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Abstract

This TEP proposes a Timer design that supports common timing requirements both in precision and
width across common hardware configurations. This TEP focuses on aligning the Timer abstraction
with the three-layer Hardware Abstraction Architecture (HAA).

1. Introduction

Most microcontrollers offer a rich timer system, with features like:

• several counters, possibly of different widths, with multiple clocking options

• one or more compare registers for each counter, which can trigger interrupts, changes to output
pins and changes to the counter value

• capture of the time of input pin changes

The interested reader can refer to Appendix A for a brief overview of the timer hardware on some
current TinyOS platforms.

TinyOS does not attempt to capture all this diversity in a platform-independent fashion. Instead,
following the principles of the HAA[ tep2], each microcontroller should expose all this functionality
via components and interfaces at the HPL and, where appropriate, HAL levels. However, two aspects
of timers are sufficiently common and important that they should be made available in a well-defined
way: measuring time, and triggering (possibly repeating) events at specific times. The rest of this TEP
specifies:
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• a set of platform-independent interfaces for counting time and triggering events (2. Interfaces)

• guidelines on how each microcontroller’s HAL SHOULD expose its timer hardware in terms of
the above interfaces (3. HAL guidelines)

• what components a microcontroller’s timer HIL MUST implement (4. HIL requirements)

• a set of utility components whose use simplifies building the components specified by the HAL
guidelines and HIL requirements (5. Utility components)

This TEP ends with appendices documenting, as an example, the mica2 timer subsystem implemen-
tation.

2. Interfaces

Before presenting the interfaces (2.2), we start with a general discussion of the issues of precision, width
and accuracy in timer interfaces (2.1).

2.1 Precision, Width and Accuracy

Three fundamental properties of timers are precision, width and accuracy.
Examples of precision are millisecond, a cycle of a 32kHz clock, and microseconds. All precisions

presented in this TEP are in“binary”units with respect to one second. That is, one second contains 1024
binary milliseconds, 32768 32kHz ticks, or 1048576 microseconds. This TEP emphasizes millisecond and
32kHz tick precisions while reasonably accommodating other precisions. The use of “binary” units is
motivated by the common availability of hardware clocks driven by a 32768Hz crystal.

Examples of widths are 8-bit, 16-bit, 32-bit, and 64-bit. The width for timer interfaces and compo-
nents SHOULD be 32-bits. This TEP emphasizes 32-bit widths while reasonably accommodating other
widths - a particular platform may have good reasons not to expose a 32-bit interface.

Accuracy reflects how closely a component conforms to the precision it claims to provide. Accuracy
is affected by issues such as clock drift (much higher for internal vs crystal oscillators) and hardware
limitations. As an example of hardware limitations, a mica2 clocked at 7.37MHz cannot offer an exact
binary microsecond timer -- the closest it can come is 7.37MHz/8. Rather than introduce a plethora
of precisions, we believe it is often best to pick the existing precision closest to what can be provided,
along with appropriate documentation. However, the accuracy MUST remain reasonable: for instance,
it would be inappropriate to claim that a millisecond timer is a 32kHz timer.

This TEP parameterizes all interfaces by precision and some interfaces by width. This intentionally
makes similar timer interfaces with different precision or width mutually incompatible. It also allows
user code to clearly express and understand the precision and width for a given timer interface. Accuracy
is not reflected in the interface type.

Precision is expressed as a dummy type -- TMilli, T32khz, and TMicro -- written in the standard
Timer.h header like this:

typedef struct { int notUsed; } TMilli; // 1024 ticks per second
typedef struct { int notUsed; } T32khz; // 32768 ticks per second
typedef struct { int notUsed; } TMicro; // 1048576 ticks per second

Note that the precision names are expressed as either frequency or period, whichever is convenient.

2.2 Timer interfaces

This TEP proposes these timer interfaces:
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interface Counter< precision_tag, size_type >
interface Alarm< precision_tag, size_type >
interface BusyWait< precision_tag, size_type >
interface LocalTime< precision_tag >
interface Timer< precision_tag >

The LocalTime and Timer interfaces are used primarily by user applications and use a fixed width
of 32-bits. The Alarm, BusyWait, and Counter interfaces are used by the TinyOS timer system and
advanced user components.

