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Abstract

The memo documents the interfaces used by packet protocol components in TinyOS 2.x as well as
the structure and implementation of ActiveMessageC, the basic data-link HIL component. It also
documents the virtualized active message interfaces AMSenderC and AMReceiverC.

1. Introduction

Sensor nodes are network-centric devices. Much of their software complexity comes from network proto-
cols and their interactions. In TinyOS, the basic network abstraction is an active message, a single-hop,
unreliable packet. Active messages have a destination address, provide synchronous acknowledgements,
and can be of variable length up to a fixed maximum size. They also have a type field, which is
essentially a protocol identifier for components built on top of this abstraction.

In TinyOS 1.x, the component GenericComm provides interfaces for transmitting and receiving
active messages:

configuration GenericComm {
provides {
interface StdControl as Control;
interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];
command uint16_t activity();

}
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uses {
event result_t sendDone();

}
}

This component, while simple, has several issues. First, it has the activity() commmand, which does
not have a single caller in the entire TinyOS tree. This command requires GenericComm to allocate a
timer, wasting CPU cycles and RAM.

Second, it does not allow a node to receive packets besides those destined to it. Several network
protocols (e.g., MintRoute1, TAG2) take advantage of snooping on these packets for a variety of im-
provements in efficiency or performance. This has led to the creation of GenericCommPromiscuous,
whose Receive interface does not distinguish between packets received that were addressed to the node
and packets received that were addressed to other nodes. Choosing one of the two implementations is
a global decision across an application. There is a way to enable both reception semantics at the same
time for a different protocols, but they require a creative use of default event handlers.

Third, it assumes that components will directly access the packet structure, the accepted approach
in TinyOS 1.x. However, directly accessing packet structures introduces unforseen dependencies: a
component that names a header field, for example, binds itself to data link layers that have a field with
that name. Similarly, components on top of GenericComm directly access the data payload of a packet.

TEP 111 documents the structure of a TinyOS 2.x packet buffer3. This TEP documents the interfaces
used to access packet buffers, as well as ActiveMessageC, the basic data-link packet communication HIL.

2. Communication interfaces

Packet-level communication has three basic classes of interfaces. Packet interfaces are for accessing
message fields and payloads. Send interfaces are for transmitting packets, and are distinguished by
their addressing scheme. The Receive interface is for handling packet reception events. Finally, de-
pending on whether the protocol has a dispatch identifier field, the Receive and Send interfaces may be
parameterized in order to support multiple higher-level clients.

2.1 Packet interfaces

The basic TinyOS 2.x message buffer type is message t, which is described in TEP 111. message t
right-justifies data-link headers to the data payload so that higher-level components can pass buffers
between different data link layers without having to move data payloads. This means that the data
payload of a data link frame is always at a fixed offset of a message t.

Once protocols layer on top of each other, the data payload for components on top of the data link
layer are no longer at a fixed offset. Where a component can put its header or data depends on what
headers underlying components introduce. Therefore, in order to be able to find out where it can put
its data, it must query the components below it. The Packet interface defines this mechanism:

interface Packet {
command void clear(message_t* msg);
command uint8_t payloadLength(message_t* msg);
command void setPayLoadLength(message_t* msg, uint8_t len);
command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg, uint8_t* len);

}

A component can obtain a pointer to its data region within a packet by calling getPayload() the
optional len argument is for also obtaining the size of the data region. A provider of a Packet interface
MUST check if len is NULL and ignore it if it is. A component can also obtain the size of the data
region with a call to payloadLength.
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A component can set the payload length with setPayLoadLength. As Send interfaces always include
a length parameter in their send call, this command is not required for sending, and so is never called
in common use cases. Instead, it is a way for queues and other packet buffering components to store
the full state of a packet without requiring additional memory allocation.

The distinction between payloadLength and maxPayloadLength comes from whether the packet is
being received or sent. In the receive case, determining the size of the existing data payload is needed;
in the send case, a component needs to know how much data it can put in the packet.

The Packet interface assumes that headers have a fixed size. It is difficult to return a pointer into
the data region when its position will only be known once the header values are bound.

