
TinyOS 2.x Boot Sequence

TEP: 107
Group: Core Working Group
Type: Documentary
Status: Final
TinyOS-Version: 2.x
Author: Philip Levis

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo documents the structure and implementation of the mote boot sequence in TinyOS 2.x.

1. Introduction

TinyOS has a set of calling conventions and semantics in its boot sequence. Earlier versions of TinyOS
used an interface named“StdControl” to take care of system initialization and starting required software
systems. Experience with several hardware platforms showed StdControl to be insufficient, as it provided
only a synchronous interface. Additionally, StdControl bundled the notion of initialization, which
happens only at boot, with power management and service control. TinyOS 2.x solves these problems
by separating what was once StdControl into three separate interfaces: one for initialization, one for
starting and stopping components, and one for notification that the mote has booted. This memo
describes the TinyOS boot sequence and reasons for its semantics.

2. TinyOS 1.x Boot Sequence

The TinyOS 1.x boot sequence is uniform across most mote platforms (TOSSIM has a very different
boot sequence, as it is a PC program). The module RealMain implements main(), and has the following
signature:

module RealMain {
uses {
command result_t hardwareInit();
interface StdControl;
interface Pot;

}
}

1



The mote main() function uses a mix of nesC and C:

int main() __attribute__ ((C, spontaneous)) {
call hardwareInit();
call Pot.init(10);
TOSH_sched_init();

call StdControl.init();
call StdControl.start();
__nesc_enable_interrupt();

while(1) {
TOSH_run_task();

}
}

Several problems exist. Some of these calls are artifacts of old platforms: the Pot component refers
to the mica variable potentiometer for controlling radio transmission power, and for other platforms is
a stub component Some of the calls -- TOSH sched init and TOSH run task -- are C functions that are
implemented in other, automatically included files. Separation from the nesC component model makes
changing what lies behind these functions more difficult than normal in TinyOS.

More importantly, the initialization sequence has several limitations. The component HPLInit im-
plements the hardwareInit command (wired by the component Main): hardware initialization may not
be part of a pure HPL layer. The scheduler is initialized after hardware, which means that no hardware
initialization can post a task if it needs one. The StdControl interface combines component initialization
(init()) and activation (start()/stop()); if a component needs to be initialized by RealMain, it must also
be started. Separating these two leads to more flexible power management, and distinguishes required
low-level components that must always be running (such as a Timer) from high level components that
can be power managed (such as an application). Finally, some components that need to often need to
be started by main, such as a radio, do not follow a synchronous start/stop model. In this case, some
components can’t operate properly until the radio starts, but main has no mechanism for waiting for
the radio start completion event.

3. TinyOS 2.x Boot Interfaces

The TinyOS 2.x boot sequence uses three interfaces:

• Init, for initializing component/hardware state

• Scheduler, for initializing and running tasks

• Boot, for signalling that the system has successfully booted

The Init interface has a single command, init():

interface Init {
command error_t init();

}

Init provides a synchronous interface, enabling initialization ordering. Unlike normal execution, in
which operations from a wide range of components need to be interleaved effectively, initialization is a
sequential, synchronous operation: no component can be started until initialization is complete. If a
particular component’s initialization requires waiting for interrupts or other asynchronous events, then
it must explicitly wait for them (e.g., with a spin loop), MUST NOT return until complete. Otherwise
the system may start before initialization is complete.

The Scheduler interface is for initializing and controlling task execution. It is detailed in TEP 1061.

2



The Boot interface has a single event, booted(), which the boot sequence signals when it has com-
pleted:

interface Boot {
event void booted();

}

4. TinyOS 2.x Boot Sequence

The module RealMainP implements the standard TinyOS 2.x boot sequence. The configuration MainC
wires some of RealMainP’s interfaces to components that implement standard abstractions and exports
the others that are application specific. Code above the Hardware Independent Layer (TEP 2) SHOULD
wire to MainC and not RealMainP:

module RealMainP {
provides interface Booted;
uses {
interface Scheduler;
interface Init as PlatformInit;
interface Init as SoftwareInit;

}
}
implementation {
int main() __attribute__ ((C, spontaneous)) {
atomic {
platform_bootstrap();
call Scheduler.init();
call PlatformInit.init();
while (call Scheduler.runNextTask());
call SoftwareInit.init();
while (call Scheduler.runNextTask());