Counter

The Counter interface returns the current time and provides commands and an event for managing
overflow conditions. These overflow commands and events are necessary for properly deriving larger
width Counters from smaller widths.

interface Counter<precision_tag,size_type>
{
async command size_type get();
async command bool isOverflowPending();
async command void clearOverflow();
async event void overflow();

}

get() return the current time.

isOverflowPending() return TRUE if the overflow flag is set for this counter, i.e., if and only if an
overflow event will occur after the outermost atomic block exits. Return FALSE otherwise. This
command only returns the state of the overflow flag and causes no side effect.

clearOverflow() cancel the pending overflow event clearing the overflow flag.

overflow() signals that an overflow in the current time. That is, the current time has wrapped around
from its maximum value to zero.

Alarm

Alarm components are extensions of Counters that signal an event when their compare register detects
the alarm time has been hit. All commands and events of the Alarm interface are asynchronous (or in
“interrupt context”). The Alarm interface provides a set of “basic” commands for common usage and
provides a set of “extended” commands for advanced use.

interface Alarm<precision_tag,size_type>
{
// basic interface
async command void start( size_type dt );
async command void stop();
async event void fired();

// extended interface
async command bool isRunning();
async command void startAt( size_type t0, size_type dt );
async command size_type getNow();
async command size_type getAlarm();

}
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start(dt) cancel any previously running alarm and set to fire in dt time units from the time of invo-
cation. The alarm will only fire once then stop.

stop() cancel any previously running alarm.

fired() signals that the alarm has expired.

isRunning() return TRUE if the alarm has been started and has not been cancelled or has not yet
fired. FALSE is returned otherwise.

startAt(t0,dt)

cancel any previously running alarm and set to fire at time t1 = t0+dt. This form allows
a delay to be anchored to some time t0 taken before the invocation of startAt. The timer
subsystem uses this form internally, to be able to use of the full width of an alarm while also
detecting when a short alarm elapses prematurely.

The time t0 is always assumed to be in the past. A value of t0 numerically greater than the
current time (returned by getNow()) represents a time from before the last wraparound.

getNow() return the current time in the precision and width of the alarm.

getAlarm() return the time the currently running alarm will fire or the time that the previously
running alarm was set to fire. getAlarm can be used with startAt to set an alarm from the
previous alarm time, as in startAt(getAlarm(),dt). This pattern is used within the fired() event
to construct periodic alarms.

BusyWait

The BusyWait interface allows for very short synchronous delays. BusyWait should be used sparingly
and when an Alarm would not be reasonably efficient or accurate. The BusyWait interface replaces the
TOSH uwait macro from TinyOS 1.x.

BusyWait blocks for no less than the specified amount of time. No explicit upper bound is imposed
on the enacted delay, though it is expected that the underlying implementation spins in a busy loop
until the specified amount of time has elapsed.

interface BusyWait<precision_tag,size_type>
{
async command void wait( size_type dt );

}

wait(dt) block until at least dt time units have elapsed

LocalTime

The LocalTime interface exposes a 32-bit counter without overflow utilities. This is primarily for
application code that does not care about overflow conditions.

interface LocalTime<precision_tag>
{
async command uint32_t get();

}

get() return the current time.
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Timer

All commands and events of the Timer interface are synchronous (or in “task context”). The Timer in-
terface provides a set of“basic”commands for common usage and provides a set of“extended”commands
for advanced use. The Timer interface allows for periodic events.

interface Timer<precision_tag>
{
// basic interface
command void startPeriodic( uint32_t dt );
command void startOneShot( uint32_t dt );
command void stop();
event void fired();

// extended interface
command bool isRunning();
command bool isOneShot();
command void startPeriodicAt( uint32_t t0, uint32_t dt );
command void startOneShotAt( uint32_t t0, uint32_t dt );
command uint32_t getNow();
command uint32_t gett0();
command uint32_t getdt();

}

startPeriodic(dt) cancel any previously running timer and set to fire in dt time units from the time
of invocation. The timer will fire periodically every dt time units until stopped.

startOneShot(dt) cancel any previously running timer and set to fire in dt time units from the time
of invocation. The timer will only fire once then stop.

stop() cancel any previously running timer.

fired() signals that the timer has expired (one-shot) or repeated (periodic).

isRunning() return TRUE if the timer has been started and has not been cancelled and has not fired
for the case of one-shot timers. Once a periodic timer is started, isRunning will return TRUE
until it is cancelled.

isOneShot() return TRUE if the timer is a one-shot timer. Return FALSE otherwise if the timer is a
periodic timer.

startPeriodicAt(t0,dt) cancel any previously running timer and set to fire at time t1 = t0+dt. The
timer will fire periodically every dt time units until stopped.

