
Schedulers and Tasks

TEP: 106
Group: Core Working Group
Type: Documentary
Status: Final
TinyOS-Version: 2.x
Author: Philip Levis and Cory Sharp

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo documents the structure and implementation of tasks and task schedulers in TinyOS 2.x.

1. Introduction

TinyOS has two basic computational abstractions: asynchronous events and tasks. Early versions of
TinyOS provided a single type of task -- parameter free -- and only a FIFO scheduling policy. While
changing the latter was possible, the incorporation of tasks into the nesC language made it very difficult.
Presenting task schedulers as a TinyOS component enables much easier customization, and allowing
tasks to be presented as an interface enables extending the classes of tasks available. TinyOS 2.0
takes both approaches, and this memo documents the structure of how it does so as well as a simple
mechanism that greatly increases system dependability.

2. Tasks and the Scheduler in TinyOS 1.x

Tasks in TinyOS are a form of deferred procedure call (DPC)1, which enable a program to defer a
computation or operation until a later time. TinyOS tasks run to completion and do not pre-empt one
another. These two constraints mean that code called from tasks runs synchonously with respect to
other tasks. Put another way, tasks are atomic with respect to other tasks2.

In TinyOS 1.x, the nesC language supports tasks through two mechanisms, task declarations and
post expressions:

task void computeTask() {
// Code here

}

and:

1



result_t rval = post computeTask();

TinyOS 1.x provides a single kind of task, a parameter-free function, and a single scheduling policy,
FIFO. post expressions can return FAIL, to denote that TinyOS was unable to post the task. Tasks
can be posted multiple times. For example, if a task is posted twice in quick succession and the first
succeeds while the second fails, then the task will be run once in the future; for this reason, even if a
post fails, the task may run.

The TinyOS 1.x scheduler is implemented as a set of C functions in the file sched.c. Modifying the
scheduler requires replacing or changing this file. Additionally, as tasks are supported solely through
nesC task declarations and post expressions, which assume a parameter-free function, modifying the
syntax or capabilities of tasks is not possible.

The task queue in TinyOS 1.x is implemented as a fixed size circular buffer of function pointers.
Posting a task puts the task’s function pointer in the next free element of the buffer; if there are no free
elements, the post returns fail. This model has several issues:

1) Some components do not have a reasonable response to a failed post

2) As a given task can be posted multiple times, it can consume more than one
element in the buffer

3) All tasks from all components share a single resource: one misbehaving component
can cause other’s posts to fail

Fundamentally, in order for a component A to repost a task after post failure, another component
B must call a function on it (either a command or event). E.g., component A must schedule a timer, or
expect a retry from its client. However, as many of these systems might depend on tasks as well (e.g.,
timers), it is possible that an overflowing task queue can cause the entire system to fail.

The combination of the above three issues mean that one misbehaving component can cause TinyOS
to hang. Consider, for example, this scenario (a real and encountered problem on the Telos platform):

• A packet-based hardware radio, which issues an interrupt only when it finishes sending
a packet

• A networking component that handles the interrupt to post a task to signal SendMsg.sendDone.

• A sensing component that posts a task when it handles an ADC.dataReady event

• An application component that sends a packet and then sets its ADC sampling rate
too high

In this scenario, the sensing component will start handling events at a faster rate than it can process
them. It will start posting tasks to handle the data it receives, until it fills the task queue. At some
point later, the radio finishes sending a packet and signals its interrupt. The networking component,
however, is unable to post its task that signals SendMsg.sendDone(), losing the event. The application
component does not try to send another packet until it knows the one it is sending completes (so it can
re-use the buffer). As the sendDone() event was lost, this does not occur, and the application stops
sending network traffic.

The solution to this particular problem in TinyOS 1.x is to signal sendDone() in the radio send
complete interrupt if the post fails: this violates the sync/async boundary, but the justification is that a
possible rare race condition is better than certain failure. Another solution would be to use an interrupt
source to periodically retry posting the task; while this does not break the sync/async boundary, until
the post succeeds the system cannot send packets. The TinyOS 1.x model prevents it from doing any
better.

3. Tasks in TinyOS 2.x

The semantics of tasks in TinyOS 2.x are different than those in 1.x. This change is based on experiences
with the limitations and run time errors that the 1.x model introduces. In TinyOS 2.x, a basic post

2



will only fail if and only if the task has already been posted and has not started execution.
A task can always run, but can only have one outstanding post at any time.

