
Microcontroller Power Management

TEP: 112
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: 2.x
Author: Robert Szewczyk, Philip Levis, Martin Turon, Lama Nachman,

Philip Buonadonna, Vlado Handziski
Draft-Created: 19-Sep-2005
Draft-Version: 1.7
Draft-Modified: 2007-01-10
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo documents how TinyOS manages the lower power state of a microcontroller.

1. Introduction

Microcontrollers often have several power states, with varying power draws, wakeup latencies, and
peripheral support. The microcontroller should always be in the lowest possible power state that can
satisfy application requirements. Determining this state accurately requires knowing a great deal about
the power state of many subsystems and their peripherals. Additionally, state transitions are common.
Every time a microcontroller handles an interrupt, it moves from a low power state to an active state,
and whenever the TinyOS scheduler finds the task queue empty it returns the microcontroller to a low
power state. TinyOS 2.x uses three mechanisms to decide what low power state it puts a microcontroller
into: status and control registers, a dirty bit, and a power state override. This memo documents these
mechanisms and how they work, as well as the basics of subsystem power management.

2. Background

The TinyOS scheduler[2] puts a processor into a sleep state when the task queue is empty. However,
processors can have a spectrum of power states. For example, the MSP430 has one active mode (issuing
instructions) and five low-power modes. The low power modes range from LPM0, which disables only

1



the CPU and main system clock, to LPM4, which disables the CPU, all clocks, and the oscillator,
expecting to be woken by an external interrupt source. The power draws of these low power modes can
differ by a factor of 350 or more (75 uA for LPM0 at 3V, 0.2 uA for LPM4). Correctly choosing the
right microcontroller low power state can greatly increase system lifetime.

TinyOS 1.x platforms manage MCU power in several different ways, but there are commonalities in
the approaches. The mica platforms, for example, have a component named HPLPowerManagement,
which has a commands for enabling and disabling low power modes, as well as a command (adjust-
Power()) to tell it to compute the low power state based on the configuration of its various control and
status registers, storing the result in the Atmega128’s MCU control register. When TinyOS tells the
microcontroller to go to sleep, it uses the control register to decide exactly which power state to go into.
In contrast, MSP430 based platforms such as Telos and eyes compute the low power state every time
the scheduler tells the system to go to sleep.

Each of the two approaches has benefits and drawbacks. The 1.x mica approach is efficient, in
that it only calculates the low power state when told to. However, this leaves the decision of when to
calculate the low power state to other components, which is an easy way to introduce bugs. The lack
of a well-defined hardware abstraction architecture in 1.x exacerbates this problem. In contrast, the
MSP430 approach is simpler, in that the system will always enter the right power state without any
external prompting. However, it is correspondingly costly, introducing 40-60 cycles of overhead to every
interrupt that wakes the system up, which can be a bottleneck on the rate at which the system can
handle interrupts.

Both of these approaches assume that TinyOS can determine the correct low power state by exam-
ining control and status registers. For example, the MSP430 defaults to low power mode 3 (LPM3)
unless it detects that Timer A, the USARTs, or the ADC is active, in which case it uses low power
mode 1 (LPM1). From the perspective of what peripherals and subsystems might wake the node up or
must continue operating while the MCU sleeps, this is true. However, power modes introduce wakeup
latency, a factor which could be of interest to higher-level components. While wakeup latency is not a
significant issue on very low power microcontrollers, such as the Atmega128 and MSP430, more powerful
processors, such as the Xscale family (the basis of platforms such as the imote2) can have power states
with wakeup latencies as large as 5ms. For some application domains, this latency could be a serious
issue. Higher level components therefore need a way to give the TinyOS microcontroller power manager
information on their requirements, which it considers when calculating the right low power state.

3. Microcontroller Power Management

TinyOS 2.x uses three basic mechanisms to manage and control microcontroller power states: a dirty
bit, a chip-specific low power state calculation function, and a power state override function. The dirty
bit tells TinyOS when it needs to calculate a new low power state, the function performs the calculation,
and the override allows higher level components to introduce additional requirements, if needed.

