AlertRoot.getPayload(&alertMsg);
newAlert->stolenId = TOS_NODE_ID;
call AlertRoot.send(&alertMsg, sizeof *newAlert);

}
}
event void AlertRoot.sendDone(message_t *msg, error_t ok) { }

We use getPayload to get access to the portion of
message_t available to the application
We use an external type to actually write the data

interface Send {
command error_t send(message_t* msg, uint8_t len);
event void sendDone(message_t* msg, error_t ok);

command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg);

}

typedef nx_struct {
nx_uint16_t stolenId;

} alert_t;

09.14.05 TinyOS 2.037

“Basic” Networking

The police may not get there in time to catch the mote thief.

So, let’s alert the mote’s neighbours!

We’ll send a local broadcast message over the radio.

What we’ll see:

• active message-based single-hop messaging

09.14.05 TinyOS 2.038

“Basic” Networking - Interfaces

address-free interfaces for sending, receiving:

• Send: send a packet

• Receive: receive a packet

“active messages” interfaces:

• active messages has destination addresses

• active messages has “message type”, used for dispatch on reception

• AMSend: send a packet to an active message address

• Receive is reused

• Message type not specified in interfaces, but in configurations

09.14.05 TinyOS 2.039

“Basic” Networking

uses interface AMSend as TheftSend;
uses interface Receive as TheftReceive;
...
message_t theftMsg;
void theft() {
...
if (settings.alert & ALERT_RADIO)
call TheftSend.send(AM_BROADCAST_ADDR, &theftMsg, 0);

}
event message_t *TheftReceive.receive
(message_t* msg, void *payload, uint8_t len) {
theftLed();
return msg;

} AMSend is just like send, but with a destination
The theft message has no data, so no use of the
payload functions.

interface AMSend {
command error_t send(am_addr_t addr, message_t* msg, uint8_t len);
event void sendDone(message_t* msg, error_t ok);

command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg);

}

09.14.05 TinyOS 2.040

“Basic” Networking

uses interface AMSend as TheftSend;
uses interface Receive as TheftReceive;
...
message_t theftMsg;
void theft() {
...
if (settings.alert & ALERT_RADIO)
call TheftSend.send(AM_BROADCAST_ADDR, &theftMsg, 0);

}
event message_t *TheftReceive.receive
(message_t* msg, void *payload, uint8_t len) {
theftLed();
return msg;

}

interface Receive{
event message_t* receive(message_t* msg, void* payload, uint8_t len);
command uint8_t payloadLength();
command void* getPayload(message_t* msg);

}

AMSend is just like send, but with a destination
The theft message has no data, so no use of the
payload functions.
On Receive, we just light the “bright red light”

09.14.05 TinyOS 2.041

“Basic” Networking

configuration AntiTheftAppC { }
implementation {
...
components new AMSenderC(54) as SendTheft,

new AMReceiverC(54) as ReceiveTheft;
AntiTheftC.TheftSend -> SendTheft;
AntiTheftC.TheftReceive -> ReceiveTheft;

}

The Active Message ids used for dispatching are
specified as parameters to the generic components
used for active message sends and receives.

generic configuration AMSenderC(am_id_t id) {
provides interface AMSend;
provides interface Packet;
provides interface AMPacket;
provides interface PacketAcknowledgements as Acks;

}
...

09.14.05 TinyOS 2.042

“Basic” Networking – Buffer Management

Sending:

• Each AMSenderC component has a 1-entry queue for a message_t *

• Each outstanding send must use a separate message_t buffer
– up to application to ensure this
– commonly: associate a variable with each Send/AMSend interface, and don’t

reuse it until corresponding send completed

Receiving:

• Receive passes you a message_t *, and wants one back:
event message_t* receive(message_t* msg, ...

• Common pattern 1: copy interesting data out of msg, return msg

• Common pattern 2: return a different message, and access msg later

message_t buffer;
message_t *lastReceived = &buffer;
event message_t* receive(message_t* msg, ...)
{
/* Return previous message buffer, save current msg */
message_t *toReturn = lastReceived;
lastReceived = msg;

post processMessage();
return toReturn;

}

task void processMessage() {
... use lastReceived ...

