
Serial Communication

TEP: 113
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: 2.x
Author: Ben Greenstein and Philip Levis
Draft-Created: 11-Jul-2005
Draft-Version: 1.9
Draft-Modified: 2007-02-06
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo describes the structure and standard implementation of the TinyOS 2.x serial communication
system for mote-to-PC data exchange. The system is broken into three levels (encoding, framing, and
dispatch) to allow easy experimentation and replacement. It can also handle multiple packet formats:
unlike 1.x, 2.x serial packets are not bound to the mote’s radio packet format. Additionally, one of
the supported packet formats is platform independent, so PC-side applications can communicate with
arbitrary motes.

1. Introduction

Users need to read data out of a TinyOS network. The most common approach is to attach a mote to a
PC or laptop with a wired connection. While the interface on the PC side can vary from a serial cable
to a USB device to IP, the mote generally talks to a serial port (UART). In TinyOS 1.x, the UART
packet format is platform-specific, pushing a good deal of complexity into the protocol and PC-side
tools in order to discover and properly handle platform diversity. TinyOS 2.0 introduces the notion of
packet format dispatch, so a mote can support multiple UART packet formats simultaneously. This
allows transparent bridging (e.g., an 802.15.4 base station) to exist in parallel with platform-independent
communication, which simplifies the PC toolchain. This memo documents the protocols and structure
of the TinyOS 2.x serial communication stack.

1

2. Serial Stack Structure

The TinyOS 2.x serial communication stack is broken up into four functional components. From bottom
to top, they are

o the raw UART,

o the encoder/framer,

o the protocol,

o and the dispatcher.

Structurally, they look like this:

| |
| Dispatcher | Packet formatting.
|_____________________|

| |
| Protocol | Acknowledgements, CRC computation,
|_____________________| windowing.

| |
| Encoder/Framer | Translating raw bytes into frame
|_____________________| delimiters, escape bytes.

| |
| Raw UART | Platform code for reading/writing
|_____________________| bytes over the serial connection.

The bottom three provide a byte-level interface: only the Dispatcher provides a packet-level interface.
The top three are all platform-independent: only the UART is platform-specific code.

The lowest level of the stack is the raw UART. This HIL component provides functionality for
configuring the UART (speed, stop bytes, etc.), sending/receiving bytes, and flushing the UART.

The Encoder/Framer sits above the raw UART. This component translates raw data bytes into
packet bytes using a serial protocol’s encoding. The Encoder/Framer assumes that a protocol’s encoding
has two kinds of bytes: delimiters and data bytes, and signals each in separate events to the component
above.

The Protocol component handles data and delimiter byte events. It is responsible for reading in
and sending all protocol control packets. If the Protocol component starts receiving a data packet, it
signals to the Dispatcher that a packet has started and signals the data bytes. When the data packet
completes, the Protocol signals to the Dispatcher that the packet is complete and whether it passed the
protocol-level CRC.

The Dispatcher component handles data packet bytes and delimiters. It is responsible for reading
data bytes into a message t and signaling packet reception to components above it. The dispatcher can
support multiple packet formats. Based on how message t works (see TEP 111[tep111]), this boils down
to knowing where in a message t a particular packet format begins (based on its header size). Section
3.4 describes how the default TinyOS 2.x implementation, SerialDispatcherC does this.

3. The 2.x Serial Stack Implementation

Section 2 describes the basic structure of the TinyOS 2.x serial stack. This section describes its ac-
tual implementation, including SerialActiveMessageC, which sits on top of the Dispatcher. All of the
components except for UartC are part of the serial library that lives in tos/lib/serial.

2

3.1 Raw UART: UartC

The UART HIL[TEP2] is UartC, which provides a byte-level interface to the underlying serial commu-
nication. It provides the SerialByteComm interface:

interface SerialByteComm {
async command error_t put(uint8_t data);
async event void get(uint8_t data);
async event void putDone();

}

Alternatively, UartC may provide the UartStream multi-byte level interface. See the Low-Level I/O
TEP [TEP117] for details.