}
__nesc_enable_interrupt();
signal Boot.booted();
call Scheduler.taskLoop();
return -1;

}
default command error_t PlatformInit.init() { return SUCCESS; }
default command error_t SoftwareInit.init() { return SUCCESS; }
default event void Boot.booted() { }

}

4.1 Initialization

The first step in the boot sequence is initializing the system:

atomic {
platform_bootstrap();
call Scheduler.init();
call PlatformInit.init();
while (call Scheduler.runNextTask());
call SoftwareInit.init();

3



while (call Scheduler.runNextTask());
}

The first call, platform bootstrap(), is a minimalist function that places the system into an executable
state. This function MUST NOT include operations besides those which are absolutely necessary for
further code, such as scheduler initialization, to execute. Examples of platform bootstrap() operations
are configuring the memory system and setting the processor mode. Generally, platform bootstrap()
is an empty function. TinyOS’s top-level include file, tos.h, includes a default implementation of
this function which does nothing. If a platform needs to replace the default, it SHOULD put it in a
platform’s platform.h file as a #define. The implementation of tos.h supports this:

/* This platform_bootstrap macro exists in accordance with TEP
107. A platform may override this through a platform.h file. */

#include <platform.h>
#ifndef platform_bootstrap
#define platform_bootstrap() {}
#endif

The boot sequence has three separate initializations: Scheduler, PlatformInit, and SoftwareInit. The
boot configuration (MainC) wires the first two automatically, to TinySchedulerC (discussed in TEP 106)
and to PlatformC:

configuration MainC {
provides interface Boot;
uses interface Init as SoftwareInit;

}
implementation {
components PlatformC, RealMainP, TinySchedulerC;

RealMainP.Scheduler -> TinySchedulerC;
RealMainP.PlatformInit -> PlatformC;

// Export the SoftwareInit and Booted for applications
SoftwareInit = RealMainP.SoftwareInit;
Boot = RealMainP;

}

MainC exports the Boot and SoftwareInit interfaces for applications to wire to. TinySchedulerC is
the standard name for the TinyOS scheduler. As the initialization sequence requires being able to run
tasks, the boot sequence initializes it first. The second step of initialization is to call PlatformInit.init(),
which MainC wires to a component named PlatformC. PlatformInit is for initializations which must
follow a very specific order due to hidden dependencies, e.g., as part of making the overall hardware
platform operable. One example of this sort of initialization is clock calibration. Because PlatformInit
calls the component PlatformC, each platform can specify the required initialization order. As these
hidden dependencies must be due to hardware, the sequence is platform-specific. A port of TinyOS to
a new plaform MUST include a component PlatformC which provides one and only one instance of the
Init interface.

Initializations invoked through PlatformC meet some or all of the following criteria:

1. The initialization requires configuring hardware resources. This implies that the code is
platform-specific.

2. The initialization should always be performed.

3. The initialization is a prerequisite for common services in the system.

4



Three example operations that often belong in PlatformInit are I/O pin configuration, clock cali-
bration, and LED configuration. I/O pin configuration meets the first two criteria. It should always
be performed (regardless of what components the OS uses) for low-power reasons: incorrectly config-
ured pins can draw current and prevent the MCU from entering its lowest power sleep state2. Clock
calibration meets all three criteria. LED configuration is a special case: while it nominally meets all
three criteria, the most important one is the third: as LEDs are often needed during SoftwareInit
initialization, they must be set up before it is invoked.

Note that not all code which meets some of these criteria is wired through PlatformC. In particular,
criterion 1 is typically necessary but not sufficient to require PlatformC. For example, a timer system
that configures overflow and capture settings or a UART stack that sets the baud rate and transmission
options can often be wired to SoftwareInit. They are encapsulated abstractions which will not be
invoked or started until the boot event, and only need to be configured if the system includes their
functionality.

Components whose initialization does not directly depend on hardware resources SHOULD wire to
MainC.SoftwareInit. If a component requires a specific initialization ordering, then it is responsible
for establishing that ordering. Due to the semantics of Init, this is usually quite rare; a component
SHOULD NOT introduce initialization dependencies unless they are required.

