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Abstract

This TEP proposes a hardware abstraction for analog-to-digital converters (ADCs) in TinyOS 2.x,
which is aligned to the three-layer Hardware Abstraction Architecture (HAA) specified in [TEP2]. It
describes some design principles and documents the set of hardware-independent interfaces to an ADC.

1. Introduction

Analog-to-digital converters (ADCs) are devices that convert analog input signals to discrete digital
output signals, typically voltage to a binary number. The interested reader can refer to Appendix A
for a brief overview of the ADC hardware on some current TinyOS platforms. In earlier versions of
TinyOS, the distinction between a sensor and an ADC were blurred: this led components that had
nothing to do with an ADC to still resemble one programatically, even though the semantics and forms
of operation were completely different. To compensate for the difference non-ADC sensors introduced
additional interfaces, such as ADCError, that were tightly bound to sensor acquisition but separate in
wiring. The separation between the ADC and ADCError interface is bug prone and problematic, as is
the equation of a sensor and an ADC. TinyOS 2.x separates the structure and interfaces of an ADC
from those of sensor drivers (which may be on top of an ADC stack, but this fact is hidden from higher
level components). This TEP presents how TinyOS 2.x structures ADC software. [TEP109] (Sensor
Boards) shows how a platform can present actual named sensors.

As can be seen in Appendix A the ADC hardware used on TinyOS platforms differ in many respects,
which makes it difficult to find a chip independent representation for an ADC. Even if there were
such a representation, the configuration details of an ADC would still depend on the actual device
producing the input signal (sensor). Neither a platform independent application nor the ADC hardware
stack itself has access to this information, as it can only be determined on a platform or sensorboard
level. For example, determining which ADC port a sensor is attached to and how conversion results
need to be interpreted is a platform specific determination. Although the actual configuration details
may be different the procedure of configuring an ADC can be unified on all ADCs with the help
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of hardware independent interfaces: in a similar way as the Read interface definition does not
predefine the type or semantics of the exchanged data (see [TEP114]), a configuration interface definition
can abstract from the data type and semantics of the involved configuration settings. For example,
like a component can provide a Read<uint8_t> or Read<uint16_t> interface, it can also provide a
AdcConfigure<atm128_adc_config_t> or AdcConfigure<msp430adc12_channel_config_t> interface
depending on what ADC it represents. This TEP proposes the (typed) AdcConfigure interface as the
standard interface for configuring an ADC in TinyOS 2.x.

In spite of their hardware differences, one aspect represents a common denominator of ADCs: they all
produce conversion results. To facilitate sensor software development conversion results are returned by
the ADC stack through the interfaces Read, ReadStream and ReadNow (see 2. Interfaces and [TEP114]).
Conversion results are returned as uninterpreted values and translating them to engineering units can
only be done with the configuration knowledge of the respective platform, for example, the reference
voltage or the resistance of a reference resistor in ratiometric measurements. Translating uninterpreted
values to engineering units may be performed by components located on top of the ADC stack and is
out of the scope of this TEP.

The top layer of abstraction of an ADC - the Hardware Interface Layer (HIL) - thus provides the in-
terfaces Read, ReadNow and ReadStream and uses the AdcConfigure interface for hardware configuration
(why it uses and does not provide AdcConfigure is explained below). Since the type and semantics
of the parameters passed through these interfaces is dependent on the actual ADC implementation, it
is only a “weak” HIL (see [TEP2]).

Following the principles of the HAA [TEP2] the Hardware Adaptation Layer (HAL, which resides
below the HIL) of an ADC should expose all the chip-specific capabilities of the chip. For example,
the ADC12 on the MSP430 MCU supports a “Repeat-Sequence-of-Channels Mode” and therefore this
function should be accessible on the HAL of the MSP430 ADC12 hardware abstraction. Other ADCs
might not exhibit such functionality and might therefore - on the level of HAL - provide only an
interface to perform single conversions. Since all ADCs have the same HIL representation it may be
necessary to perform some degree of software emulation in the HIL implementation. For example, a
ReadStream command can be emulated by multiple single conversion commands. Below the HAL resides
the Hardware Presentation Layer (HPL), a stateless component that provides access to the hardware
registers (see [TEP2]). The general structure (without virtualization) of the ADC stack is as follows