}

09.14.05 TinyOS 2.043

Networking - Summary

Goals

1. A composable (application-selected) network stack

2. Platform-selected link layers

3. Portable, reusable code above the link layer

4. Cross-platform communication (ex: telosb-micaz, PC-any mote)

Four-part solution:

• abstract data type for packets (message_t)
– composable, link layer independent, portable

• common networking interfaces (Send, AMSend, Receive)
– composable, portable

• “external” types (nx_struct, nx_uint16_t, etc)
– interoperable

• networking component structuring principles
– composable, link layer independent

09.14.05 TinyOS 2.044

Networking Component Structure

AM Radio AM Serial

Application

Packet
AMPacket
AMSend

09.14.05 TinyOS 2.045

Messaging: networking component structure

AM Radio

Application

Packet
Receive

09.14.05 TinyOS 2.046

Messaging: networking component structure

AM Radio

Application

Packet
Receive

Collection Send
AMSend

Packet

cc1000 + coll.
header

Packet

cc1000
header

09.14.05 TinyOS 2.047

Managing Power

We want our anti-theft device to last a while, or the thief will just wait a bit to
steal our motes!

Luckily, in TinyOS 2, this is fairly straightforward

• Services and hardware components switch themselves on and off based on
whether they are in use
– ex: light sensor switched on just before a reading, and off just afterwards
– ex: accelerometer switched on before group reading, warms up for 17ms, does

readings, switches off

• The microcontroller is set to a power mode consistent with the rest of the
system

• Radio reception is not as simple, as program doesn’t specify when messages
might arrive
– Applications can switch radio on or off explicitly
– Or, applications can use TinyOS 2’s “low-power listening” support

• Radio channel is checked every N ms
• Messages sent with an N ms preamble (or repeatedly for N ms)

– User must specify N (default is N=0, i.e., always on)

09.14.05 TinyOS 2.048

Using Low-power Listening

module AntiTheftC ...
uses interface RadioControl;
uses interface LowPowerListening;

...
event void RadioControl.startDone(error_t ok) {

if (ok == SUCCESS)
{

call CollectionControl.start();
call LowPowerListening.setLocalDutyCycle(200);

}
}

We request that the radio use a 2% duty-cycle low-
power listening strategy
We wire the interface to the actual radio (not shown)

09.14.05 TinyOS 2.049

Power Management effects

All power management switched off: 11.83mA

Checking acceleration every second

All On

0
2
4
6
8

10
12
14
16
18

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

time (s)

cu
rr

en
t

(m
A

)

09.14.05 TinyOS 2.050

Power Management effects

Accelerometer power management enabled: 11.46mA

Checking acceleration every second

Accel Off

0
2
4
6
8

10
12
14
16
18

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

time (s)

cu
rr

en
t

(m
A

)

09.14.05 TinyOS 2.051

Power Management effects

Low-power listening enabled: 4.26mA

Checking acceleration every second

LPL

0
2
4
6
8

10
12
14
16
18

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

time (s)

cu
rr

en
t

(m
A

)

09.14.05 TinyOS 2.052

Power Management effects

Processor power management enabled,

all power management switched on: 1.04mA

Checking acceleration every second

All Power Managed

0
2
4
6
8

10
12
14
16

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

time (s)

cu
rr

en
t

(m
A

)

09.14.05 TinyOS 2.053

“For Experts”: implementing device drivers

Implementing a service, such as the timer or the light sensor involves
one or more of:

• setting up support for multiple clients (via generic components)

• managing concurrent requests to the service (resource management)

• powering any necessary hardware on and off (power management)

• accessing low-level hardware, dealing with interrupts (concurrency)

To see these issues in some detail, we’ll look at the example of a simple
analog sensor connected to an A/D channel of the microcontroller

• similar, but simpler than the PhotoC sensor used in AntiTheftC
(that sensor shares and A/D channel with a temperature sensor, and
needs a warmup period, complicating resource and power
management)

09.14.05 TinyOS 2.054

A simple light sensor

Basic steps to sample light sensor:

• Setup voltage on PW1 pin

• Turn on A/D converter

• Configure A/D converter for channel 6

• Initiate A/D sampling

• In A/D interrupt handler:
– read A/D result registers
– report reading to application

• Turn off A/D converter

• Turn off voltage on PW1 pin

PW1, ADC6 are
microcontroller pins

Exposing sensor (maybe) and A/D converter
(definitely) to multiple clients
Resource management: need to share light sensor and
A/D converter with other clients
Power management: should leave sensor or A/D on
between consecutive clients or for repeated accesses
Must avoid data races in interrupt handler and
interrupt handler setup code

09.14.05 TinyOS 2.055

Services with Multiple Clients

module AdcP {
provides interface Read<uint16_t>;