2.x achieves these semantics by allocating one byte of state per task (the assumption is that there
will be fewer than 255 tasks in the system). While a very large number of tasks could make this overhead
noticable, it is not significant in practice. If a component needs to post a task several times, then the
end of the task logic can repost itself as need be.

For example, one can do this:

post processTask();
...
task void processTask() {
// do work
if (moreToProcess) {
post processTask();

}
}

These semantics prevent several problems, such as the inability to signal completion of split-phase
events because the task queue is full, task queue overflow at initialization, and unfair task allocation by
components that post a task many times.

TinyOS 2.x takes the position that the basic use case of tasks should remain simple and easy to
use, but that it should be possible to introduce new kinds of tasks beyond the basic use case. TinyOS
achieves this by keeping post and task for the basic case, and introducing task interfaces for additional
ones.

Task interfaces allow users to extend the syntax and semantics of tasks. Generally, a task interface
has an async command, post , and an event, run. The exact signature of these functions are up to the
interface. For example, a task interface that allows a task to take an integer parameter could look like
this:

interface TaskParameter {
async error_t command postTask(uint16_t param);
event void runTask(uint16_t param);

}

Using this task interface, a component could post a task with a uint16_t parameter. When the
scheduler runs the task, it will signal the runTask event with the passed parameter, which contains the
task’s logic. Note, however, that this does not save any RAM: the scheduler must have RAM allocated
for the parameter. Furthermore, as there can only be one copy of a task outstanding at any time, it is
just as simple to store the variable in the component. E.g., rather than:

call TaskParameter.postTask(34);
...
event void TaskParameter.runTask(uint16_t param) {
...

}

one can:

uint16_t param;
...
param = 34;
post parameterTask();

...
task void parameterTask() {
// use param

}

3



The principal difference between the simplest code for these two models is that if the component
posts the task twice, it will use the older parameter in the TaskParameter example, while it will use the
newer parameter in the basic task example. If a component wants to use the oldest parameter, then it
can do this:

if (post myTask() == SUCCESS) {
param = 34;

}

4. The Scheduler in TinyOS 2.x

In TinyOS 2.x, the scheduler is a TinyOS component. Every scheduler MUST support nesC tasks. It
MAY also support any number of additional task interfaces. The scheduler component is resonsible for
the policy of reconciling different task types (e.g., earliest deadline first tasks vs. priority tasks).

The basic task in TinyOS 2.x is parameterless and FIFO. Tasks continue to follow the nesC semantics
of task and post, which are linguistic shortcuts for declaring an interface and wiring it to the scheduler
component. Appendix A describes how these shortcuts can be configured. A scheduler provides a task
interface as a parameterized interface. Every task that wires to the interface uses the unique() function
to obtain a unique identifier, which the scheduler uses to dispatch tasks.

For example, the standard TinyOS scheduler has this signature:

module SchedulerBasicP {
provides interface Scheduler;
provides interface TaskBasic[uint8_t taskID];
uses interface McuSleep;

}

A scheduler MUST provide a parameterized TaskBasic interface. If a call to TaskBasic.postTask()
returns SUCCESS, the scheduler MUST run it eventually, so that starvation is not a concern. The
scheduler MUST return SUCCESS to a TaskBasic.postTask() operation unless it is not the first call
to TaskBasic.postTask() since that task’s TaskBasic.runTask() event has been signaled. The McuSleep
interface is used for microcontroller power management; its workings are explained in TEP 1123.

A scheduler MUST provide the Scheduler interface. The Scheduler interface has commands for
initialization and running tasks, and is used by TinyOS to execute tasks:

interface Scheduler {
command void init();
command bool runNextTask(bool sleep);
command void taskLoop();

}

The init() command initializes the task queue and scheduler data structures. runNextTask() MUST
run to completion whatever task the scheduler’s policy decides is the next one: the return value indicates
whether it ran a task. The bool parameter sleep indicates what the scheduler should do if there are
no tasks to execute. If sleep is FALSE, then the command will return immediately with FALSE as a
return value. If sleep is TRUE, then the command MUST NOT return until a task is executed, and
SHOULD put the CPU to sleep until a new task arrives. Calls of runNextTask(FALSE) may return
TRUE or FALSE; calls of runNextTask(TRUE) always return TRUE. The taskLoop() command tells
the scheduler to enter an infinite task-running loop, putting the MCU into a low power state when the
processor is idle: it never returns.