^ |
| |
| Read,

AdcConfigure ReadNow (+ Resource),
| ReadStream
| |
| V

+----------------------------------+
| Hardware Interface Layer (HIL) |
| (chip-specific implementation) |
+----------------------------------+

|
|

chip-specific interface(s) + Resource
(e.g. Msp430Adc12SingleChannel + Resource)

|
V

+----------------------------------+
| Hardware Adaptation Layer (HAL) |
| (chip-specific implementation) |
+----------------------------------+

|
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|
chip-specific interface(s)

(e.g. HplAdc12)
|
V

+----------------------------------+
| Hardware Presentation Layer (HPL)|
| (chip-specific implementation) |
+----------------------------------+

The rest of this TEP specifies:

• the set of standard TinyOS interfaces for collecting ADC conversion results and for configuring
an ADC (2. Interfaces)

• guidelines on how an ADC’s HAL should expose chip-specific interfaces (3. HAL guidelines)

• what components an ADC’s HIL MUST implement (4. HIL requirements)

• guidelines on how the HIL should be implemented (5. HIL guidelines)

• a section pointing to current implementations (6. Implementation)

This TEP ends with appendices documenting, as an example, the ADC implementation for the TI
MSP430 MCU.

2. Interfaces

This TEP proposes the AdcConfigure interface for ADC hardware configuration and the Read, Read-
Stream and ReadNow interfaces to acquire conversion results. The Read and ReadStream interfaces are
documented in [TEP114] and the ReadNow interface is documented in this TEP. A Read[Now|Stream]
interface is always provided in conjunction with a AdcConfigure interface.

Interface for configuring the ADC hardware

The AdcConfigure interface is defined as follows:

interface AdcConfigure< config_type >
{
async command config_type getConfiguration();

}

This interface is used by the ADC stack to retrieve the hardware configuration of an ADC HIL
client. config_type is a chip-specific data type (simple or structured) that contains all information
necessary to configure the respective ADC hardware. For example, on the ADC12 of the MSP430 the
AdcConfigure interface will be instantiated with the const msp430adc12_channel_config_t* data
type. A client MUST always return the same configuration through a AdcConfigure interface and, if
configuration data is passed as a pointer, the HIL component (see 4. HIL requirements) MUST NOT
reference it after the return of the getConfiguration() command. If a client wants to use the ADC
with different configurations it must provide multiple instances of the AdcConfigure interface.

Note that the AdcConfigure interface is provided by an ADC HIL client and it is used by the
ADC HIL implementation. Therefore an ADC HIL client cannot initiate the configuration of the ADC
hardware itself. Instead it is the ADC HIL implementation that can“pull”the client’s ADC configuration
just before it initates a conversion based on the respective client’s configuration. The rationale is that
the ADC HIL implementation does not have to store an ADC configuration per client - instead the
ADC client can, for example, store its configuration in program memory.
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Interfaces for acquiring conversion results

This TEP proposes to adopt the following two source-independent data collection interfaces from
[TEP114] for the collection of ADC conversion results on the level of HIL:

interface Read< size_type >
interface ReadStream< size_type >

In addition it proposes the following data collection interface for low-latency reading of conversion
results:

interface ReadNow< size_type >

Every data collection interface is associated with an AdcConfigure interface (how this association
is realized is explained in Section 4. HIL requirements). As the resolution of conversion results is
chip-specific, the size_type parameter reflects an upper bound for the chip-specific resolution of the
conversion results - the actual resolution may be smaller (e.g. uint16 t for a 12-bit ADC).

Read

The Read interface can be used to sample an ADC channel once and return a single conversion result
as an uninterpreted value. The Read interface is documented in [TEP114].

ReadStream

The ReadStream interface can be used to sample an ADC channel multiple times with a specified
sampling period. The ReadStream interface is documented in [TEP114] .

ReadNow

The ReadNow interface is intended for split-phase low-latency reading of small values:

interface ReadNow<val_t>
{
async command error_t read();
async event void readDone( error_t result, val_t val );

}

This interface is similar to the Read interface, but works in asynchronous context. A successful call
to ReadNow.read() means that the ADC hardware has started the sampling process and that Read-
Now.readDone() will be signalled once it has finished (note that the asynchronous ReadNow.readDone()
might be signalled even before the call to ReadNow.read() has returned). Due to its timing constraints
the ReadNow interface is always provided in conjunction with an instance of the Resource interface and a
client must reserve the ADC through the Resource interface before the client may call ReadNow.read().
Please refer to [TEP108] on how the Resource interface should be used by a client component.

