
Packet-level time synchronization

TEP: TBA
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: > 2.1
Author: Miklos Maroti, Janos Sallai
Draft-Created: 15-May-2008
Draft-Version: 1.0
Draft-Modified: 2008-05-15
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This TEP describes a packet-level time synchronization mechanism that allows for sending a time value
along with the packet which is automatically converted from the sender’s local time to the receiver’s
local time by the communications stack.

1. Introduction

Time of occurrence of events is often of interest in a sensor network. Maintaining a synchronized UTC
or a virtual global time in a sensor network may, however, lead to significant communication overhead
and may not always be required by the application.

This TEP describes a packet-level time synchronization mechanism that allows for sending a time
value along with the packet which is automatically converted from the sender’s local time to the receiver’s
local time by the communications stack. Packet-level time synchronization is limited to single-hop
communication and does not provide synchronized network time. It provides a simple yet powerful
abstraction, on top of which it is possible to implement higher-level time synchronization services (e.g.
FTSP6)in a platform-independent way. Packet-level time synchronization is semantically equivalent to
the ETA primitives1.

The rest of this TEP specifies:

• Platform-independent packet-level time synchronization interfaces

• How these interfaces are provided in the HIL

• A guideline how each transceiver’s HAL may implement the above interfaces

1



2. Interface

Packet-level time synchronization is implemented by the communication stack and is exposed through
two interfaces, TimeSyncAMSend and TimeSyncPacket.

The TimeSyncAMSend interface allows for sending a time value (e.g. an event timestamp) along with
a message. It is parameterized by the precision and width of the time value:

interface TimeSyncAMSend<precision_tag, size_type>
{
command error_t send(am_addr_t addr, mes-

sage_t* msg, uint8_t len, size_type event_time);
command error_t cancel(message_t* msg);
event void sendDone(message_t* msg, error_t error);
command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg, uint8_t len);

}

The send command sends a regular message just like AMSend.send2, but it also performs sender-
receiver time synchronization. The event_time parameter holds the time of some event as expressed in
the local clock of the sender. The receiver can obtain the time of this event (expressed in its own local
time) via the TimeSyncPacket interface.

The rest of the functionality is identical to that of the AMSend interface, therefore its description is
omitted here. Please refer to2 for details.

The TimeSyncPacket interface, parameterized by a precision tag and width, allows for retrieving a
time value that was sent along the received packet:

interface TimeSyncPacket<precision_tag, size_type>
{

command bool isValid(message_t* msg);
command size_type eventTime(message_t* msg);

}

The isValid command returns TRUE if the value returned by eventTime can be trusted. Under
certain circumstances the received packet cannot be properly time stamped, so the sender-receiver
synchronization cannot be finished on the receiver side. In such case, this command returns FALSE.
This command MUST be called only on the receiver side and only for messages transmitted via the
TimeSyncAMSend interface.

The communications stack MUST guarantee that if the isValid command called from within the
receive event handler returns TRUE, then the value returned by the eventTime command can be trusted.
However, it might be possible that the local clock overflowed more than once or that is was stopped or
reset since the packet was received, which causes the event_time to be invalid. The isValid command
MAY return TRUE in such situations, and it is the responsibility of the user of the interface to ensure
that the clock runs freely from the time of message reception to the time when eventTime is called.
To avoid this issue, it is recommended that isValid and eventTime are called from the receive event
handler.

The eventTime command should be called by the receiver of a packet. The time of the synchro-
nization event is returned as expressed in the local clock of the caller. This command MUST BE called
only on the receiver side and only for messages transmitted via the TimeSyncAMSend interface.

3. HIL requirements

The signature of the platform’s ActiveMessageC5 MUST include:

provides interface TimeSyncAMSend<TMilli, uint32_t>;
provides interface TimeSyncPacket<TMilli, uint32_t>;

2



where event times are given in the node’s local time, which is available through HILTimerMil-
liC.LocalTime.

The communications stack MAY support timestamp precisions and widths other than TMilli and
uint32 t, respectively. Also, alternative TimeSyncAMSend and TimeSyncPacket implementations MAY
use clock sources other than HILTimerMilliC.LocalTime.

4. Implementation guidelines

Packet-level time synchronization employs the ETA primitives. In this TEP, only the basics of the time
synchronization mechanism are described, for details please see1. This section presents two possible
implementation approaches. The first approach assumes that the payload of the packet is still mutable
when the transmission time of the packet (e.g. the timestamp of the SFD interrupt) becomes available.
The second approach avoids this assumption and uses the packet timestamping functionality described
in TEP4 to implement packet- level time synchronization.

4.1 Approach #1

Several transceivers allow for modifying the contents of a packet after packet transmission is started.
Packet-level time synchronization can be implemented very efficiently on such platforms.