The scheduler is repsonsible for putting the processor to sleep predominantly for efficiency reasons.
Including the sleep call within the scheduler improves the efficiency of the task loop, in terms of the
assembly generated by the TinyOS toolchain.

This is the TaskBasic interface:

4



interface TaskBasic {
async command error_t postTask();
void event runTask();

}

When a component declares a task with the task keyword in nesC, it is implicitly declaring that it
uses an instance of the TaskBasic interface: the task body is the runTask event. When a component uses
the post keyword, it calls the postTask command. Each TaskBasic MUST be wired to the scheduler
with a unique identifier as its parameter. The parameter MUST be obtained with the unique function
in nesC, with a key of "TinySchedulerC.TaskBasic". The nesC compiler automatically does this
wiring when the task and post keywords are used.

The SchedulerBasicP implementation uses these identifiers as its queue entries. When TinyOS tells
the scheduler to run a task, it pulls the next identifier off the queue and uses it to dispatch on the
parameterized TaskBasic interface.

While the default TinyOS scheduler uses a FIFO policy, TinyOS components MUST NOT assume
a FIFO policy. If two tasks must run in a particular temporal order, this order should be enforced by
the earlier task posting the later task.

5. Replacing the Scheduler

The TinyOS scheduler is presented as a component named TinySchedulerC. The default TinyOS sched-
uler implementation is a module named SchedulerBasicP; the default scheduler component is a config-
uration that provides wire-through of SchedulerBasicP.

To replace the scheduler for a particular application, a developer SHOULD put a configuration named
TinySchedulerC in the application directory: this will replace the default. The scheduler component
provides a wire-through of the desired scheduler implementation. All scheduler implementations MUST
provide a parameterize TaskBasic interface, as SchedulerBasicP does; this supports nesC post statements
and task declarations and enables TinyOS core systems to operate properly. Generally, TinyOS core code
needs to be able to run unchanged with new scheduler implementations. All scheduler implementations
MUST provide the Scheduler interface.

For example, imagine a hypothetical scheduler that provides earliest deadline first tasks, which are
provided through the TaskEdf interface:

interface TaskEdf {
async command error_t postTask(uint16_t deadlineMs);
event void runTask();

}

The scheduler implementation is named SchedulerEdfP, and provides both TaskBasic and TaskEdf
interfaces:

module SchedulerEdfP {
provides interface Scheduler;
provides interface TaskBasic[uint8_t taskID];
provides interface TaskEdf[uint8_t taskID];

}

An application that wants to use SchedulerEdfP instead of SchedulerBasicP includes a configuration
named TinySchedulerC, which exports all of SchedulerEdfP’s interfaces:

configuration TinySchedulerC {
provides interface Scheduler;
provides interface TaskBasic[uint8_t taskID];
provides interface TaskEdf[uint8_t taskID];

5



}
implementation {
components SchedulerEdfP;
Scheduler = SchedulerEdf;
TaskBasic = SchedulerEdfP;
TaskEDF = SchedulerEdfP;

}

For a module to have an earliest deadline first task, it uses the TaskEdf interface. Its configuration
SHOULD wire it to TinySchedulerC. The key used for task unique identifiers MUST be “TinySched-
ulerC.TaskInterface”, where TaskInterface is the name of the new task interface as presented by the
scheduler. A common way to make sure a consistent string is used is to #define it. For example,
TaskEdf.nc might include:

#define UQ_TASK_EDF "TinySchedulerC.TaskEdf"

In this example, the module SomethingP requires two EDF tasks:

configuration SomethingC {
...

}
implementation {
components SomethingP, TinySchedulerC;
SomethingP.SendTask -> TinySchedulerC.TaskEdf[unique(UQ_TASK_EDF)];
SomethingP.SenseTask -> TinySchedulerC.TaskEdf[unique(UQ_TASK_EDF)];

}

The module SomethingP also has a basic task. The nesC compiler automatically transforms task
keywords into BasicTask interfaces and wires them appropriately. Therefore, for basic tasks, a compo-
nent author can either use the task and post keywords or use a TaskBasic interface. A component
SHOULD use the keywords whenever possible, and it MUST NOT mix the two syntaxes for a given
task. This is an example implementation of SomethingP that uses keywords for basic tasks:

module SomethingP {
uses interface TaskEdf as SendTask
uses interface TaskEdf as SenseTask

}
implementation {
// The TaskBasic, written with keywords
task void cleanupTask() { ... some logic ... }
event void SendTask.runTask() { ... some logic ... }
event void SenseTask.runTask() { ... some logic ... }

void internal_function() {
call SenseTask.postTask(20);
call SendTask.postTask(100);
post cleanupTask();

}
}

The requirement that basic tasks not be subject to starvation requires that a scheduler supporting
EDF tasks must ensure that basic tasks run eventually even if there is an unending stream of short
deadline tasks to run. Quantifying “eventually” is difficult, but a 1% share of the MCU cycles (or
invocations) is a reasonable approximation.