Additionally, UartC provides a split-phase interface to signal when the UART is idle. There are
situations (such as when powering down the usart, when switching from TX to RX on a radio with a
UART data line, etc.) when we need explicit information that the data sent over the UART has actually
been transmitted in full. The problem is that on MCUs that double-buffer UART communication (such
as the msp430), a putDone event signifies that the UART is ready to accept another byte, but NOT
that the UART is idle.

interface SerialFlush {
command void flush();
event void flushDone();

}

It may provide additional interfaces for configuring the serial port. This TEP does not consider this
topic.

3.2 Encoder/Framer: HdlcTranslateC

HdlcTranslateC is the serial encoder/framer. It uses the SerialByteComm interface and provides the
SerialFrameComm interface:

interface SerialFrameComm {
async command error_t putDelimiter();
async command error_t putData(uint8_t data);
async command void resetSend();
async command void resetReceive();
async event void delimiterReceived();
async event void dataReceived(uint8_t data);
async event void putDone();

}

As its name suggests, it uses the same encoding as the HDLC[HDLC] protocol. 0x7e is reserved as
a frame delimiter byte, and 0x7d is reserved as an escape byte. HdlcTranslateC maintains ten bits of
state. The receive and send paths each have one bit to store whether they are using an escape byte,
and the transmit path has a byte for when it sends an escaped byte.

When HdlcTranslateC receives a delimiter byte, it signals delimiterReceived(). When HdlcTrans-
lateC receives an escape byte, it sets the receiveEscape flag to true. When it receives any other byte, it
tests to see if the receiveEscape flag is set; if so, it XORs the data byte with 0x20 and clears the flag.
It signals dataReceived() with the byte. The most common use of escape byte is to transmit data bytes
corresponding to the delimiter byte or escape byte. For example, 0x7e becomes 0x7d 0x5e.

HdlcTranslateC performs similar actions on the transmit side. When told to transmit the delimiter
or escape byte as a data byte, it sets the transmitEscape flag to true, stores the data byte XOR 0x20,
and sends an escape byte. When the escape byte is sent, it sends the stored data byte.

3

3.3 Protocol: SerialP

The SerialP component implements the serial protocol using PPP/HDLC- like framing (See RFC
1662[RFC1662]). Type dispatch and buffer management are left to higher layers in the serial stack.
The protocol is currently stop-and-wait in the host-to-mote direction and best effort in the mote-to-
host direction.

SerialP provides two byte-level interfaces to the upper layer for sending and receiving packets,
respectively called SendBytePacket and ReceiveBytePacket.

On the sending side, SerialP is responsible for encapsulation of upper layer packets. An upper layer
component such as SerialDispatcherC initiates the sending of a packet by calling startSend(), passing
the first byte to send. SerialP collects subsequent bytes by signalling nextByte(). Within the nextByte
handler or between calls to nextByte(), the upper layer should indicate the end-of-packet by calling
completeSend(). If completeSend is called from within a nextByte() handler, SerialP will ignore the
return of the call to nextByte().

interface SendBytePacket {
async command error_t startSend(uint8_t first_byte);
async command error_t completeSend();
async event uint8_t nextByte();
async event void sendCompleted(error_t error);

}

SerialP maintains a small window of bytes that have been received by the upper layer and not yet
sent to the UART. Depending on the timing requirements of the underlying UART, the size of this
window can be changed. SerialP uses repeated calls to nextByte() to keep this window filled.

SerialP uses SerialFrameComm to send a delimiter between frames, a serial-level type field, the bytes
of the packet, and a two-byte frame CRC. For mote-to-host gap detection and link reliability, a sequence
number may also be sent (not activated in the default implementation).

After sending an entire frame and receiving the last putDone() event from below, SerialP signals
sendCompleted() to indicate the success or failure of a requested transmission.

