Creating a New Platform for TinyOS 2.x

TEP: 131

Group: TinyOS 8051 Working Group

Type: Informational

Status: Draft

TinyOS-Version: 2.x

Author: Martin Leopold

Draft-Created: 6-Nov-2007

Draft-Version: 1

Draft-Modified:  6-Nov-2007

Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo is informational. It will hopefully be a basis for discussions and suggestions for
improvements. Distribution of this memo is unlimited. This memo is in full compliance with TEP
1.

Abstract

The purpose of this TEP is to provide on overview of how to build a new TinyOS 2 platform. While
the purpose of most TEPs is to describe TinyOS 2 entities, we will present concrete suggestions on how
to implement a new TinyOS 2 platform. We will use examples and briefly cover the relevant TEPs to
present a platform that adheres to the current TinyOS standards. We will not cover the TEPs in detail,
but to the full text of each TEP for further information.

This TEP will go through the tool chain setup and the most basic components for a functional
TinyOS platform. We consider only TinyOS version 2.x (from now on TinyOS).

Before venturing on this quest we will take a diversion and introduce general TinyOS 2 concepts
and terminology (Section 1), readers familiar to TinyOS 2 can skip this section. This document will
introduce the TinyOS 2 platform (Section 2) and describes the 3 elements that make up a platform:
the tool chain (Section 3) the platform definitions (Section 4) and the chips definitions (Section 5).
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1. TinyOS Overview

Before describing the process of writing TinyOS platforms we will briefly sum up the TinyOS ecosystem
and the terminology required in this TEP. To learn more visit the TinyOS website http://www.tinyos.net.

A systems overview is depicted below. In this TEP we will primarily concern our selves with the
platform portion of figure and briefly cover the tool chain. This involves writing the necessary drivers
and writing rules to pass the code to the TinyOS tool chain. We will not cover sensor boards in this
TEP refer to, see [TEP109] for details.
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1.1 TinyOS 2 architecture
TinyOS 2.x is built on a tree-layered hardware abstraction architecture (HAA)[TEP2]. This architecture
separates the code for each platform into distinct layers:

1. the Hardware Independent Layer (HIL)

2. the Hardware Adaptation Layer (HAL)

3. the Hardware Presentation Layer (HPL)


http://www.tinyos.net

A platform is built from bottom up, starting with the HPL level, building HAL and HIL layers
on top. Platform independent applications are written using HIL level interfaces, allowing them to
move easily from platform to platform. While applications can target a platform specific HAL layer for
finer control of hardware specific features, this will could prohibit such an application from being easily
portable. An overview of the TinyOS 2 architecture is given in [tos2.0view].

The requirements for the platform implementation is described in TinyOS Enhancement Proposals
(TEP). Each TEP covers a particular area and specifies the recommendations within that area, some of
which are relevant for platforms. While no specific label or designation is given to platforms adhering
to the set of TEPs, [TEP1] states: “Developers desiring to add code (or TEPs) to TinyOS SHOULD
follow all current BCPs (Best Current Practice)”. At the time of writing no TEP has been awarded
this designation or been finalized and we will refer to the drafts as they are.

This document will not go through each of the requirements, but merely outline how to build a basic
functional platform. For further information see “TinyOS 2.0 Overview” [tos2.0view] or the TEP list on
the TinyOS website http://www.tinyos.net.

1.2 TinyOS Contrib

The core of TinyOS is maintained by a set of working groups that govern specific parts of the source
code. New project can benefit from the contrib section of TinyOS. This is a separate section of the
website and source repository maintained more loosely than the core of TinyOS. It is intended for
sharing code at an early stage or code that may not gain the same popularity as the core.

New projects request a directory in this repository by following a simple procedure on the TinyOS
contrib web page

In contrib is a skeleton project skel that provides the most basic framework for setting up a new
platform, MCU, etc.