Generally, an incoming call to the Packet interface of a protocol has an accompanying outgoing call
to the Packet interface of the component below it. The one exception to this is the data link layer. For
example, if there is a network that introduces 16-bit sequence numbers to packets, it might look like
this:

generic module SequenceNumber {
provides interface Packet;
uses interface Packet as SubPacket;

}
implementation {
typedef nx_struct seq_header {
nx_uint16_t seqNo;

} seq_header_t;

enum {
SEQNO_OFFSET = sizeof(seq_header_t),

};

command void Packet.clear(message_t* msg) {
uint8_t len;
void* payload = call SubPacket.getPayload(msg, &len);
memset(payload, len, 0);

}

command uint8_t Packet.payloadLength(message_t* msg) {
return SubPacket.payloadLength(msg) - SEQNO_OFFSET;

}

command void Packet.setPayloadLength(message_t* msg, uint8_t len) {
SubPacket.setPayloadLength(msg, len + SEQNO_OFFSET);

}

command uint8_t Packet.maxPayloadLength() {
return SubPacket.maxPayloadLength(msg) - SEQNO_OFFSET;

}

command void* Packet.getPayload(message_t* msg, uint8_t* len) {
uint8_t* payload = call SubPacket.getPayload(msg, len);
if (len != NULL) {
*len -= SEQNO_OFFSET;

}
return payload + SEQNO_OFFSET;

}
}
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The above example is incomplete: it does not include the code for the send path that increments
sequence numbers.

In practice, calls to Packet are very efficient even if they pass through many components before
reaching the data link layer. nesC’s inlining means that in almost all cases there will not actually
be any function calls, and since payload position and length calculations all use constant offsets, the
compiler generally uses constant folding to generate a fixed offset.

The Packet interface provides access to the one field all packet layers have, the data payload. Com-
munication layers can add additional header and footer fields, and may need to provide access to these
fields. If a packet communication component provides access to header and/or footer fields, it MUST
do so through an interface. The interface SHOULD have a name of the form XPacket, where X is a
name that describes the communication layer. For example, active message components provide both
the Packet interface and the AMPacket interface. The latter has this signature:

interface AMPacket {
command am_addr_t address();
command am_addr_t destination(message_t* amsg);
command am_addr_t source(message_t* amsg);
command void setDestination(message_t* amsg, am_addr_t addr);
command void setSource(message_t* amsg, am_addr_t addr);
command bool isForMe(message_t* amsg);
command am_id_t type(message_t* amsg);
command void setType(message_t* amsg, am_id_t t);

}

The command address() returns the local AM address of the node. AMPacket provides accessors for
its two fields, destination and type. It also provides commands to set these fields, for the same reason
that Packet allows a caller to set the payload length. Packet interfaces SHOULD provide accessors and
mutators for all of their fields to enable queues and other buffering to store values in a packet buffer.
Typically, a component stores these values in the packet buffer itself (where the field is), but when
necessary it may use the metadata region of message t or other locations.

2.2 Sending interfaces

There are multiple sending interfaces, corresponding to different addressing modes. For example,
address-free protocols, such as collection routing, provide the basic Send interface. Active message
communication has a destination of an AM address, so it provides the AMSend interface. This, for
example, is the basic, address-free Send interface:

interface Send {
command error_t send(message_t* msg, uint8_t len);
command error_t cancel(message_t* msg);
event void sendDone(message_t* msg, error_t error);

command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg);

}

while this is the AMSend interface:

interface AMSend {
command error_t send(am_addr_t addr, message_t* msg, uint8_t len);
command error_t cancel(message_t* msg);
event void sendDone(message_t* msg, error_t error);

command uint8_t maxPayloadLength();
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command void* getPayload(message_t* msg);
}

Sending interfaces MUST include these four commands and one event. The duplication of some of
the commands in Packet is solely for ease of use: maxPayloadLength and getPayload MUST behave
identically as Packet.maxPayloadLength and Packet.getPayload, with the exception that the latter
has no length parameter (it should behave as if the length parameter of the Packet call were NULL).
Their inclusion is so that components do not have to wire to both Packet and the sending interface for
basic use cases.