3. HAL guidelines

As explained in 1. Introduction the HAL exposes the full capabilities of the ADC hardware. Therefore
only chip- and platform-dependent clients can wire to the HAL. Although the HAL is chip-specific,
both, in terms of implementation and representation, its design should follow the guidelines described
in this section to facilitate the mapping to the HIL representation. Appendix B shows the signature of
the HAL for the MSP430.
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Resource reservation

As the ADC hardware is a shared resource that is usually multiplexed between several clients some
form of access arbitration is necessary. The HAL should therefore provide a parameterized Resource
interface, instantiate a standard arbiter component and connect the Resource interface to the arbiter
as described in [TEP108]. To ensure fair and uniform arbitration on all platforms the standard round
robin arbiter is recommended. Resource arbiters and the Resource interface are the topic of [TEP108].

Configuration and sampling

As the ADC hardware is a shared resource the HAL should support hardware configuration and sampling
per client (although per-port configuration is possible, it is not recommended, because it forces all clients
to use the same configuration for a given port). Therefore the HAL should provide sampling interfaces
parameterized by a client identifier. A HAL client can use its instance of the sampling interface to
configure the ADC hardware, start the sampling process and acquire conversion results. It wires to a
sampling interface using a unique client identifier (this may be hidden by a virtualization component).
All commands and events in the sampling interface should be ’async’ to reflect the potential timing
requirements of clients on the level of HAL. A HAL may provide multiple different parameterized
sampling interfaces, depending on the hardware capabilities. This allows to differentiate/group ADC
functionality, for example single vs. repeated sampling, single channel vs. multiple channels or low-
frequency vs. high-frequency sampling. Every sampling interface should allow the client to individually
configure the ADC hardware, for example by including the configuration data as parameters in the
sampling commands. However, if configuration data is passed as a pointer, the HAL component MUST
NOT reference it after the return of the respective command. Appendix B shows the HAL interfaces
for the MSP430.

HAL virtualization

In order to hide wiring complexities and/or export only a subset of all ADC functions generic ADC
wrapper components may be provided on the level of HAL. Such components can also be used to ensure
that a sampling interface is always provided with a Resource interface and both are instantiated with
the same client ID if this is required by the HAL implementation.

4. HIL requirements

The following generic components MUST be provided on all platforms that have an ADC:

AdcReadClientC
AdcReadNowClientC
AdcReadStreamClientC

These components provide virtualized access to the HIL of an ADC. They are instantiated by an
ADC client and provide/use the four interfaces described in Section 2. Interfaces. An ADC client
may instantiate multiple such components. The following paragraphs describe their signatures. Note
that this TEP does not address the issue of how to deal with multiple ADCs on the same platform
(the question of how to deal with multiple devices of the same class is a general one in TinyOS 2.x).
Appendix C shows the AdcReadClientC for the MSP430.

AdcReadClientC

generic configuration AdcReadClientC() {
provides {
interface Read< size_type >;

}
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uses {
interface AdcConfigure< config_type >;

}
}

The AdcReadClientC component provides a Read interface for acquiring single conversion results.
The associated ADC channel (port) and further configuration details are returned by the AdcConfig-
ure.getConfiguration() command. It is the task of the client to wire this interface to a component
that provides the client’s ADC configuration. The HIL implementation will use the AdcConfigure in-
terface to dynamically “pull” the client’s ADC settings when it translates the Read.read() command to
a chip-specific sampling command. Note that both, size_type and config_type, are only placeholders
and will be instantiated by the respective HIL implementation (for an example, see the AdcReadClientC
for the MSP430 in Appendix C).

AdcReadNowClientC

generic configuration AdcReadNowClientC() {
provides {
interface Resource;
interface ReadNow< size_type >;

}
uses {
interface AdcConfigure< config_type >;

}
}

The AdcReadNowClientC component provides a ReadNow interface for acquiring single conversion
results. In contrast to Read.read() when a call to ReadNow.read() succeeds, the ADC starts to
sample the channel immediately (a successful Read.read() command may not have this implication,
see [TEP114] and 2. Interfaces). A client MUST reserve the ADC through the Resource interface
before the client may call ReadNow.read() and it MUST release the ADC through the Resource
interface when it no longer needs to access it (for more details on how to use the Resource interface
please refer to [TEP108]). The associated ADC channel (port) and further configuration details are
returned by the AdcConfigure.getConfiguration() command. It is the task of the client to wire
this interface to a component that provides the client’s ADC configuration. The HIL implementation
will use the AdcConfigure interface to dynamically “pull” the client’s ADC settings when it translates
the ReadNow.read() command to a chip-specific sampling command. Note that both, size_type and
config_type, are only placeholders and will be instantiated by the respective HIL implementation (for
an example how this is done for the AdcReadClientC see Appendix C).