2. A TinyOS Platform

A TinyOS platform provides the code and tool chain definitions that enable an application writer to
implement an application for a mote. A platform in TinyOS exposes some or all of the features of
a particular physical mote device to TinyOS applications - it refers to an entire system, not a single
chip. In order to write programs for a device using TinyOS a platform for that device must exist within
TinyOS.

A physical platform is comprised of a set of chips. Similarly a TinyOS platform is the collection
of the components representing these chips (corresponding to drivers) Common chips can be shared
among platforms and implementing a new platform could simply mean wiring existing components in a
new way. If the chips that make up the platform are not supported by TinyOS implementing the new
platform consists if implementing components for those chips (much like implementing drivers).

2.1 A New Platform

Platforms are discovered at compile time by the TinyOS tool chain and a new platform placed in the
search path will be discovered automatically. In addition sensor boards can be defined in a very similar
manner, however we will not cover sensor boards, see [TEP109] for details. Defining a new platform
boils down to 3 things:

1. definitions of the chips that make up the platform,

2. platform definitions (combining chips to a platform) and,

3. the tool chain or make definitions.

The code for a TinyOS platform is spread out in a few locations of the TinyOS tree depending based
on those 3 categories. Below is an overview of the locations and some of the files we will be needing in
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the following (for further information see see “Coding Conventions” [TEP3] and the “README” files in
each directory).

Through this TEP we will use the terms PlatformX and MCUX to denote the new generic platform
and MCU being created:

tos
+--chips 1. Chip definitions
| +--chipX
+--platforms
+--platformX 2. Platform definitions
+--PlatformP/PlatformC
+--PlatformLeds example component

+--.platform
+--hardware.h

+-—-chips
+--MCUX Platform specific features
+--chipX

+--sensorboards

| +--boardX

| +--.sensor
+-—support

+--make 3. Make definitioms
+--platformX.target platformX make targets
+--MCUX
+--MCUX.rules make rules for MCUX
+--install.extra additional target for MCUX

In the following we will briefly introduce each of the parts and describe them in more detail in
sections 2 through 4.

2.2 The Chips

Each of the chips that provide software accessible functionality must have definitions present in the
chips directory sensors, radios, micro controllers (MCU) alike. Each chip is assigned a separate directory
under tos/chips. This directory contains chip specific interfaces (HPL and HAL interfaces) and their
implementations as well as implementations of the hardware independent interface (HIL).

Some chips, MCUs in particular, contain distinct subsystems, such as uart, timer, A/D converter,
SPI, and so forth. These subsystems are often put in a sub directory of their own within the chip-specific
directory.

If some feature of a chip is available or used only on a particular platform, the platform directory can
contain code that is specific to this combination of chip and platform, say pin assignments, interrupt as-
signments, etc. For example such additions would be placed in tos/platforms/platformX/chips/chipX
for PlatformX.

2.3 The Platform Directory

The platform is the piece of the puzzle that ties the components corresponding to physical chips (drivers)
together to form a platform. The platform ties together the code that exposes the features of the
platform to TinyOS programs. In practise this is done by i) including code for each of the chips and ii)
by providing any additional code that is specific to this particular platform.

A platform PlatformX would be placed in the directory tos/platforms/platformX/ and code for
subsystems reside in further sub directories. Also in this directory is the .platform file that sets up
include paths and more (see Section 3).

An empty platform with no code (null) is provided and serves as an example for other platforms.



2.4 The Tool-Chain (Make System)

The build system for TinyOS is written using GNU Make'. The build system controls the process from
pre-processing a TinyOS application into a single C file and to pass this file to the appropriate compiler
and other tools. The make system is documented in support/make/README and in TinyOS 2 Tutorial
Lesson 10[TUT10].

The make system is located in the support directory. This directory contains a platform definition
and Make rules to build an application for this platform (see Section 2).