As with alarms, the time t0 is always assumed to be in the past. A value of t0 numerically greater
than the current time (returned by getNow()) represents a time from before the last wraparound.

startOneShotAt(t0,dt) cancel any previously running timer and set to fire at time t1 = t0+dt. The
timer will fire once then stop.

t0 is as in startPeriodicAt.

getNow() return the current time in the precision and width of the timer.

gett0() return the time anchor for the previously started timer or the time of the previous event for
periodic timers.

getdt() return the delay or period for the previously started timer.
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3. HAL guidelines

Platforms SHOULD expose their relevant timing capabilities using standard Alarm and Counter in-
terfaces. The design pattern presented here defines a component naming convention to allow platform
independent access to particular Alarms and Counters if they exist and to cause compile errors if they
do not.

A platform specific hardware timer with precision ${P} and width ${W} SHOULD be exposed as
these two conventional Counter and Alarm components:

configuration Counter${P}${W}C
{
provides interface Counter< T${P}, uint${W}_t >;

}

generic configuration Alarm${P}${W}C()
{
provides interface Alarm< T${P}, uint${W}_t >;

}

Instantiating an Alarm${P}${W}C component provides a new and independent Alarm. If the
platform presents a limited number of Alarm resources, then allocating more Alarms in an application
than are available for the platform SHOULD produce a compile-time error. See Appendices B and C
for an example of how to make allocatable Alarms that are each implemented on independent hardware
timers.

For example, if a platform has an 8-bit 32kHz counter and three 8-bit 32kHz alarms, then the
Counter and Alarm interfaces for ${P}=32khz and ${W}=16 are:

configuration Counter32khz8C
{
provides interface Counter< T32khz, uint8_t >;

}

generic configuration Alarm32khz8C()
{
provides interface Alarm< T32khz, uint8_t >;

}

This pattern MAY be used to define components for the platform that are mutually incompatible in
a single application. Incompatible components SHOULD produce compile-time errors when compiled
together.

4. HIL requirements

The following component MUST be provided on all platforms

HilTimerMilliC
BusyWaitMicroC

Both of these components use “binary” units, i.e., 1/1024s for HilTimerMilliC and 1/1048576s for
BusyWaitMicroC. Components using other precisions (e.g., regular, non-binary milliseconds) MAY also
be provided.

HilTimerMilliC

configuration HilTimerMilliC
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{
provides interface Init;
provides interface Timer<TMilli> as TimerMilli[ uint8_t num ];
provides interface LocalTime<TMilli>;

}

A new timer is allocated using unique(UQ TIMER MILLI) to obtain a new unique timer number.
This timer number is used to index the TimerMilli parameterised interface. UQ TIMER MILLI is
defined in Timer.h. HilTimerMilliC is used by the LocalTimeMilliC component and the TimerMilliC
generic component, both found in tos/system/

BusyWaitMicroC

configuration BusyWaitMicroC
{
provides interface BusyWait<TMicro,uint16_t>;

}

BusyWaitMicroC allows applications to busy-wait for a number of microseconds. Its use should be
restricted to situations where the delay is small and setting a timer or alarm would be impractical,
inefficient or insufficiently precise.

5. Utility components

A number of platform independent generic components are provided to help implementers and advanced
users of the TinyOS timer system:

• AlarmToTimerC

• BusyWaitCounterC

• CounterToLocalTimeC

• TransformAlarmC

• TransformCounterC

• VirtualizeTimerC

Appendices B and C show how these can be used to help implement the timer HAL and HIL.