One common approach is for a configuration to “auto-wire” the initialization routines of its internal
components. The configuration does not provide an Init interface. Virtualized services often take this
approach, as the service, rather than the clients, is what needs to be initialized. For example, the
standard Timer virtualization3, TimerMilliC, wires to TimerMilliP, which is a very simple configuration
that takes the underlying implementation (HilTimerMilliC) and wires it to MainC:

configuration TimerMilliP {
provides interface Timer<TMilli> as Timinitialization in order-

erMilli[uint8_t id];
}
implementation {
components HilTimerMilliC, MainC;
MainC.SoftwareInit -> HilTimerMilliC;
TimerMilli = HilTimerMilliC;

}

Rather than require an application to wire HilTimerMilliC to MainC, TimerMilliP does it automati-
cally. When a component instantiates a TimerMilliC, that names TimerMilliP, which will automatically
make sure that the timer system is initialized when TinyOS boots.

4.2 Interrupts in Initialization

Interrupts are not enabled until all calls to Init.init have returned. If a component’s initialization needs
to handle interrupts, it can do one of three things:

1) If a status flag for the interrupt exists, the Init.init() implementations SHOULD
use a spin loop to test for when an interrupt has been issued.

2) If no such flag exists, the Init.init() implementation MAY temporarily enable
interrupts, if doing so will not cause any other components to handle an interrupt.
That is, if a component enables an interrupt, it MUST NOT enable interrupts
whose handlers would invoke any other component. Furthermore, when Init.init()
exits, the interrupts must be disabled.

3) If no such flag exists and there is no way to isolate which interrupt handlers are
called, then the component MUST rely on mechanisms outside the Init sequence,
such as SplitControl.

5



The boot sequence assumes that 1) is by far the dominant case. There are, however, possible
situations where a component might need to handle an interrupt because of, e.g., hardware limitations
(no pending flag) or to catch a brief edge transition. In these cases, a component can handle an interrupt
in the boot sequence only if doing so will not cause any other component to handle an interrupt. As
they have all been written assuming that interrupts are not enabled until after Init completes, making
one of them handle an interrupt could cause it to fail.

Depending on what capabilities the hardware provides, there are several ways to meet these require-
ments. The simplest is to push these initialization edge cases out of the main boot sequence, e.g., into
SplitControl. A second possibility is to redirect the interrupt table, if the MCU supports doing so.
Whichever mechanism is chosen, extreme care needs to be used in order to not disrupt the operation
of other components.

Unless part of a hardware abstraction architecture (HAA)4, the Init.init() command MUST NOT
assume that other components have been initialized unless it has initialized them, and MUST NOT call
any functional interfaces on any components that might be shared or interact with shared resources.
Components MAY call functions on other components that are completely internal to the subsystem.
For example, a networking layer can call queue operations to initialize its queue, but a link layer must
not send commands over an SPI bus. An HAA component MAY make other calls to initialize hardware
state. A component that is not part of an HAA SHOULD NOT call Init.init() on other components
unless it needs to enforce a temporal ordering on initialization.

If a component A depends on another component, B, which needs to be initialized, then A SHOULD
wire B’s Init directly to the boot sequence, unless there is a temporal ordering requirement to the ini-
tialization. The purpose of this convention is to simplify component initialization and the initialization
sequence.

5. Implementation

The following files in tinyos-2.x/tos/system contain the reference implementations of the TinyOS
boot sequence:

• RealMainP.nc is the module containing the function main.

• MainC.nc is the configuration that wires RealMainP to PlatformC and TinySchedulerC1.

6. Author’s Address

Philip Levis
467 Soda Hall
UC Berkeley
Berkeley, CA 94720

phone - +1 510 290 5283

email - pal@cs.berkeley.edu

7. Citations

1 TEP 106: Schedulers and Tasks.

6

mailto:pal@cs.berkeley.edu


2 TEP 112: Microcontroller Power Management.

3 TEP 102: Timers.

4 TEP 2: Hardware Abstraction Architecture.

7


	Abstract
	1. Introduction
	2. TinyOS 1.x Boot Sequence
	3. TinyOS 2.x Boot Interfaces
	4. TinyOS 2.x Boot Sequence
	4.1 Initialization
	4.2 Interrupts in Initialization

	5. Implementation
	6. Author's Address
	7. Citations