2.5 The Minimal Platform

Before describing each of the subsystems, we will show a simple check list. The absolute minimal
TinyOS platform would have to provide the following resources, given a PlatformX with MCUX:

e a platform directory tos/platform/PlatformX/ with the following

— a platform definition (.platform file)

— a hardware.h header
e a platformX.target in tos/support/make
e a MCUX.rules in tos/support/make/MCUX
e a MCUX directory in tos/chips/MCUX, containing

— a McuSleepC' (must enable interrupts)

— a mecuzhardware.h (defines nesc_atomic_start/nesc_atomic_end)

3. Tool Chain

The major components in the tool chain of TinyOS are i) the compiler and ii) the build system that
uses the compiler to produce an executable binary or hex file. The first is installed separately, while
the second is part of the TinyOS source code. The compile process transforms a set of nesC files into a
binary executable or hex file. Involved in this process is set of separate tools that are linked in a chain.
We will briefly cover this chain in a moment, but a detailed description is beyond the scope of this TEP.

The make system is split in two: a general part and a platform specific part. Section 3.1 will
introduce the general mechanism and Section 3.2 will cover how to introduce a new platform in the tool
chain.

3.1 Compiling using nesC

The process of the build system is depicted below. This system feeds the source code through the tools
to produce an executable or hex file for uploading to the platform. The nesC pre-compiler is split in
two tools ncc an nescc. These two tools are used to assemble nesC source files into a single C file which
is compiled using a regular C compiler. This requires that a C compiler is available for a given platform
and that this compiler accepts the dialect produced by nesC.

Tiny0S
application
I
I

L http://www.gnu.org/software/make/
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The core TinyOS platforms are centered around GCC, this includes the telos family, mica family and
intelmote2. The nesC compiler expects code resembling GCC C-dialect and also outputs code in GCC
C-dialect. The current TinyOS platforms are supported by GCC, but for some processor architectures
GCC is not available (e.g. Motorola HCS08, Intel MCS51).

Porting to platforms that are GCC supported can benefit from the existing tool flow, while porting
to other platforms requires some effort. A straight forward solution adopted for these platforms is to
post-process the C files produced by nesC to fit the needs of a specific compiler, see TEP121 for an
example of such a solution.

3.2 The Make System

TinyOS controls the build process using make. The global make file searches certain locations to
find make definitions for all available platforms. In order to make a new platform available to the
TinyOS make system, a few files must be created in particular locations. These files will be read by
the global make system and exposed to the users by make targets. Often the required rules are tied to
a particular MCU that is shared among several platforms and TinyOS leverages this fact by creating a
light-weight .target file pointing to the appropriate rules in a .rules file. The make system is documented
in support/make/README and in TinyOS 2 Tutorial Lesson 10[TUT10].

The make system looks for .target files in support/make and the directories listed in the environment
variable TOSMAKE_PATH. Each of the files found contain make targets for one TinyOS platform. The
target files usually do not contain the rules to build the binary files, but include the appropriate rules
from a .rules file, located in a sub directory for the appropriate MCU architecture (e.g. avr for the
ATMegal28 used by Mica). In this way many platforms share the build rules, but have different .target
files. In addition .extra targets can be used to define helper targets such as install or clean.

Setting up the make system, requires two steps (Section 3.2.1 gives an example):

1. Creating a platformX.target file that allows the make system to discover the new
platform. This file must contain a make rule with the name of the platform.
Further this target must depend on the targets given in the variable BUILD_DEPS -
this variable contains the remainder of targets to be build during the build process.

2. Creating a .rules file in a sub diretory of support/make. Each file contain the
actual target for producing the binaries, hex files, etc. for one platform. They are
assembled in the BUILD_DEPS variable.

We will cover these two files next.