These three mechanisms all operate in the TinyOS core scheduling loop, described in TEP 106:
Schedulers and Tasks[2]. This loop is called from the boot sequence, which is described in TEP 107:
Boot Sequence[3]. The command in question is Scheduler.taskLoop(), when microcontroller sleeping
is enabled.

If this command is called when the task queue is empty, the TinyOS scheduler puts the microcon-
troller to sleep. It does so through the McuSleep interface:

interface McuSleep {

async command void sleep();

}

McuSleep.sleep() puts the microcontroller into a low power sleep state, to be woken by an interrupt.
This command deprecates the __nesc_atomic_sleep() call of TinyOS 1.x. Note that, as the 1.x call
suggests, putting the microcontroller to sleep MUST have certain atomicity properties. The command

2



is called from within an atomic section, and MUST atomically re-enable interrupts and go to sleep. An
issue arises if the system handles an interrupt after it re-enables interrupts but before it sleeps: the
interrupt may post a task, but the task will not be run until the microcontroller wakes up from sleep.

Microcontrollers generally have hardware mechanisms to support this requirement. For example, on
the Atmega128, the sei instruction does not re-enable interrupts until two cycles after it is issued (so
the sequence sei sleep runs atomically).

A component named McuSleepC provides the McuSleep interface, and TinySchedulerC MUST auto-
matically wire it to the scheduler implementation. McuSleepC is a chip- or platform-specific component,
whose signature MUST include the following interfaces:

component McuSleepC {

provides interface McuSleep;

provides interface PowerState;

uses interface PowerOverride;

}

interface McuPowerState {

async command void update();

}

interface McuPowerOverride {

async command mcu_power_t lowestState();

}

McuSleepC MAY have additional interfaces.

3.1 The Dirty Bit

Whenever a Hardware Presentation Layer (HPL, see TEP 2: Hardware Abstraction Architecture[1])
component changes an aspect of hardware configuration that might change the possible low power state
of the microcontroller, it MUST call McuPowerState.update(). This is the first power management
mechanism, a dirty bit. If McuPowerState.update() is called, then McuSleepC MUST recompute the
low power state before the next time it goes to sleep as a result of McuSleep.sleep() being called.

3.2 Low Power State Calculation

McuSleepC is responsible for calculating the lowest power state that it can safely put the microcontroller
into without disrupting the operation of TinyOS subsystems. McuSleepC SHOULD minimize how often
it must perform this calculation: it is an inherently atomic calculation, and so if performed very often
(e.g., on every interrupt) can introduce significant overhead and jitter.

MCU power states MUST be represented as an enum in the standard chip implementation header
file. This file MUST also define a type mcu_power_t and a combine function that given two power state
values returns one that provides the union of their functionality.

For example, consider a hypothetical microcontroller with three low power states, (LPM0, LPM1,
LPM2) and two hardware resources such as clocks (HR0, HR1). In LPM0, both HR0 and HR1 are
active. In LPM1, HR0 is inactive but HR1 is active. In LPM2, both HR0 and HR1 are inactive. The
following table describes the results of a proper combine function (essentially a MAX):

LPM0 LPM1 LPM2

3



LPM0 LPM0 LPM0 LPM0
LPM1 LPM0 LPM1 LPM1
LPM2 LPM0 LPM1 LPM2

In contrast, if in LPM2, HR0 is active but HR1 is inactive, the combine function would look like
this:

LPM0 LPM1 LPM2
LPM0 LPM0 LPM0 LPM0
LPM1 LPM0 LPM1 LPM0
LPM2 LPM0 LPM0 LPM2

3.3 Power State Override

When McuSleepC computes the best low power state, it MUST call PowerOverride.lowestState().
McuSleepC SHOULD have a default implementation of this command, which returns the lowest power
state the MCU is capable of. The return value of this command is a mcu_power_t. McuSleepC MUST
respect the requirements of the return of this call and combine it properly with the low power state it
computes.