AlarmToTimerC

AlarmToTimerC converts a 32-bit Alarm to a Timer.

generic component AlarmToTimerC( typedef precision_tag )
{
provides interface Timer<precision_tag>;
uses interface Alarm<precision_tag,uint32_t>;

}
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BusyWaitCounterC

BusyWaitCounterC uses a Counter to block until a specified amount of time elapses.

generic component BusyWaitC( typedef precision_tag,
typedef size_type @integer() )

{
provides interface BusyWait<precision_tag,size_type>;
uses interface Counter<precision_tag,size_type>;

}

CounterToLocalTimeC

CounterToLocalTimeC converts from a 32-bit Counter to LocalTime.

generic component CounterToLocalTimeC( precision_tag )
{
provides interface LocalTime<precision_tag>;
uses interface Counter<precision_tag,uint32_t>;

}

TransformAlarmC

TransformAlarmC decreases precision and/or widens an Alarm. An already widened Counter compo-
nent is used to help.

generic component TransformAlarmC(
typedef to_precision_tag,
typedef to_size_type @integer(),
typedef from_precision_tag,
typedef from_size_type @integer(),
uint8_t bit_shift_right )

{
provides interface Alarm<to_precision_tag,to_size_type> as Alarm;
uses interface Counter<to_precision_tag,to_size_type> as Counter;
uses interface Alarm<from_precision_tag,from_size_type> as AlarmFrom;

}

to precision tag and to size type describe the final precision and final width for the provided Alarm.
from precision tag and from size type describe the precision and width for the source AlarmFrom.
bit shift right describes the bit-shift necessary to convert from the used precision to the provided pre-
cision.

For instance to convert from an Alarm<T32khz,uint16 t> to an Alarm<TMilli,uint32 t>, the fol-
lowing TransformAlarmC would be created:

new TransformAlarmC( TMilli, uint32_t, T32khz, uint16_t, 5 )

It is the exclusive responsibility of the developer using TransformAlarmC to ensure that all five
of its arguments are self consistent. No compile errors are generated if the parameters passed to
TransformAlarmC are inconsistent.
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TransformCounterC

TransformCounterC decreases precision and/or widens a Counter.

generic component TransformCounterC(
typedef to_precision_tag,
typedef to_size_type @integer(),
typedef from_precision_tag,
typedef from_size_type @integer(),
uint8_t bit_shift_right,
typedef upper_count_type @integer() )

{
provides interface Counter<to_precision_tag,to_size_type> as Counter;
uses interface Counter<from_precision_tag,from_size_type> as CounterFrom;

}

to precision tag and to size type describe the final precision and final width for the provided Counter.
from precision tag and from size type describe the precision and width for the source CounterFrom.
bit shift right describes the bit-shift necessary to convert from the used precision to the provided pre-
cision. upper count type describes the numeric type used to store the additional counter bits. up-
per count type MUST be a type with width greater than or equal to the additional bits in to size type
plus bit shift right.

For instance to convert from a Counter<T32khz,uint16 t> to a Counter<TMilli,uint32 t>, the
following TransformCounterC would be created:

new TransformCounterC( TMilli, uint32_t, T32khz, uint16_t, 5, uint32_t )

VirtualizeTimerC

VirtualizeTimerC uses a single Timer to create up to 255 virtual timers.

generic component VirtualizeTimerC( typedef precision_tag, int max_timers )
{
provides interface Init;
provides interface Timer<precision_tag> as Timer[ uint8_t num ];
uses interface Timer<precision_tag> as TimerFrom;

}

6. Implementation

The definition of the HIL interfaces are found in tinyos-2.x/tos/lib/timer:

• Alarm.nc

• BusyWait.nc

• Counter.nc

• LocalTime.nc

• Timer.h defines precision tags and strings for unique()

• Timer.nc

The implementation of the utility components are also found in tinyos-2.x/tos/lib/timer:

• AlarmToTimerC.nc
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• BusyWaitCounterC.nc

• CounterToLocalTimeC.nc

• TransformAlarmC.nc

• TransformCounterC.nc

• VirtualizeAlarmC.nc

• VirtualizeTimerC.nc

The implementation of timers for the MSP430 is in tinyos-2.x/tos/chips/msp430/timer:

• Alarm32khz16C.nc is generic and provides a new Alarm<T32khz,uint16_t>

• Alarm32khz32C.nc is generic and provides a new Alarm<T32khz,uint32_t>

• AlarmMilli16C.nc is generic and provides a new Alarm<TMilli,uint16_t>

• AlarmMilli32C.nc is generic and provides a new Alarm<TMilli,uint32_t>

• BusyWait32khzC.nc provides BusyWait<T32khz,uint16_t>
• BusyWaitMicroC.nc provides BusyWait<TMicro,uint16_t>
• Counter32khz16C.nc provides Counter<T32khz,uint16_t>
• Counter32khz32C.nc provides Counter<T32khz,uint32_t>
• CounterMilli16C.nc provides Counter<TMilli,uint16_t>
• CounterMilli32C.nc provides Counter<TMilli,uint32_t>
• GpioCaptureC.nc

