Low Power Listening

TEP: 105

Group: Core Working Group

Type: Documentary

Status: Final

TinyOS-Version: 2.x

Author: David Moss, Jonathan Hui, Kevin Klues
Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This TEP describes the structure and implementation of the TinyOS 2.x link layer abstractions. The
architecture is designed to allow each radio type to implement its own low power strategy within the
Hardware Adaptation Layer (HAL), while maintaining a common application interface. The history
and strategies for low power listening are discussed, as well as expected behavior and implementation
recommendations.

1. Introduction

Asynchronous low power listening is a strategy used to duty cycle the radio while ensuring reliable
message delivery since TinyOS 1.x [MICA2].

While a CC1000 or CC2420 radio is turned on and listening, it can actively consume anywhere be-
tween 7.4 to 18.8 mA on top of the power consumed by other components in the system [CC1000],[CC2420]-.
This can rapidly deplete batteries. In the interest of extending battery lifetime, it is best to duty cycle
the radio on and off to prevent this idle waste of energy. In an asychronous low power message delivery
scheme, the duty cycling receiver node saves the most energy by performing short, periodic receive
checks. The power consumption burden is then placed on the transmitter node, which must modulate
the radio channel long enough for the recipient?s receive check to detect an incoming message. A syn-
chronous low power message delivery scheme takes this idea a step further by allowing the transmitter
to only transmit when it knows the destination node is performing a receive check.

2. Background
2.1 Early TinyOS 1.x CC1000 Low Power Listening Implementation

TinyOS 1.x introduced low power listening on the CC1000 radio, but never introduced a similar scheme
for the CC2420 radio in the baseline. The CC1000 radio had the following low power listening com-
mands, provided directly by CC1000RadiolntM::



command result_t SetListeningMode(uint8_t power);
command uint8_t GetListeningMode() ;
command result_t SetTransmitMode(uint8_t power) ;
command uint8_t GetTransmitMode() ;

The uint8_t 'power’ mode parameter was initially defined as follows::

//0riginal CC1000 Low Power Listening Modes
= 100% duty cycle
= 35.5% duty cycle
= 11.5% duty cycle
= 7.53% duty cycle
= 5.61% duty cycle
= 2.22% duty cycle
= 1.00% duty cycle

Power Mode
Power Mode
Power Mode
Power Mode
Power Mode
Power Mode

OOk WN = O

Power Mode

There were several issues with this interface and implementation. First, setting up a low power
network was cumbersome. The low power listening commands had to be directly wired through
CC1000RadioIntM, and called while the radio was not performing any transactions. Second, each
node in a network was expected to have the same radio power mode. Finally, the pre-programmed duty
cycles were not linear and offered a very limited selection of options.

In this low power listening implementation, the transmitter mote would transmit a packet that
consisted of an extremely long preamble. This preamble was long enough to span a complete receive
check period. On the receiver?s end, the radio would turn on and read bits from the radio. If a preamble
sequence was detected in the incoming bits, the receiver?s radio would remain on for the full duration
of the transmitter?s preamble and wait for the packet at the end.

This original low power listening scheme was rather inefficient on both the transmit and receive end.
On the receive end, turning on the radio completely and reading in bits typically cost much more energy
than necessary. The transmitter’s long preamble could end up costing both nodes to have their radios
on much longer than required, sending and receiving useless preamble bits.

2.2 CC1000 Pulse Check Implementation

Joe Polastre and Jason Hill developed a better receive check implementation in the CC1000 ?Pulse
Check? radio stack for TinyOS 1.x, while maintaining the same interface. This implementation took
advantage of a Clear Channel Assessment (CCA) to determine if a transmitter was nearby.

In this implementation, the CC1000 radio did not have to be turned on completely, so it consumed
less maximum current than the previous implementation. The radio on-time was also significantly
reduced, only turning on long enough for a single ADC conversion to occur. If energy was detected
on the channel after the first ADC conversion, subsequent ADC conversions would verify this before
committing to turning the radio receiver on completely.

In this implementation the receiver’s efficiency dramatically improved, but the transmitter still
sent a long, inefficient preamble. Energy consumption used to transmit messages was still high, while
throughput was still low.