When called with a length that is too long for the underlying maximum transfer unit (MTU), the
send command MUST return ESIZE.

The Send and AMSend interfaces have an explicit queue of depth one. A call to send on either of
these interfaces MUST return EBUSY if a prior call to send returned SUCCESS but no sendDone event
has been signaled yet. More explicitly:

if (call Send.send(...) == SUCCESS &&
call Send.send(...) == SUCCESS) {
// This block is unreachable.

}

Systems that need send queues have two options. They can use a QueueC (found in tos/system) to
store pending packet pointers and serialize them onto sending interface, or they can introduce a new
sending interface that supports multiple pending transmissions.

The cancel command allows a sender to cancel the current transmission. A call to cancel when there
is no pending sendDone event MUST return FAIL. If there is a pending sendDone event and the cancel
returns SUCCESS, then the packet layer MUST NOT transmit the packet and MUST signal sendDone
with ECANCEL as its error code. If there is a pending sendDone event and cancel returns FAIL, then
sendDone SHOULD occur as if the cancel was not called.

2.3 Receive interface

Receive is the interface for receiving packets. It has this signature:

interface Receive {
event message_t* receive(message_t* msg, void* payload, uint8_t len);
command void* getPayload(message_t* msg, uint8_t* len);
command uint8_t payloadLength(message_t* msg);

}

A call to Receive.getPayload() MUST behave identically to a call to Packet.getPayload(). The
receive() event’s payload parameter MUST be identical to what a call to getPayload() would return,
and the len parameter MUST be identical to the length that a call to getPayload would return. These
parameters are for convenience, as they are commonly used by receive handlers, and their presence
removes the need for a call to getPayload(), while getPayload() is a convenience so a component
does not have to wire to Packet. The command payloadLength has a similar motivation and the same
semantics as its twin in Packet.

Receive has a buffer-swap policy. The handler of the event MUST return a pointer to a valid message
buffer for the signaler to use. This approach enforces an equilibrium between upper and lower packet
layers. If an upper layer cannot handle packets as quickly as they are arriving, it still has to return
a valid buffer to the lower layer. This buffer could be the msg parameter passed to it: it just returns
the buffer it was given without looking at it. Following this policy means that a data-rate mismatch
in an upper-level component will be isolated to that component. It will drop packets, but it will not
prevent other components from receiving packets. If an upper layer did not have to return a buffer
immediately, then when an upper layer cannot handle packets quickly enough it will end up holding all
of them, starving lower layers and possibly preventing packet reception.

A user of the Receive interface has three basic options when it handles a receive event:
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1) Return msg without touching it.

2) Copy some data out of payload and return msg.

3) Store msg in its local frame and return a different message_t* for the lower layer
to use.

These are simple code examples of the three cases:

// Case 1
message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {
return msg;

}

// Case 2
uint16_t value;
message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {
if (len >= sizeof(uint16_t)) {
nx_uint16_t* nval = (nx_uint16_t*)payload;
value = *nval;

}
return msg;

}

//Case 3
message_t buf;
message_t* ptr = &buf;
message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {
message_t* tmp = ptr;
ptr = msg;
post processTask();
return tmp;

}

Because of case 3), a lower layer MUST respect the buffer swap semantics and use the pointer
returned from receive. The pointer passed as a parameter to receive MUST NOT be touched, used,
or stored after the signaling of receive.

2.4 Dispatch

A packet protocol MAY have a dispatch identifier. This generally manifests as the protocol component
providing parameterized interfaces (rather than a single interface instance). A dispatch identifier allows
multiple services to use a protocol independently. If a protocol provides a dispatch mechanism, then
each dispatch identifier SHOULD correspond to a single packet format: if an identifier corresponds to
multiple packet formats, then there is no way to disambiguate them. Packets whose internal structure
depends on their fields (for example, a packet that has a control field which indicates which optional
fields are present) do not pose such problems.