}
implementation {
command error_t Read.read() {

...
}
...
task void acquiredData() {

signal Read.readDone(SUCCESS, val);
}

}

09.14.05 TinyOS 2.056

Services with Multiple Clients

AccelStreamC

AntiTheftC

Radio

AdcP

Read interface

09.14.05 TinyOS 2.057

Services with Multiple Clients

AccelStreamC

AntiTheftC

Radio

Stack

AdcP

Task Queue

Radio

serial
receive H/W timer A/D conv. Interrupt table

AdcP

09.14.05 TinyOS 2.058

Services with Multiple Clients

AccelStreamC

AntiTheftC

AdcP

Stack

Radio

Task Queue

Radio
AccelStreamC

serial
receive H/W timer A/D conv. Interrupt table

AdcP

09.14.05 TinyOS 2.059

A Fix: Parameterised Interfaces

provide interface Read<uint16_t>[uint8_t id]

• provides an array of interfaces, each identified by an integer

• each of these interfaces can be wired differently

• compiles to a runtime dispatch on the identifier, or
an extra argument on function calls

Often, components just want any interface, as long as it’s not used by
someone else:

• unique(“some string”): returns a different number at each use with the
same string, from a contiguous sequence starting at 0

• uniqueCount(“some string”): returns the number of uses of
unique(“some string”)

09.14.05 TinyOS 2.060

Services with multiple clients

module AdcP {
provides interface Read<uint16_t>[uint8_t client];

}
implementation {
uint8_t client;
command error_t Read.read[uint8_t c]() {

client = c;
...

}
...
task void acquiredData() {

signal Read.readDone[client](SUCCESS, val);
}

}

09.14.05 TinyOS 2.061

Services with multiple clients

generic configuration AdcReadClientC() {
provides interface Read<uint16_t>;

}
implementation {
components AdcP;

enum {
ID = unique(“adc.resource”)

};

Read = AdcP.Read[ID];
}

09.14.05 TinyOS 2.062

Services with Multiple Clients

AccelStreamC

AntiTheftC

Radio

AdcP

Read interface

09.14.05 TinyOS 2.063

Services with Multiple Clients

AccelStreamC

AntiTheftC

AdcP

Stack

Radio

Task Queue

Radio

serial
receive H/W timer A/D conv. Interrupt table

AdcP

09.14.05 TinyOS 2.064

Resource Management

Single application, but still many services competing for resources, e.g.:

• timers in application and multihop routing

• storage in network reprogramming and delay-tolerant networking

• A/D converter used for sensing and CSMA radio

Different requirements from different services:

• exclusive access: CC2420 radio on micaz physically connected to
capture pin for hardware timer 1 ⇒ must reserve timer 1 for radio

• latency sensitive: low-jitter multi-kHz A/D sampling

• best effort: wake me every 5 minutes for sampling, and every 12 for
route maintenance

3 kinds of resources:

• arbitrated, dedicated, virtualised

09.14.05 TinyOS 2.065

Resource Management (continued)

Dedicated Resources

• single client picked at compile-time

• optional compile-time checks

CC2420 radio Uninformed user

H/W Timer 1
compile-time error

09.14.05 TinyOS 2.066

Resource Management (continued)

Dedicated Resources

• single client picked at compile-time

• optional compile-time checks

Properties:

• guaranteed availability

• no latency

Examples:

• most lowest-level hardware abstractions, e.g., hardware timers

09.14.05 TinyOS 2.067

Resource Management (continued)

Virtualised Resources

• service implementation virtualises resource between N clients

• all clients known at compile-time

H/W timer 0

periodic sensing multihop networking

Timer service

timer timer

virtual resource

dedicated resource

09.14.05 TinyOS 2.068

Resource Management (continued)

Virtualised Resources

• service implementation virtualises resource between N clients

• all clients known at compile-time

Properties

• guaranteed availability

• sharing-induced latency

• run-time overhead

Examples

• scheduler, timers, radio send queue

09.14.05 TinyOS 2.069

Resource Management (continued)

Arbitrated Resources

• a shared resource

• some number N of clients known at compile-time

ADC

CSMA radioLight sensor

X

09.14.05 TinyOS 2.070

Resource Management (continued)

Arbitrated Resources

• a shared resource

• some number N of clients known at compile-time (see unique)

• resource arbiter manages resource allocation

ADC

Light sensor CSMA radio

Arbiter

09.14.05 TinyOS 2.071

Resource Management (continued)

Arbitrated Resources

• a shared resource

• some number N of clients known at compile-time

• resource arbiter manages resource allocation

Properties:

• guaranteed availability

• unknown latency
– immediateRequest: get it now, if available

Examples:

• storage, sensing, buses

09.14.05 TinyOS 2.072

Resource management for A/D conversion

module AdcP {
provides interface Read<uint16_t>[uint8_t client];
uses interface Resource[uint8_t client];