2.3 Possible Improvements

Low power listening is a struggle between minimizing energy efficiency and maximizing throughput. In
an asynchronous low power listening scheme, several improvements can be made over earlier implemen-
tations. One improvement that could have been made to earlier implementations is to remove the long
transmitted preamble and send many smaller messages instead. For example, the transmitter could
send the same message over and over again for the duration of the receiver’s receive check period. The
receiver could wake up and see that another node is transmitting, receive a full message, and finally
send back an acknowledgement for that message. The transmitter would see the acknowledgement and



stop transmitting early, so both nodes can perform some high speed transaction or go back to sleep.
Useless preamble bits are minimized while useful packet information is maximized. Incidentally, this is
a good strategy for CC2420 low power listening. This strategy certainly improves energy efficiency and
throughput, but further improvements may be possible by employing a synchronous delivery method
on top of this type of asynchronous low power listening scheme.

Improvements can also be made to the original low power listening interfaces. For example, instead
of pre-programming power modes and duty cycles, a low power listening interface should allow the
developer the flexibility to deploy a network of nodes with whatever duty cycle percentage or sleep time
desired for each individual node. Nodes with different receive check periods should still have the ability
to reliably communicate with each other with little difficulty.

3. Interfaces

3.1 Low Power Listening Interface

The LowPowerListening interface MUST be provided for each radio by the platform independent Ac-
tiveMessageC configuration.

In some implementations, low power listening may have an option to compile into the radio stack
for memory footprint reasons. If low power listening is not compiled in with the stack, calls to Low-
PowerListening MUST be handled by a dummy implementation.

The TEP proposes this LowPowerListening interface::

interface LowPowerListening {

command void setLocalSleepInterval (uintl6_t sleepIntervalMs);

command uintl6_t getLocalSleepInterval();

command void setLocalDutyCycle(uint16_t dutyCycle);

command uint16_t getLocalDutyCycle();

command void setRxSleepInterval(message_t *msg, uint16_t sleepInter-
valMs) ;

command uintl6_t getRxSleepInterval (message_t *msg);

command void setRxDutyCycle(message_t *msg, uintl6_t dutyCycle);

command uint16_t getRxDutyCycle(message_t *msg) ;

command uint16_t dutyCycleToSleepInterval(uint16_t dutyCycle);

command uint16_t sleepIntervalToDutyCycle(uint16_t sleepInterval);
}

setLocalSleepInterval(uint16_t sleepIntervalMs) e Sets the local node?s radio sleep interval,
in milliseconds.

getLocalSleepInterval() e Retrieves the local node?s sleep interval, in milliseconds. If duty cycle
percentage was originally set, it is automatically converted to a sleep interval.

setLocalDutyCycle(uint16_t dutyCycle) e Set the local node?s duty cycle percentage, in units
of [percentage*100].

getLocalDutyCycle() o Retrieves the local node?s duty cycle percentage. If sleep interval in
milliseconds was originally set, it is automatically converted to a duty cycle percentage.

setRxSleepInterval(message_t *msg, uint16_t sleepIntervalMs) e The given message will soon
be sent to a low power receiver. The sleepIntervalMs is the sleep interval of that low power
receiver, in milliseconds. When sent, the radio stack will automatically transmit the message
so as to be detected by the low power receiver.



getRxSleepInterval(message_t *msg) e Retrieves the message destination?s sleep interval. If
a duty cycle was originally set for the outgoing message, it is automatically converted to a
sleep interval.

setRxDutyCycle(message_t *msg, uint16_t dutyCycle) e The given message will soon be sent
to a low power receiver. The dutyCycle is the duty cycle percentage, in units of [percent-
age*100], of that low power receiver. When sent, the radio stack will automatically transmit
the message so as to be detected by the low power receiver.

getRxDutyCycle(message_t *msg) e Retrieves the message destination?s duty cycle percentage.
If a sleep interval was originally set for the outgoing message, it is automatically converted
to a duty cycle percentage.

dutyCycleToSleepInterval(uint16_t dutyCycle) e Converts the given duty cycle percentage to
a sleep interval in milliseconds.

sleepIntervalToDutyCycle(uint16_t sleepInterval) e Converts the given sleep interval in mil-
liseconds to a duty cycle percentage.

3.2 Split Control Behaviour

Low power listening MUST be enabled and disabled through the radio?s standard SplitControl interface,
returning exactly one SplitControl event upon completion. While the radio is duty cycling, it MUST
NOT alert the application layer each time the radio turns on and off to perform a receive check or send
a message.

3.3 Send Interface Behaviour

Attempts to send a message before SplitControl.start() has been called SHOULD return EOFF, signify-
ing the radio has not been enabled. When SplitControl.start() has been called by the application layer,
calls to Send MUST turn the radio on automatically if the radio is currently off due to duty cycling. If
a message is already in the process of being sent, multiple calls to Send should return FAIL.