• HilTimerMilliC.nc provides LocalTime<TMilli> and Timer<TMilli> as TimerMilli[uint8_t
num]

• Msp430AlarmC.nc is generic and converts an MSP430 timer to a 16-bit Alarm
• Msp430Capture.nc HPL interface definition for MSP430 timer captures
• Msp430ClockC.nc exposes MSP430 hardware clock initialization
• Msp430ClockInit.nc HPL interface definition for hardware clock initialization
• Msp430ClockP.nc implements MSP430 hardware clock initialization and calibration

and startup
• Msp430Compare.nc HPL interface definition for MSP430 timer compares
• Msp430Counter32khzC.nc provides Counter<T32khz,uint16_t> based on MSP430 TimerB
• Msp430CounterC.nc is generic and converts an Msp430Timer to a Counter
• Msp430CounterMicroC.nc provides Counter<TMicro,uint16_t> based on MSP430 TimerA
• Msp430Timer.h defines additional MSP430 timer bitmasks and structs
• Msp430Timer.nc HPL interface definition
• Msp430Timer32khzC.nc is generic and allocates a new 32khz hardware timer
• Msp430Timer32khzMapC.nc exposes the MSP430 hardware timers as a parameterized

interface allocatable using Msp430Timer32khzC
• Msp430TimerC.nc exposes the MSP430 hardware timers
• Msp430TimerCapComP.nc is generic and implements the HPL for MSP430 capture/compare

special function registers
• Msp430TimerCommonP.nc maps the MSP430 timer interrupts to Msp430TimerEvents
• Msp430TimerControl.nc HPL interface definition
• Msp430TimerEvent.nc HPL interface definition
• Msp430TimerP.nc is generic and implements the HPL for MSP430 timer special func-

tion registers

Implementation of timers for the ATmega128 and PXA27x may be found in tinyos-2.x/tos/chips/atm128/timer
and tinyos-2.x/tos/chips/pxa27x/timer respectively.
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Appendix A: Timer hardware on various microcontrollers

a. Atmega128

i. Two 8-bit timers, each allowing

• 7 prescaler values (division by different powers of 2)
• Timer 0 can use an external 32768Hz crystal
• One compare register, with many compare actions (change output

pin, clear counter, generate interrupt, etc)

ii. Two 16-bit timers, each with

• 5 prescaler values
• External and software clocking options
• Three compare registers (again with many actions)
• Input capture

b. MSP430

i. Two 16-bit timers with

• One with three compare registers
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• One with eight compare registers
• Each from distinct clock source
• Each with limited prescalers

c. Intel PXA27x

i. One fixed rate (3.25MHz) 32-bit timer with

• 4 compare registers
• Watchdog functionality

ii. 8 variable rate 32-bit timers with

• 1 associated compare register each
• Individually selectable rates: 1/32768s, 1ms, 1s, 1us
• Individually selectable sources: (32.768 external osc, 13 Mhz internal

clock)

iii. Periodic & one-shot capability
iv. Two external sync events

Appendix B: a microcontroller: Atmega 128 timer subsystem

The Atmega128 exposes its four timers through a common set of interfaces:

• HplTimer<width> - get/set current time, overflow event, control, init

• HplCompare<width> - get/set compare time, fired event, control

• HplCapture<width> - get/set capture time, captured event, control, config

Parameterising these interfaces by width allows reusing the same interfaces for the 8 and 16-bit
timers. This simplifies building reusable higher level components which are independent of timer width.

interface HplAtm128Timer<timer_size>
{
/// Timer value register: Direct access
async command timer_size get();
async command void set( timer_size t );

/// Interrupt signals
async event void overflow(); //<! Signalled on overflow interrupt

/// Interrupt flag utilites: Bit level set/clr
async command void reset(); //<! Clear the overflow interrupt flag
async command void start(); //<! Enable the overflow interrupt
async command void stop(); //<! Turn off overflow interrupts
async command bool test(); //<! Did overflow interrupt occur?
async command bool isOn(); //<! Is overflow interrupt on?