3.2.1 The .target file

As mentioned above TinyOS searches for targets in the support/make directory of the TinyOS source
code and in the directories listed in the environment variable TOSMAKE_PATH. A .target file for the
platform must exist in one of these locations. The .target usually only sets up variables related to
this platform and provide a target named after the platform, this target depend on other rules to



build the binaries. These rules are included by calling TOSMake_include_platform. As an example the
mica2.target is listed below:

PLATFORM = mica2

SENSORBOARD 7= micasb

PROGRAMMER_PART 7= -dpart=ATmegal28 --wr_fuse_e=ff
PFLAGS += -finline-1imit=100000

AVR_FUSE_H 7= 0xd9
$(call TOSMake_include_platform,avr)

mica2: $(BUILD_DEPS)
Q:

Pay attention to the call to TOSMake_include_platform,avr this call includes .rules files in sup-
port/make or any sub directory of TOSHMAKE_PATH named avr.

3.2.2 The .rules file

The .rules file contain the make rules for building the target binary. If a MCU implementation already
exists for a new platform, simply pointing to this .rules from the corresponding .target is sufficient. If
not the .rules file must be built for a new MCU architecture.

TOSMake_include_platform expects a sub directory with a rule file of the form avr/avr.rules. The
call also includes additional .7rules and .extra files present in that sub directory. See support/make/README
for details.

For example a simplified .rules file could look like this (from avr/avr.rules):

BUILD_DEPS = srec tosimage

srec: exe FORCE
$(0BJCOPY) --output-target=srec $(MAIN_EXE) $(MAIN_SREC)

tosimage: ihex build_tosimage FORCE
Q:

exe: builddir $(BUILD_EXTRA_DEPS) FORCE
@echo " compiling $(COMPONENT) to a $(PLATFORM) binary"
$(NCC) -o $(MAIN_EXE) $(OPTFLAGS) $(PFLAGS) $(CFLAGS)
$ (COMPONENT) .nc $(LIBS) $(LDFLAGS)

4. The Platform

A TinyOS platform is a collection of components corresponding to a physical devices (a collection
of drivers). A platform is constructed by defining which components make up the platform and by
providing any additional platform specific components. The content of a platform is not covered by a
TEP at the time of writing and the following is based on the available tutorials, READMEs and the
current consensus.

The platform definitions for a PlatformX are located in tos/platforms/platformX and contain 3
major elements:



1. The .platform file containing include paths and other arguments for nesC
2. Platform boot procedure: PlatformP /PlatformC

3. Platform specific code, including a header for hardware specific funtions (hard-
ware.h) and code that is specific to the combination of chip and platform (e.g. pin
assignments, modifications, etc.).

In the following we will describe each of these in more detail, below is a depiction of a fictuous
platform and the required definitions.

Platform: .platform
include MCU driver
to—m + include Radio driver
include Sensors driver

PlatformP
Initialize MCU
Initialize Sensor
Initialize Radio

hardware.h
Include MCU HW macros

HIL interfaces, eg:
PlatformLeds

+
|
|
|
|

+

All the files we describe here must be found in a common directory named after the platform; we
call this a platform directory. This directory must be found in the TinyOS tool chain search path for
example tos/platforms (or found in TOSHMAKE_PATH see Section 3.2.1). For example a platform named
PlatformX could be placed in the directory tos/platforms/platformX.

4.1 .platform file

All platform directories must carry a .platform file, this file defines what makes up the platform. This
file carries instructions for the make system on where to locate the drivers for each of the components
of the platform. The definitions are read in a two step process: the file is read by the ncc script that
passes the appropriate arguments to the nesC pre-processor[nescman]. The .platform file is written as
a Perl script interpreted by ncc.

The file is documented in form of the README file in the platforms directory (tos/platforms), and
the source code of the ncc script found in the TinyOS distribution. Valuable information can also be
found in [TEP106], [TEP109], TinyOS 2 Tutorial Lesson 10[TUT10].

In addition to setting up include paths for nesC other arguments can be passed on. In particular
the components to be used for the scheduler are selected with the ’-fnesc-scheduler’ command line
argument (see [TEP106]). The include paths are passed on using the I’ command line argument
covered in [TEP109].