The Send.sendDone(?) event SHOULD signal SUCCESS upon the successful completion of the
message delivery process, regardless if any mote actually received the message.

3.4 Receive Interface Behaviour

Upon the successful reception of a message, the low power receive event handler SHOULD drop duplicate
messages sent to the broadcast address. For example, the CC2420 implementation can perform this
by checking the message_t?s dsn value, where each dsn value is identical for every message used in the
delivery.

After the first successful message reception, the receiver?s radio SHOULD stay on for a brief period
of time to allow any further transactions to occur at high speed. If no subsequent messages are detected
going inbound or outbound after some short delay, the radio MUST continue duty cycling as configured.

4. Low Power Listening message_t Metadata

To store the extra 16-bit receiver low power listening value, the radio stack?s message_t footer MUST
contain a parameter to store the message destination?s receive check sleep interval in milliseconds
or duty cycle percentage. For example, the low power listening CC2420 message_t footer stores the
message’s receive check interval in milliseconds, as shown below [TEP111].:



typedef nx_struct cc2420_metadata_t {
nx_uint8_t tx_power;
nx_uint8_t rssi;
nx_uint8_t 1qi;
nx_bool crc;
nx_bool ack;
nx_uintl6_t time;
nx_uintl6_t rxInterval;
} cc2420_metadata_t;

5. Recommendations for HAL Implementation

In the interest of minimizing energy while maximizing throughput, it is RECOMMENDED that any
asynchronous low power listening implementation use clear channel assessment methods to determine
the presence of a nearby transmitter. It is also RECOMMENDED that the transmitter send duplicate
messages continuously with minimum or no backoff period instead of one long message. Removing
backoffs on a continuous send delivery scheme will allow the channel to be modulated sufficiently for a
receiver to quickly detect; furthermore, enabling acknowledgements on each outgoing duplicate packet
will allow the transmit period to be cut short based on when the receiver actually receives the message.

Asynchronous low power listening requires some memory overhead, so sometimes it is better to leave
the added architecture out when it is not required. When it is feasible to do so, it is RECOMMENDED
that the preprocessor variable LOW_POWER_LISTENING be defined when low power listening func-
tionality is to be compiled in with the radio stack, and not defined when low power listening functionality
shouldn?t exist.

It is RECOMMENDED that the radio on-time for actual receive checks be a measured value to help
approximate the duty cycle percentage.

6. Author’s Address

David Moss

Rincon Research Corporation
101 N. Wilmot, Suite 101
Tucson, AZ 85750

phone - +1 520 519 3138

email ? dmm@rincon.com

Jonathan Hui

657 Mission St. Ste. 600
Arched Rock Corporation
San Francisco, CA 94105-4120

phone - +1 415 692 0828
email - jhui@archedrock.com

Kevin Klues
503 Bryan Hall
Washington University


mailto:dmm@rincon.com
mailto:jhui@archedrock.com

St. Louis, MO 63130

phone - +1-314-935-6355
email - klueska@cs.wustl.edu

7. Citations

[MICAZ2] “MICA2 Radio Stack for TinyOS.” http://www.tinyos.net /tinyos-
1.x/doc/mica2radio/CC1000.html

[TEP111] TEP 111: message_t.
CC1000] TI/Chipcon CC1000 Datasheet. http://www.chipcon.com/files/CC1000_Data_Sheet_2_2.pdf
CC2420] TI/Chipcon CC2420 Datasheet. http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf


mailto:klueska@cs.wustl.edu
http://www.tinyos.net/tinyos-1.x/doc/mica2radio/CC1000.html
http://www.tinyos.net/tinyos-1.x/doc/mica2radio/CC1000.html
http://www.chipcon.com/files/CC1000_Data_Sheet_2_2.pdf
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

	Abstract
	1. Introduction
	2. Background
	2.1 Early TinyOS 1.x CC1000 Low Power Listening Implementation
	2.2 CC1000 Pulse Check Implementation
	2.3 Possible Improvements

	3. Interfaces
	3.1 Low Power Listening Interface
	3.2 Split Control Behaviour
	3.3 Send Interface Behaviour
	3.4 Receive Interface Behaviour

	4. Low Power Listening message_t Metadata
	5. Recommendations for HAL Implementation
	6. Author's Address
	7. Citations