Packet reception is also managed by SerialP and the interface provided to the upper layer is Re-
ceiveBytePacket:

interface ReceiveBytePacket {
async event error_t startPacket();
async event void byteReceived(uint8_t b);
async event void endPacket(error_t result);

}

Upon receiving an interframe delimiter and a new frame’s header, SerialP signals the upper layer
indicating that a packet is arriving. For each byte received, SerialP signals byteReceived(). Once
SerialP receives the complete frame it signals endPacket with a value of SUCCESS. If instead it loses
sync during reception it signals endPacket with FAIL.

SerialP acknowledges frames it receives. Acknowledgements have a higher priority than data trans-
missions and consequently, data frames may be slightly delayed. However, acknowledgement information
is stored in a queue separate from the data buffer, so a data packet to be transmitted may begin spooling
into SerialP while SerialP is actively sending an acknowledgement.

3.4 Dispatcher: SerialDispatcherC

SerialDispatcherC handles the data packets that the Protocol component receives. It uses the Send-
BytePacket and ReceiveBytePacket interfaces, and provides parameterized Send and Receive interfaces.
The parameter in the Send and Receive interfaces (uart_id_t) determines the packet format contained
in the message t.

4

SerialDispatcherC places a one-byte header, the packet format identifier, on the packets sent and
received through SerialP. SerialDispatcherC uses a parameterized SerialPacketInfo interface to be able
to handle various packet formats:

interface SerialPacketInfo {
async command uint8_t offset();
async command uint8_t dataLinkLength(message_t* msg, uint8_t upperLen);
async command uint8_t upperLength(message_t* msg, uint8_t dataLinkLen);

}

When SerialDispatcherC receives the first data byte of a packet from SerialP, it stores it as the packet
type and calls offset() to determine where in a message t that packet format begins. It then spools data
bytes in, filling them into its message t buffer. Similarly, on the send side, it first sends the type byte
and spools out data bytes starting from the index denoted by the call to offset(). SerialDispatcherC
uses the two length commands, dataLinkLength() and upperLength(), to translate between the two
notions of packet length: above, length refers to the payload excluding header, while below it refers to
the payload plus header.

A component that provides communication over the serial port with uart id t U MUST wire a
component implementing SerialPacketInfo to SerialDispatcherC with uart id t U. The file Serial.h
contains reserved uart id t’s for supported packet formats. Currently, only platform independent
active messages (TOS_SERIAL_ACTIVE_MESSAGE_ID, described in Section 3.5), 802.15.4 active mes-
sages (TOS_SERIAL_802_15_4_ID), mica2 CC1000 packets (TOS_SERIAL_CC1000_ID) and the error code
TOS_SERIAL_UNKNOWN_ID are reserved. New packet formats MUST NOT reuse any reserved identifiers.

3.5 SerialActiveMessageC

SerialActiveMessageC is a platform-independent active message layer that operates on top of the se-
rial communication stack. SerialActiveMessageC is a configuration that wires SerialActiveMessageP to
SerialDispatcherC with uart id t TOS SERIAL ACTIVE MESSAGE ID and wires SerialPacketInfoAc-
tiveMessageP to SerialDispatcherC with uart id t TOS SERIAL ACTIVE MESSAGE ID:

includes Serial;‘‘
configuration SerialActiveMessageC {
provides {
interface Init;
interface AMSend[am_id_t id];
interface Receive[am_id_t id];
interface Packet;
interface AMPacket;

}
uses interface Leds;

}
implementation {
components new SerialActiveMessageP() as AM, SerialDispatcherC;
components SerialPacketInfoActiveMessageP as Info;

Init = SerialDispatcherC;
Leds = SerialDispatcherC;

AMSend = AM;
Receive = AM;
Packet = AM;
AMPacket = AM;

5

AM.SubSend -> SerialDispatcherC.Send[TOS_SERIAL_ACTIVE_MESSAGE_ID];
AM.SubReceive -> SerialDispatcherC.Receive[TOS_SERIAL_ACTIVE_MESSAGE_ID];

SerialDispatcherC.SerialPacketInfo[TOS_SERIAL_ACTIVE_MESSAGE_ID] -> Info;
}

SerialActiveMessageP is a generic component so that it can be used to sit on top of any packet-level
communication layer. It does not filter packets based on destination address or group. It assumes that
if the packet was received over the serial port, it was destined to the node. This saves PC-side tools
from having to discover or consider the ID and group of a mote.