/// Clock initialization interface
async command void off(); //<! Turn off the clock
async command void setScale( uint8_t scale); //<! Turn on the clock
async command uint8_t getScale(); //<! Get prescaler set-

ting
}
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interface HplAtm128Compare<size_type>
{
/// Compare value register: Direct access
async command size_type get();
async command void set(size_type t);

/// Interrupt signals
async event void fired(); //<! Signalled on compare interrupt

/// Interrupt flag utilites: Bit level set/clr
async command void reset(); //<! Clear the compare interrupt flag
async command void start(); //<! Enable the compare interrupt
async command void stop(); //<! Turn off comparee interrupts
async command bool test(); //<! Did compare interrupt occur?
async command bool isOn(); //<! Is compare interrupt on?

}

interface HplAtm128Capture<size_type>
{
/// Capture value register: Direct access
async command size_type get();
async command void set(size_type t);

/// Interrupt signals
async event void captured(size_type t); //<! Signalled on capture int

/// Interrupt flag utilites: Bit level set/clr
async command void reset(); //<! Clear the capture inter-

rupt flag
async command void start(); //<! Enable the capture interrupt
async command void stop(); //<! Turn off capture interrupts
async command bool test(); //<! Did capture interrupt occur?
async command bool isOn(); //<! Is capture interrupt on?

async command void setEdge(bool up); //<! True = detect rising edge
}

These interfaces are provided by four components, corresponding to each hardware timer: HplAtm128Timer0AsyncC,
and HplAtm128Timer0C through HplAtm128Timer3C. Timers 1 and 3 have three compare registers,
so offer a parameterised HplAtm128Compare interface:

configuration HplAtm128Timer1C
{
provides {
// 16-bit Timers
interface HplAtm128Timer<uint16_t> as Timer;
interface HplAtm128TimerCtrl16 as TimerCtrl;
interface HplAtm128Capture<uint16_t> as Capture;
interface HplAtm128Compare<uint16_t> as Compare[uint8_t id];

}
}
...
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where the id corresponds to the compare register number. The parameterised interface is only
connected for id equal to 0, 1 or 2. Attempts to use another value cause a compile-time error. This is
achieved as follows (code from the implementation of HplAtm128Timer1C)

Compare[0] = HplAtm128Timer1P.CompareA;
Compare[1] = HplAtm128Timer1P.CompareB;
Compare[2] = HplAtm128Timer1P.CompareC;

The Atmega128 chip components do not define a HAL, as the timer configuration choices (fre-
quencies, use of input capture or compare output, etc) are platform-specific. Instead, it provides a
few generic components for converting the HPL interfaces into platform-independent interfaces. These
generic components include appropriate configuration parameters (e.g., prescaler values):

generic module Atm128AlarmC(typedef frequency_tag,
typedef timer_size @integer(),
uint8_t prescaler,
int mindt)

{
provides interface Init;
provides interface Alarm<frequency_tag, timer_size> as Alarm;
uses interface HplTimer<timer_size>;
uses interface HplCompare<timer_size>;

} ...

generic module Atm128CounterC(typedef frequency_tag,
typedef timer_size @integer())

{
provides interface Counter<frequency_tag,timer_size> as Counter;
uses interface HplTimer<timer_size> as Timer;

} ...

As a result of issues arising from using timer 0 in asynchronous mode, the HAL also offers the
following component:

generic configuration Atm128AlarmAsyncC(typedef precision, int divider) {
provides {
interface Init @atleastonce();
interface Alarm<precision, uint32_t>;
interface Counter<precision, uint32_t>;

}
}
...

which builds a 32-bit alarm and timer over timer 0. divider is used to initialise the timer0 scaling
factor.

Appendix C: a mote: Mica family timer subsystem

Members of the mica family (mica2, mica2dot, micaz) use the Atmega128 microprocessor and have
external crystals at 4 or 7.37MHz. Additionally, they can be run from an internal oscillator at 1, 2, 4,
or 8 MHz. The internal oscillator is less precise, but allows for much faster startup from power-down
and power-save modes (6 clocks vs 16000 clocks). Finally, power consumption is lower at the lower
frequencies.

14



The mica family members support operation at all these frequencies via a MHZ preprocessor symbol,
which can be defined to 1, 2, 4, or 8. If undefined, it defaults to a platform-dependent value (4 for
mica2dot, 8 for mica2 and micaz).