}
implementation {
uint8_t client;
command error_t Read.read[uint8_t c]() {

return call Resource.request[c]();
}
event void Resource.granted[c]() { client = c; ... }
...
task void acquiredData() {

call Resource.release[client]();
signal Read.readDone[client](SUCCESS, val);

}
}

interface Resource {
async command error_t request();
async command error_t immediateRequest();
event void granted();
async command error_t release();

}

09.14.05 TinyOS 2.073

Resource management for A/D conversion

configuration AdcC {
provides interface Read<uint16_t>[uint8_t client];

}
implementation {
components AdcP,

new RoundRobinArbiterC(“adc.resource”) as Arbiter;
Read = AdcP;
AdcP.Resource -> Arbiter.Resource;

}
generic configuration RoundRobinArbiterC(char resourceName[]) {
provides interface Resource[uint8_t client];
...

}
implementation
{

... uniqueCount(resourceName) ...
}

09.14.05 TinyOS 2.074

Power Management

user application

Goal: set hardware to lowest-power state consistent with application
needs

A/D hardware

A/D service
A/D service is internally managed

• service has enough information to set
hardware state

• can build on resource management
system

09.14.05 TinyOS 2.075

Power Management

radio hardware

radio service

user application

message
reception

Goal: set hardware to lowest-power state consistent with application
needs

CSMA radio is externally managed

• not enough information to set hardware state

• management from application, or higher-
level service, e.g., neighbourhood message
scheduling service (as we saw earlier)

09.14.05 TinyOS 2.076

Power Management with Arbiters

ADC

Light sensor CSMA radio

Arbiter

Power Manager

09.14.05 TinyOS 2.077

Resource & Power Management Summary

Three kinds of resources, all have guaranteed availability:

• dedicated
– single client, no latency
– typically external power management

• arbitrated
– multiple clients, unknown latency
– typically internal power management

• reusable power managers

• virtualised
– multiple clients, no latency, runtime overhead
– typically internal power management

09.14.05 TinyOS 2.078

Low-level code and concurrency

Most TinyOS code can live in tasks, and not worry too much about
concurrency issues. For instance, in AdcP, the lines

call Resource.release[client]();
signal Read.readDone[client](SUCCESS, val);

do not need to worry about requests coming in between the release and
readDone (and changing client), as:

• tasks do not interrupt each other

• commands and events that are called from interrupt handlers must be
marked async

However, some code has to run in interrupts:

• because it is very timing sensitive

• because the microcontroller signals events via interrupts

09.14.05 TinyOS 2.079

nesC support for concurrency

nesC does three things to simplify dealing with interrupt-related
concurrency:

• requires the use of async on commands and events called from
interrupt handlers

• runs a simple data-race detector to identify variables accessed from
interrupt handlers

• provides an atomic statement to guarantee the atomic execution of
one or more statements

09.14.05 TinyOS 2.080

Concurrency example

uint8_t resQ[SIZE];

async command error_t Queue.enqueue(uint8_t id) {
if (!(resQ[id / 8] & (1 << (id % 8))) { // ß concurrent access!
resQ[id / 8] |= 1 << (id % 8); // ß concurrent access!
return SUCCESS;

}
return EBUSY;

}

If an interrupt occurs during the if, and the interrupt handler also calls
Queue.enqueue then:
• An available slot may be ignored (probably not a problem)
• The same slot may be given twice (oops!)
If an interrupt happens during the 2nd concurrent access (write):
• The interrupt handler’s write of resQ will probably be lost

09.14.05 TinyOS 2.081

Data Race Detection

Every concurrent state access is a potential race condition

Concurrent state access:

• If object O is accessed in a function reachable from an interrupt entry
point, then all accesses to O are potential race conditions

• All concurrent state accesses must occur in atomic statements

Concurrent state access detection is straightforward:

• Call graph fully specified by configurations

• Interrupt entry points are known

• Data model is simple (variables only)

09.14.05 TinyOS 2.082

Data race fixed

uint8_t resQ[SIZE];

async command error_t Queue.enqueue(uint8_t id) {
atomic {

if (!(resQ[id / 8] & (1 << (id % 8))) {
resQ[id / 8] |= 1 << (id % 8);
return SUCCESS;

}
return EBUSY;

}

Atomic execution ensured by simply disabling interrupts...
• Long atomic sections can cause problems! E.g.:

– limit maximum sampling frequency
– cause lost packets

09.14.05 TinyOS 2.083

Concluding Remarks

Reflections on TinyOS

TinyOS status

What we didn’t see, and where to find out more

Other sensor network operating systems

Last words

09.14.05 TinyOS 2.084

Reflection – Components vs Threads

TinyOS has no thread support

• Execution examples earlier show execution of tasks, interrupt handlers

• This execution crosses component boundaries

• Each component encompasses activities initiated in different places,
these could be viewed as independent “threads”. In AntiTheftC we see:
– booted event initiated in system setup
– timer event initiated in timer subsystem
– settings-changed event initiated in dissemination subsystem
– light and acceleration completion events, ultimately caused by the requests

from within AntiTheftC
– the movement-detection task, initiated in AntiTheftC

However, it’s not always clear exactly what a “thread” of control is. E.g.:

• is the movement-detection task part of the “thread” initiated in
response to the periodic timer expiration in the timer subsystem?

09.14.05 TinyOS 2.085

Reflection – Components vs Threads

A more productive view is to consider the system as a set of interacting
components

• A component maintains the information that represents its state

• A component makes requests for actions from other components

• A component responds to commands and events from other
components, representing:
– Requests (from other components) for the initiation of a new action

• Ex: please sample the light sensor
– Completion of requests the component made of other components

• Ex: message queued for sending to the root of the collection tree
– Events representing asynchronous actions from the environment or other

components
• Ex: system booted, timer expired, new dissemination value received

Tracking the details of the control flow across components is not
necessary within this mindset.

09.14.05 TinyOS 2.086

Reflection – Static Allocation

TinyOS/nesC use static rather than dynamic allocation. Why?

• Ensure that resources are available for the worst case
– ex: each message source gets one queue slot

• Simplify debugging (by removing a major source of bugs)

But where did that static allocation happen?

• AntiTheftC allocated some variables for message buffers, acceleration
samples

• Instantiation of generic components implicitly allocates state
– instantiating a module creates a new set of variables
– unique/uniqueCount allow compile-time sizing of arrays to match the

number of clients

module AntiTheftC { ... }
implementation {
message_t alertMsg, theftMsg;
uint16_t accelSamples[SAMPLES];
...

}

module AdcP { ... }
implementation {
uint8_t client;
uint8_t someState[uniqueCount(“adc.resource”)];
.. someState[client] ...

}

09.14.05 TinyOS 2.087

Reflection – TinyOS Goals Revisited

Operate with limited resources

• execution model allows single-stack execution

Allow high concurrency

• execution model allows direct reaction to events

• many execution contexts in limited resources

Adapt to hardware evolution

• component, execution model allow hardware / software substitution

Support a wide range of applications

• tailoring OS services to application needs

Be robust

• limited component interactions, static allocation

Support a diverse set of platforms

• OS services should reflect portable services

09.14.05 TinyOS 2.088

Reflection – Status

TinyOS 2.0 released in November 2006

• 25 “TinyOS Enhancement Proposals” describing TinyOS structure

• 114k lines of code in TinyOS core (in CVS today)

Services:

• completed: booting, scheduling, timer, A/D conversion, I2C bus, radio,
serial port, storage, multihop collection and dissemination, telosb
sensors, simple mica sensors

• in progress: over-the-air reprogramming, more sensors

• in limbo: security, time synchronisation

Platforms: mica family, telos, eyes, tinynode, intel mote 2

2.0.1 release planned for IPSN conference

• General API cleanup (based on TEP finalisation), bug fixes

09.14.05 TinyOS 2.089

Other OSes for Mote-class Devices

SOS https://projects.nesl.ucla.edu/public/sos-2x/

• C-based, with loadable modules and dynamic memory allocation

• also event-driven

Contiki http://www.sics.se/contiki

• C-based, with lightweight TCP/IP implementations

• optional preemptive threading

Mantis http://mantis.cs.colorado.edu

• C-based, with conventional thread-based programming model

• semaphores+IPC for inter-thread communication

09.14.05 TinyOS 2.090

What we didn’t see, Where to find out more

We didn’t see:

• The build system

• How to get code onto motes

• The 3-level hardware abstraction architecture

• Storage (flash) abstractions

Where to find out more

• http://www.tinyos.net

• The TinyOS Enhancement Proposals (TEPs)

• The web tutorials

• Phil Levis’s nesC/TinyOS programming manual, available from
http://csl.stanford.edu/~pal/

09.14.05 TinyOS 2.091

Last Words

Work In Progress

• sensorboards, TEPs

• community feedback on design and TEPs

Remains to be done:

• finish system services, in particular network reprogramming

But, compared to TinyOS 1.1, TinyOS 2.0 is already:

• better designed

• better documented

• more reliable

• more portable

Download it today: http://www.tinyos.net/dist-2.0.0 !