AdcReadStreamClientC

generic configuration AdcReadStreamClientC() {
provides {
interface ReadStream< size_type >;

}
uses {
interface AdcConfigure< config_type>;

}
}

The AdcReadStreamClientC component provides a ReadStream interface for acquiring multiple
conversion results at once. The ReadStream interface is explained in [TEP114] and 2. Interfaces. The
AdcConfigure interface is used in the same way as described in the section on the AdcReadClientC.
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Note that both, size_type and config_type, are only placeholders and will be instantiated by the
respective HIL implementation (for an example how this is done for the AdcReadClientC see Appendix
C).

5. HIL guidelines

The HIL implementation of an ADC stack has two main tasks: it translates a Read, ReadNow or Read-
Stream request to a chip-specific HAL sampling command and it abstracts from the Resource interface
(the latter only for the AdcReadClientC and AdcReadStreamClientC). The first task is solved with the
help of the AdcConfigure interface which is used by the HIL implementation to retrieve a client’s ADC
configuration. The second task MAY be performed by the following library components: Arbitrat-
edReadC, and ArbitratedReadStreamC (in tinyos-2.x/tos/system) - please refer to the Atmel Atmega
128 HAL implementation (in tinyos-2.x/tos/chips/atm128/adc) for an example. Note that since the
ReadNow interface is always provided in conjunction with a Resource interface the HIL implementation
does not have to perform the ADC resource reservation for an AdcReadNowClientC, but may simply
forward an instance of the Resource interface from the HAL to the AdcReadNowClientC.

The typical sequence of events is as follows: when a client requests data through the Read or
ReadStream interface the HIL will request access to the HAL using the Resource interface. After the
HIL has been granted access, it will “pull” the client’s ADC configuration using the AdcConfigure
interface and translate the client’s Read or ReadStream command to a chip-specific HAL command.
Once the HIL is signalled the conversion result(s) from the HAL it releases the ADC through the
Resource interface and signals the conversion result(s) to the client though the Read or ReadStream
interface. When a client requests data through the ReadNow interface the HIL translates the client’s
command to the chip-specific HAL command without using the Resource interface (it may check
ownership of the client through the ArbiterInfo interface - this check can also be done in the HAL
implementation). Once the HIL is signalled the conversion result(s) it forwards it to the respective
ReadNow client.

6. Implementation

TestAdc application

An ADC HIL test application can be found in tinyos-2.x/apps/tests/TestAdc. Note that this ap-
plication instantiates generic DemoSensorC, DemoSensorStreamC and DemoSensorNowC components
(see [TEP114]) and assumes that these components are actually wired to an ADC HIL. Please refer to
tinyos-2.x/apps/tests/TestAdc/README.txt for more information.

HAA on the MSP430 and Atmega 128

The implementation of the ADC12 stack on the MSP430 can be found in tinyos-2.x/tos/chips/msp430/adc12:

• HplAdc12P.nc is the HPL implementation

• Msp430Adc12P.nc is the HAL implementation

• AdcP.nc is the HIL implementation

• AdcReadClientC.nc, AdcReadNowClientC.nc and AdcReadStreamClientC.nc provide
virtualized access to the HIL

• the use of DMA or the reference voltage generator and the HAL virtualization compo-
nents are explained in README.txt

The Atmel Atmega 128 ADC implementation can be found in tinyos-2.x/tos/chips/atm128/adc:

• HplAtm128AdcC.nc is the HPL implementation
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• Atm128AdcP.nc is the HAL implementation

• AdcP.nc, WireAdcP.nc and the library components for arbitrating ’Read’, ’ReadNow’
and ’ReadStream’, ArbitratedReadC and ArbitratedReadStreamC (in tinyos-2.x/tos/system),
realize the HIL

• AdcReadClientC.nc, AdcReadNowClientC.nc and AdcReadStreamClientC.nc provide
virtualized access to the HIL