3. HIL: ActiveMessageC

A platform MUST provide ActiveMessageC as a basic HIL to packet-level communication. ActiveMes-
sageC provides a best-effort, single-hop communication abstraction. Every active message has a 16-bit
destination address and an 8-bit type. There is one reserved destination address, AM_BROADCAST_ADDR,
which has the value of 0xffff. ActiveMessageC has the following signature:
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configuration ActiveMessageC {
provides {
interface Init;
interface SplitControl;

interface AMSend[uint8_t id];
interface Receive[uint8_t id];
interface Receive as Snoop[uint8_t id];

interface Packet;
interface AMPacket;
interface PacketAcknowledgements;

}
}

The Receive interface is for packets destined to the node, while the Snoop interface is for packets
destined to other nodes. A packet is destined for a node if its destination AM address is either the
AM broadcast address or an address associated with the AM stack. Different link layers have different
snooping capabilities. The Snoop interface does not assume always-on listening, for example, in the case
of a TDMA or RTS/CTS data link layer. By separating out these two interfaces, ActiveMessageC avoids
the complications encountered in 1.x with regards to GenericComm vs. GenericCommPromiscuous.

ActiveMessageC is usually just a configuration that has pass-through wiring to a chip-specific HAL
active message implementation. The definition of ActiveMessageC is left to the platform for when a node
has more than one radio. In this case, the platform decides how to map the basic packet abstraction to
the hardware underneath. Approaches include choosing one radio or having some form of address-based
dispatch.

4. AM Services: AMSenderC, AMReceiverC, AMSnooperC,
AMSnoopingReceiverC

TinyOS 2.x provides four component single-hop communication virtualizations to applications: AM-
ReceiverC, AMSnooperC, AMSnoopingReceiverC, and AMSenderC. Each is a generic component that
takes an active message ID as a parameter. These components assume the existence of ActiveMessageC.

4.1 Dispatch: am_id_t

Active messages have an 8-bit type field, which allows multiple protocols to all use AM communication
without conflicting. Following the guidelines for protocol dispatch identifiers, each am id t used in a
network SHOULD have a single packet format, so that the am id t, combined with the packet contents,
are sufficient to determine the exact packet format.

4.2 AMReceiverC

AMReceiverC has the following signature:

generic configuration AMReceiverC(am_id_t t) {
provides{
interface Receive;
interface Packet;
interface AMPacket;

}
}
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AMReceiver.Receive.receive is signalled whenever the packet layer receives an active message of the
corresponding AM type whose destination address is the local address or the broadcast address. Note
that since Receive.receive swaps buffers, a program MUST NOT instantiate two AMReceivers with the
same am id t and MUST NOT instantiate an AMReceiver and an AMSnoopingReceiver with the same
am id t.

4.3 AMSnooperC

AMSnooper has an identical signature to AMReceiver:

generic configuration AMSnooperC(am_id_t t) {
provides{
interface Receive;
interface Packet;
interface AMPacket;

}
}

AMSnooper.Receive.receive is signalled whenever the packet layer receives an active message of the
corresponding AM type whose destination address is neither to the local address nor the broadcast ad-
dress. Note that since Receive.receive swaps buffers, a program MUST NOT instantiate two AMSnoop-
ers with the same am id t and MUST NOT instantiate an AMSnooper and an AMSnoopingReceiver
with the same am id t.

4.4 AMSnoopingReceiverC

AMSnoopingReceiverC has an identical signature to AMReceiverC:

generic configuration AMSnoopingReceiverC(am_id_t t) {
provides{
interface Receive;
interface Packet;
interface AMPacket;

}
}

AMSnoopingReceiverC.Receive.receive is signalled whenever the packet layer receives an active mes-
sage of the corresponding AM type, regardless of destination address. Note that since Receive.receive
swaps buffers, a program that instantiates an AMSnoopingReceiverC with a certain am id t MUST NOT
instantiate another AMSnoopingReceiverC, AMSnooperC, or AMReceiverC with the same am id t.