Platform-independent active messages do not have a CRC (they assumes the serial stack CRC is
sufficient), and have the following header:

typedef nx_struct SerialAMHeader {
nx_am_addr_t addr;
nx_uint8_t length;
nx_am_group_t group;
nx_am_id_t type;

} SerialAMHeader;

3.6 Packet Format

A data packet in the TinyOS 2.x serial stack has the following format over the wire. Each protocol field
is associated with a specific component:

__
_	_	_	_	_______________________________	__	_
F P S D Payload CR F

F = Framing byte, denoting start of packet: HdlcTranslateC
P = Protocol byte: SerialP
S = Sequence number byte: SerialP
D = Packet format dispatch byte: SerialDispatcherC
Payload = Data payload (stored in SerialDispatcherC): SerialDispatcherC
CR = Two-byte CRC over S to end of Payload: SerialP
F = Framing byte denoting end of packet: HdlcTranslateC

Payload is a contiguous packet that SerialDispatcherC reads in. Note that any data bytes (P - CR)
equal to 0x7e or 0x7d will be escaped to 0x7d 0x5e or 0x7d 0x5d accordingly. For example, a platform
independent AM packet of type 6, group 0x7d, and length 5 to destination 0xbeef with a payload of 1
2 3 4 5 would look like this:

7e 40 09 00 be ef 05 7d 5d 06 01 02 03 04 05 7e
Note that the group 0x7d is escaped to 0x7d 0x5d. The protocol field (P) is 0x40 (64), corresponding

to SERIAL_PROTO_ACK (in Serial.h).

4. Access Abstractions

Two generic components: SerialAMSenderC and SerialAMReceiverC connect to SerialActiveMessageC
to provide virtualized access to the serial stack. Each instantiation of SerialAMSenderC has its own
queue of depth one. Therefore, it does not have to contend with other SerialAMSender instantiations
for queue space. The underlying implementation schedulers the packets in these queues using some form

6

of fair-share queueing. SerialAMReceiverC provides the virtualized abstraction for reception. These
abstractions are very similar to TinyOS’s radio abstractions, namely, AMSenderC and AMReceiverC.
See Section 4 of TEP 116[TEP116] for more information. Unlike the services in the TEP 116, the serial
component virtualizations provide no snooping capabilities.

5. Author’s Address

Philip Levis
358 Gates
Computer Science Laboratory
Stanford University
Stanford, CA 94305

phone - +1 650 725 9046
email - pal@cs.stanford.edu

Ben Greenstein
Intel Research Seattle
1100 NE 45th Street, 6th Floor
Seattle, WA 98105

phone - +1 206 206 545 2501
email - benjamin.m.greenstein@intel.com

6. Citations

[TEP2] TEP 2: Hardware Abstraction Architecture. tinyos-2.x/doc/txt/tep2.txt
[TEP111] TEP 111: message t. tinyos-2.x/doc/txt/tep111.txt
[TEP116] TEP 116: Packet Protocols. tinyos-2.x/doc/txt/tep116.txt
[TEP117] TEP 117: Low-Level I/O. tinyos-2.x/doc/txt/tep117.txt
[HDLC] International Organization For Standardization, ISO Standard 3309-1979, “Data communica-
tion - High-level data link control procedures - Frame structure”, 1979.
[RFC1662] PPP in HDLC-like Framing, Internet Engineering Task Force (IETF), 1994

7

mailto:pal@cs.stanford.edu
mailto:benjamin.m.greenstein@intel.com

	Abstract
	1. Introduction
	2. Serial Stack Structure
	3. The 2.x Serial Stack Implementation
	3.1 Raw UART: UartC
	3.2 Encoder/Framer: HdlcTranslateC
	3.3 Protocol: SerialP
	3.4 Dispatcher: SerialDispatcherC
	3.5 SerialActiveMessageC
	3.6 Packet Format

	4. Access Abstractions
	5. Author's Address
	6. Citations