Appendix A: Hardware differences between platforms

The following table compares the characteristics of two microcontrollers commonly used in TinyOS
platforms:

Atmel Atmega 128 TI MSP430 ADC12
Resolution 10-bit 12-bit
channels

• 8 multiplexed external
channels

• 16 differential voltage
input combinations

• 2 differential inputs
with gain amplifica-
tion

• 8 individually config-
urable external chan-
nels

• internal channels
(AVcc, temperature,
reference voltages)

internal reference voltage 2.56V 1.5V or 2.5V
conversion reference

• positive terminal:
AVcc or 2.56V or
AREF (external)

• negative terminal:
GND

individually
selectable per
channel:

• AVcc and AVss

• Vref+ and AVss

• Veref+ and AVss

• AVcc and (Vref- or
Veref-)

• AVref+ and (Vref- or
Veref-)

• Veref+ and (Vref- or
Veref-)
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Atmel Atmega 128 TI MSP430 ADC12
conversion modes

• single channel conver-
sion mode

• free running mode
(channels and ref-
erence voltages can
be switched between
samples)

• single conversion
mode

• repeat single conver-
sion mode

• sequence mode (se-
quence <= 16 chan-
nels)

• repeat sequence
mode

conversion clock source clkADC with prescaler ACLK, MCLK, SMCLK
or ADC-oscillator (5MHz)
with prescaler respectively

sample-hold-time 1.5 clock cycles (fixed) selectable values from 4 to
1024 clock cycles

conversion triggering by software by software or timers
conversion during sleep
mode possible

yes yes

interrupts after each conversion after single or sequence
conversion

Appendix B: a HAL representation: MSP430 ADC12

This section shows the HAL signature for the ADC12 of the TI MSP430 MCU. It reflects the four
MSP430 ADC12 conversion modes as it lets a client sample an ADC channel once (“Single-channel-
single-conversion”) or repeatedly (“Repeat-single-channel”), multiple times (“Sequence-of-channels”) or
multiple times repeatedly (“Repeat-sequence-of-channels”). In contrast to the single channel conversion
modes the sequence conversion modes trigger a single interrupt after multiple samples and thus enable
high-frequency sampling. The DMAExtension interface is used to reset the state machine when the DMA
is responsible for data transfer (managed in an exterior component):

configuration Msp430Adc12P
{
provides {
interface Resource[uint8_t id];
interface Msp430Adc12SingleChannel as SingleChannel[uint8_t id];
interface AsyncStdControl as DMAExtension[uint8_t id];

}
}

interface Msp430Adc12SingleChannel
{
async command error_t configureSin-

gle(const msp430adc12_channel_config_t *config);
async command error_t configureSingleRe-

peat(const msp430adc12_channel_config_t *config, uint16_t jiffies);
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async command error_t configureMulti-
ple( const msp430adc12_channel_config_t *con-
fig, uint16_t buffer[], uint16_t numSamples, uint16_t jiffies);
async command error_t configureMultipleRe-

peat(const msp430adc12_channel_config_t *con-
fig, uint16_t buffer[], uint8_t numSamples, uint16_t jiffies);
async command error_t getData();
async event error_t singleDataReady(uint16_t data);
async event uint16_t* multipleDataReady(uint16_t buffer[], uint16_t num-

Samples);
}

typedef struct
{
unsigned int inch: 4; // input channel
unsigned int sref: 3; // reference voltage
unsigned int ref2_5v: 1; // reference voltage level
unsigned int adc12ssel: 2; // clock source sample-hold-time
unsigned int adc12div: 3; // clock divider sample-hold-time
unsigned int sht: 4; // sample-hold-time
unsigned int sampcon_ssel: 2; // clock source sampcon signal
unsigned int sampcon_id: 2; // clock divider sampcon signal

} msp430adc12_channel_config_t;

Appendix C: a HIL representation: MSP430 ADC12

The signature of the AdcReadClientC component for the MSP430 ADC12 is as follows:

generic configuration AdcReadClientC() {
provides interface Read<uint16_t>;
uses interface AdcConfigure<const msp430adc12_channel_config_t*>;

}

[TEP1] TEP 1: TEP Structure and Keywords.
[TEP2] TEP 2: Hardware Abstraction Architecture.
[TEP108] TEP 108: Resource Arbitration.
[TEP109] TEP 109: Sensor Boards.
[TEP114] TEP 114: SIDs: Source and Sink Independent Drivers.
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