The mica family configures its four timers in part based on the value of this MHZ symbol:

• Timer 0: uses Atm128AlarmAsyncC to divide the external 32768Hz crystal by 32, creating a
32-bit alarm and counter. This alarm and counter is used to build HilTimerMilliC, using the
AlarmToTimerC, VirtualizeTimerC and CounterToLocalTimeC utility components.

Timing accuracy is as good as the external crystal.

• Timer 1: the 16-bit hardware timer 1 is set to run at 1MHz if possible. However, the set of dividers
for timer 1 is limited to 1, 8, 64, 256 and 1024. So, when clocked at 2 or 4MHz, a divider of 1 is
selected and timer 1 runs at 2 or 4MHz. To reflect this fact, the HAL components exposing timer 1
are named CounterOne16C and AlarmOne16C (rather than the CounterMicro16C AlarmMicro16C
as suggested in Section 3).

32-bit microsecond Counters and Alarms, named CounterMicro32C and AlarmMicro32C, are cre-
ated from CounterOne16C and AlarmOne16C using the TransformAlarmC and TransformCounterC
utility components.

Three compare registers are available on timer1, so up to three instances of AlarmOne16C and/or
AlarmMicro32C can be created. The timing accuracy depends on how the mote is clocked:

– internal clock: depends on how well the clock is calibrated
– external 7.37MHz crystal: times will be off by ˜8.6%
– external 4MHz crystal: times will be as accurate as the crystal

• Timer 2: this timer is not currently exposed by the HAL.

• Timer 3: the 16-bit hardware timer 3 is set to run at a rate close to 32768Hz, if possible. As
with timer 1, the limited set of dividers makes this impossible at some clock frequencies, so the
16-bit timer 3 HAL components are named CounterThree16C and AlarmThree16C. As with timer
1, the rate of timer 3 is adjusted in software to build 32-bit counter and 32-bit alarms, giving
components Counter32khz32C and Alarm32khz32C. As with timer 1, three compare registers,
hence up to three instances of Alarm32khz32C and/or AlarmThree16C are available.

At 1, 2, 4 and 8MHz, Counter32khz32C and Alarm32khz32C run at 31.25kHz (plus clock rate
inaccuracy). At 7.37MHz, they run at ˜28.8kHz.

The automatic allocation of compare registers to alarms (and corresponding compile-time error when
too many compare registers are used) is achieved as follows. The implementations of AlarmOne16C and
AlarmThree16C use the Atm128AlarmC generic component and wire it, using unique, to one of the
compare registers offered by HplAtm128Timer1C and HplAtm128Timer3C:

generic configuration AlarmOne16C()
{
provides interface Alarm<TOne, uint16_t>;

}
implementation
{
components HplAtm128Timer1C, InitOneP,
new Atm128AlarmC(TOne, uint16_t, 3) as NAlarm;

Alarm = NAlarm;
NAlarm.HplAtm128Timer -> HplAtm128Timer1C.Timer;
NAlarm.HplAtm128Compare -

> HplAtm128Timer1C.Compare[unique(UQ_TIMER1_COMPARE)];
}
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On the fourth creation of an AlarmOne16C, unique(UQ_TIMER1_COMPARE) will return 3, causing a
compile-time error as discussed in Appendix B (HplAtm128Timer1C’s Compare interface is only defined
for values from 0 to 2).

When an Atmega128 is in any power-saving mode, hardware timers 1, 2 and 3 stop counting. The
default Atmega128 power management will enter these power-saving modes even when timers 1 and
3 are enabled, so time as measured by timers 1 and 3 does not represent real time. However, if any
alarms built on timers 1 or 3 are active, the Atmega128 power management will not enter power-saving
modes.

The mica family HIL components are built as follows:

• HilTimerMilliC: built as described above from hardware timer 0.

• BusyWaitMicroC: implemented using a simple software busy-wait loop which waits for MHZ cycles
per requested microsecond. Accuracy is the same as Timer 1.

Finally, the mica family motes measure their clock rate at boot time, based on the external 32768Hz
crystal. The results of this clock rate measurement are made available via the cyclesPerJiffy com-
mand of the Atm128Calibrate interface of the MeasureClockC component. This command reports the
number of cycles per 1/32768s. Please see this interface definition for other useful commands for more
accurate timing.
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