The PowerOverride functionality exists in case higher-level components have some knowledge or
requirements that cannot be captured in hardware status and configuration registers, such as a maximum
tolerable wakeup latency. Because it can overrides all of the MCU power conservation mechanisms, it
SHOULD be used sparingly, if at all. Because it is called in an atomic section during the core scheduling
loop, implementations of PowerOverride.lowestState() SHOULD be an efficient function, and SHOULD
NOT be longer than twenty or thirty cycles; implementations SHOULD be a simple return of a cached
variable. Wiring arbitrarily to this command is an easy way to cause TinyOS to behave badly. The
presence of a combine function for mcu power t means that this command can have fan-out calls.

Section 5 describes one example use of McuPowerOverride, in the timer stack for the Atmega128
microcontroller family.

4. Peripherals and Subsystems

At the HIL level, TinyOS subsystems generally have a simple, imperative power management interface.
Depending on the latencies involved, this interface is either StdControl, SplitControl, or AsyncStd-
Control. These interfaces are imperative in that when any component calls stop on another component,
it causes the subsystem that component represents to enter an inactive, low-power state.

From the perspective of MCU power management, this transition causes a change in status and
control registers (e.g., a clock is disabled). Following the requirements in 3.1, the MCU power man-
agement subsystem will be notified of a significant change and act appropriately when the system next
goes to sleep. TEP 115[5] describes the power management of non-virtualized devices in greater de-
tail, and TEP 108[4] describes how TinyOS can automatically include power management into shared
non-virtualized devices.

5. Implementation

An implementation of McuSleepC can be found in tinyos-2.x/tos/chips/atm128, tinyos-2.x/tos/chips/msp430,
and tinyos-2.x/tos/chips/px27ax.

4



An example of a use of McuPowerOverride can be found in the atmega128 timer system. Because
some low-power states have much longer wakeup latencies than others, the timer system does not allow
long latencies if it has a timer that is going to fire soon. The implementation can be found in tinyos-
2.x/tos/chips/atm128/timer/HplAtm128Timer0AsyncP.nc, and tinyos-2.x/tos/chips/atm128/timer/HplAtm128Timer0AsyncC.nc
automatically wires it to McuSleepC if it is included.

6. Author’s Address

Robert Szewczyk
Moteiv Corporation
2168 Shattuck Ave, Floor 2
Berkeley, CA 94704

email - rob@moteiv.com

Philip Levis
358 Gates
Computer Science Laboratory
Stanford University
Stanford, CA 94305

phone - +1 650 725 9046
email - pal@cs.stanford.edu

Martin Turon
PO Box 8525
Berkeley, CA 94707

phone - +1 408 965 3355
email - mturon@xbow.com

Lama Nachman
3600 Juliette Lane, SC12-319
Intel Research
Santa Clara, CA 95052

email - lama.nachman@intel.com

Phil Buonadonna
Arched Rock Corp.
2168 Shattuck Ave. 2nd Floor
Berkeley, CA 94704

5

mailto:rob@moteiv.com
mailto:pal@cs.stanford.edu
mailto:mturon@xbow.com
mailto:lama.nachman@intel.com


phone - +1 510 981 8714
email - pbuonadonna@archedrock.com

Vlado Handziski
Sekr FT5
Einsteinufer 25
10587 Berlin
GERMANY

email - handzisk@tkn.tu-berlin.de

6. Citations

1 TEP 2: Hardware Abstraction Architecture
2 TEP 106: Schedulers and Tasks.
3 TEP 107: TinyOS 2.x Boot Sequence.
4 TEP 108: Resource Arbitration
5 TEP 115: Power Management of Non-Virtualised Devices

6

mailto:pbuonadonna@archedrock.com
mailto:handzisk@tkn.tu-berlin.de

	Abstract
	1. Introduction
	2. Background
	3. Microcontroller Power Management
	3.1 The Dirty Bit
	3.2 Low Power State Calculation
	3.3 Power State Override
	4. Peripherals and Subsystems
	5. Implementation
	6. Author's Address
	6. Citations