If the scheduler provides two instances of the same task interface, their unique keys are based on the
name of the interface as the scheduler presents it (the “as” keyword). For example, imagine a scheduler

6



which provides two instances of TaskBasic: standard tasks and high-priority tasks. The scheduler
usually selects a task for the high priority queue before the standard queue:

configuration TinySchedulerC {
provides interface Scheduler;
provides interface TaskBasic[uint8_t taskID];
provides interface TaskBasic[uint8_t taskID] as TaskHighPriority;

}

It cannot always select a high priority task because that could starve basic tasks. A component that
uses a high priority task would wire to TaskHighPriority with the key“TinySchedulerC.TaskHighPriority”:

configuration SomethingElseC {}
implementation {
components TinySchedulerC as Sched, SomethingElseP;
SomethingElseP.RetransmitTask -

> Sched.TaskHighPriority[unique("TinySchedulerC.TaskHighPriority")];
}

6. Implementation

The following files in tinyos-2.x/tos/system contain the reference implementations of the scheduler:

• SchedulerBasicP.nc is the basic TinyOS scheduler, providing a parameterized TaskBa-
sic interface.

• TinySchedulerC.nc is the default scheduler configuration that wires SchedulerBasicP
to McuSleepC3.

A prototype of a scheduler that supports EDF tasks can be obtained at the URL http://csl.stanford.edu/~pal/tinyos/edf-
sched.tgz.

7. Author’s Address

Philip Levis
358 Gates Hall
Stanford University
Stanford, CA 94305

phone - +1 650 725 9046
email - pal@cs.stanford.edu

Cory Sharp
410 Soda Hall
UC Berkeley
Berkeley, CA 94720

email - cssharp@eecs.berkeley.edu

7

mailto:pal@cs.stanford.edu
mailto:cssharp@eecs.berkeley.edu


8. Citations

Appendix A: Changing the Scheduler

The nesC compiler transforms the post and task keywords into nesC interfaces, wirings, and calls. By
default, the statement:

module a {
...

}
implementation {
task x() {
...
post x();

}

}

is effectively:

module a {
...
provides interface TaskBasic as x;

}
implementation {
event void x.runTask() {
...
call x.postTask();

}
}

Specifically, TinyOS maps a task with name T to a TaskBasic interface with name T. Posting T
is a call to T.postTask(), and the task body is T.runTask(). Finally, T is automatically wired to
TinySchedulerC with a unique() call.

While the fact that tasks are transformed into interfaces is built in to the nesC compiler, the
exact names can be configured. Each platform’s .platform file passes the -fnesc-scheduler option to the
compiler. The standard option is:

-fnesc-scheduler=TinySchedulerC,TinySchedulerC.TaskBasic,TaskBasic,TaskBasic,runTask,postTask

There are 6 strings passed. They are:

1) The name of the scheduler component to wire the interface to (TinySchedulerC).

2) The unique string used when wiring to the scheduler component’s parameterized
interface (TinySchedulerC.TaskBasic).

1 Erik Cota-Robles and James P. Held. “A Comparison of Windows Driver Model Latency Performance
on Windows NT and Windows 98.” In Proceedings of the Third Symposium on Operating System Design
and Implementation (OSDI).
2 David Gay, Philip Levis, Rob von Behren, Matt Welsh, Eric Brewer and David Culler. “The nesC Lan-
guage: A Holistic Approach to Networked Embedded Systems.” In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation (PLDI).
3 TEP 112: Microcontroller Power Management.

8



3) The name of the interface on the scheduler component (TaskBasic).

4) The name of the interface type (TaskBasic).

5) The name of the event for running the task (runTask).

6) The name of the command for posting the task (postTask).

The nescc man page has further details.

9


	Abstract
	1. Introduction
	2. Tasks and the Scheduler in TinyOS 1.x
	3. Tasks in TinyOS 2.x
	4. The Scheduler in TinyOS 2.x
	5. Replacing the Scheduler
	6. Implementation
	7. Author's Address
	8. Citations
	Appendix A: Changing the Scheduler