4.5 AMSenderC

AMSenderC has the following signature:

generic configuration AMSenderC(am_id_t AMId) {
provides {
interface AMSend;
interface Packet;
interface AMPacket;
interface PacketAcknowledgements as Acks;

}
}
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Because this is a send virtualization, AMSenderC.AMSend.send returns EBUSY only if there is a
send request outstanding on this particular AMSenderC. That is, each AMSenderC has a queue of depth
one. The exact order in which pending AMSenderC requests are serviced is undefined, but it MUST be
fair, where fair means that each client with outstanding packets receives a reasonable approximation of
an equal share of the available transmission bandwidth.

5. Power Management and Local Address

In addition to standard datapath interfaces for sending and receiving packets, an active message layer
also has control interfaces.

5.1 Power Management

The communication virtualizations do not support power management. ActiveMessageC provides Split-
Control for explicit power control. For packet communication to operate properly, a component in an
application has to call ActiveMessageC.SplitControl.start(). The HAL underneath ActiveMessageC
MAY employ power management techniques, such as TDMA scheduling or low power listening, when
“on.”

5.2 Local Active Message Address

An application can change ActiveMessageC’s local AM address at runtime. This will change which
packets a node receives and the source address it embeds in packets. To change the local AM address
at runtime, a component can wire to the component ActiveMessageAddressC. This component only
changes the AM address of the default radio stack (AMSenderC, etc.); if a radio has multiple stacks
those may have other components for changing their addresses in a stack-specific fashion.

5. HAL Requirements

A radio chip X MUST have a packet abstraction with the following signature:

provides interface Init;
provides interface SplitControl;
provides interface AMSend[am_id_t type];
provides interface Receive[am_id_t type];
provides interface Receive as Snoop[am_id_t type];
provides interface Packet;
provides interface AMPacket;
provides interface PacketAcknowledgments;

The component SHOULD be named XActiveMessageC, where X is the name of the radio chip.
The component MAY have additional interfaces. These interfaces can either be chip-specific or chip-
independent.

6. message t

Active messages are a basic single-hop packet abstraction. Therefore, following TEP 1113, all data link
and active message headers MUST be in the message_header_t structure of message t. This ensures
that an active message received from one data link layer (e.g., the radio) can be passed to another data
link layer (e.g., the UART) without shifting the data payload. This means that the message_header_t
must include all data needed for AM fields, which might introduce headers in addition to those of the
data link. For example, this is an example structure for a CC2420 (802.15.4) header:
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typedef nx_struct cc2420_header_t {
nx_uint8_t length;
nx_uint16_t fcf;
nx_uint8_t dsn;
nx_uint16_t destpan;
nx_uint16_t dest;
nx_uint16_t src;
nx_uint8_t type;

} cc2420_header_t;

The first six fields (length through src) are all 802.15.4 headers. The type field, however, has been
added to the header structure in order to support AM dispatch.

7. Implementation

The following files in tinyos-2.x/tos/system provide reference implementations of the abstractions
described in this TEP.

• AMSenderC.nc, AMReceiverC.nc, AMSnooperC.nc, and AMSnoopingReceiverC.nc are
implementations of virtualized AM services.

• AMQueueP provides a send queue of n entries for n AMSenderC clients, such that each
client has a dedicated entry.

• AMQueueImplP is the underlying queue implementation, which is reusable for different
clients (it is also used in the serial stack4).

• AMQueueEntryP sits on top of AMQueueP and stores the parameters to AMSend.send in
an outstanding packet with the AMPacket interface.

The following files in tinyos-2.x/tos/interfaces contain example implementations of packet pro-
tocol interfaces:

• Packet.nc is the basic interface that almost all packet protocols provide.
• Send.nc is the transmission interface for address-free protocols.
• AMSend.nc is the transmission interface for AM address send protocols.
• AMPacket.nc is the packet interface for AM-specific fields.

An active messaging implementation for the CC2420 radio chip can be found in tos/chips/CC2420/CC2420ActiveMessageC.nc.
The micaz platform and telos family have an ActiveMessageC.nc which exports the interfaces of
CC2420ActiveMessageC.
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