Transmitter’s story

• When the communications stack services a TimeSyncAMSend.send command called
with event timestamp t_e, it stores t_e (e.g. in a map with the pointer of the message t
as key) and sets the designated timestamp field in the packet payload to 0x80000000.

• When the packet starts being transmitted over the communication medium, a corre-
sponding hardware event is timestamped (e.g. an SFD interrupt). Let us denote this
transmission timestamp with t_tx. The difference of event timestamp t_e and trans-
mit timestamp t_tx is written into the designated timestamp field in the payload of the
packet (typically into the footer, since the first few bytes might have been transmitted
by this time). That is, the information the packet contains at the instance when being
sent over the communications medium is the age of the event (i.e. how much time ago
the event had occurred).

• If an error occurs with timestamping the transmission or with writing the package
payload after transmission has started, then the designated timestamp field in the
packet payload will contain 0x80000000, indicating the error to the receiver.

Receiver’s story

• The packet is timestamped with the receiver node’s local clock at reception (e.g. with
the timestamp of the SFD interrupt). Let us denote the time of reception with t_rx.
The reception timestamp is stored in the metadata structure of the message_t5.

• When the event time is queried via the TimeSyncPacket interface, the eventTime com-
mand returns the sum of the value stored in the designated timestamp field in packet
payload and the reception timestamp, i.e. e_t- e_tx+e_rx. This value corresponds to
the time of the event in the receiver’s local clock.

• The TimeSyncPacket.isValid command returns FALSE if the time value stored in the
payload equals 0x80000000 or if the communications stack failed to timestamp the
reception of the packet. Otherwise TRUE is returned, which indicates that the value
returned by TimeSyncPacket.eventTime can be trusted.

3



4.1 Approach #2

If a particular platform does not support changing the packet contents after the synchronization event
(start of transmission, SFD interrupt, etc.) had occured, it is still possible to provide packet-level time
synchronization functionality at the cost of some communication overhead. Such an approach can rely
on packet timestamping TEP4 to implement packet-level time synchronization.

Transmitter’s story

• When the communications stack services a TimeSyncAMSend.send command called
with event timestamp t_e, it stores t_e (e.g. in a map with the pointer of the message t
as key) and sends the packet.

• Transmission of the packet is timestamped using the packet timestamping TEP4 mech-
anism. Let us denote this transmission timestamp with t_tx. The difference of event
timestamp t_e and transmit timestamp t_tx is sent in an auxilliary packet. That is,
the information the auxulary packet contains is the age of the event at the time when
the initial packet was transmitted.

Receiver’s story

• The packet is timestamped with the receiver node’s local clock at reception (e.g. with
the timestamp of the SFD interrupt). Let us denote the time of reception with t_rx.
The reception timestamp is stored in the metadata structure of the message_t5.

• When the auxilliary packet arrives, the time value it carries (t_e-t_tx, the age of
the event) is stored in a metadata field of the main packet. The auxilliary packet is
discarded, and the receive event is signalled with the pointer to the main packet.

• When the event time is queried via the TimeSyncPacket interface, the eventTime
command returns the sum of the value stored in the metadata (age of the event) and
the reception timestamp, i.e. e_t- e_tx+e_rx. This value corresponds to the time of
the event in the receiver’s local clock.

• The TimeSyncPacket.isValid command returns FALSE if the communications stack
failed to timestamp the reception of the packet. Otherwise TRUE is returned, which
indicates that the value returned by TimeSyncPacket.eventTime can be trusted.

5. Reference implementation

A reference implementation of the packet-level time synchronization mechanism described in this TEP
can be found in tinyos-2.x/tos/chips/rf230.

6. Author’s Address

Miklos Maroti
Janos Sallai
Institute for Software Integrated Systems
Vanderbilt University
2015 Terrace Place
Nashville, TN 37203
phone: +1 (615) 343-7555

7. Citations

4



1 Kusy, B., Dutta, P., Levis, P., Maroti, M., Ledeczi, A., Culler, D., Elapsed Time on Arrival: A simple
and versatile primitive for canonical time synchronization services. International Journal of Ad hoc and
Ubiquitous Computing, Vol, 2, No. 1, 2006.

2 TEP 116: Packet protocols

3 TEP 102: Timers

4 TEP TBA: Packet timestamping

5 TEP 111: message t

6 Maroti, M., Kusy, B., Simon, G., and Ledeczi, A. 2004. The flooding time synchronization protocol. In
Proceedings of the 2nd international Conference on Embedded Networked Sensor Systems (Baltimore,
MD, USA, November 03 - 05, 2004). ACM SenSys ’04.

5