As an example, an abbreviated .platform file for the mica2 platform looks like this:

push( @includes, qw(
%T/platforms/mica
%T/platforms/mica2/chips/cc1000
%T/chips/cc1000
%T/chips/atm128
%T/chips/atm128/adc
%T/chips/atm128/pins



%T/chips/atm128/spi
%T/chips/atm128/timer
#T/1lib/timer
%T/1ib/serial
%T/1lib/power

) )

Qopts = qw(
-gcc=avr-gcc
-mmcu=atmegal28
-fnesc-target=avr
-fnesc-no-debug
-fnesc-

scheduler=TinySchedulerC,TinySchedulerC.TaskBasic,TaskBasic,TaskBasic,runTask,postTask

)

4.2 PlatformP and PlatformC

The PlatformP and PlatformC components are responsible for booting this platform to a usable state.
In general this usually means things like calibrating clock and initializing I/O pins. If this platform
requires that some devices are initialized in a particular order this can be implemented in a platform
dependent way here. The boot process covered in [TEP107].

Most hardware peripherals require an initialization procedure of some sort. For most peripheral
devices this procedure is only required when the device is in use and can be left out if the device
is unused. TinyOS accomplishes this by providing a few initialization call backs interfaces. When a
given component is included it wires an initialization procedure to one of these interfaces. In this way
the procedure will only be included when the component is included, this process is known as auto
wiring[TOSPRG].

The boot sequence calls two initialization interfaces in the following order: PlatformC.Init and
MainC.SoftwareInit. PlatformC.Init must take care of initializing the hardware to an operable state
and initialization that has hidden dependencies must occur here. Other components are initialized as
part of SoftwareInit and the orderign is determined at compile time.

Common tasks in PlatformC.Init include clock calibration and IO pins. However this component
can be used to provide greater control of the boot process if required. Consider for example that some
component which is initialized in Softwarelnit requires that some other component has been initialized
previously - lets say that the radio must be initialized prior to the radio stack or that a component
prints a message to the UART during boot. How can this order be ensured? One solution is to provide
an additional initialization handle prior to Softwarelnit and wire such procedures to this handle. Below
is an example from the Mica mote family using the MoteInit interface. Components that must be
initialized early in the boot process is wired to this interface. If greater level of control is required
this strategy can be trivially be expanded to further levels of interfaces for example Motelnitl being
initialized prior to Motelnit2, this strategy is chosen by the MSP430 implementation.

4.2.1 PlatformC

Below is depicted the PlatformC component from the Mica family of platforms.

#include "hardware.h"

configuration PlatformC {
provides {
interface Init;
/**
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* Provides calibration information for other components.
*/
interface Atml128Calibrate;
}
uses interface Init as SubInit;
} implementation {
components PlatformP, MotePlatformC, MeasureClockC;

Init = PlatformP;
Atm128Calibrate = MeasureClockC;

PlatformP.MeasureClock -> MeasureClockC;
PlatformP.MoteInit -> MotePlatformC;
MotePlatformC.SubInit = Sublnit;

4.2.1 PlatformP

Below is depicted the PlatformP component from the Mica family of platforms.

module PlatformP

{
provides interface Init;
uses interface Init as Motelnit;
uses interface Init as MeasureClock;

}

implementation

{

void power_init() {
}

command error_t Init.init()

{

error_t ok;

ok = call MeasureClock.init();
ok = ecombine(ok, call MoteInit.init());
return ok;

3
}

4.2.3 Init example: PlatformLedsC
Below is an example from mica/PlatformLedsC.nc wiring to the platform specific Motelnit interface.

configuration PlatformLedsC {
provides interface GeneralIO as LedO;

uses interface Init;

} implementation {
components HplAtm128GeneralIOC as IO;

11



components PlatformP;

Init = PlatformP.MoteInit;

3.3 Platform Specific Code

In addition to PlatformP /PlatformC the platform directory contain additional code that is specific to
this platform. First this could be code that ties platform independent resources to particular instances
on this platform, second it could be code that is only relevant on this particular platform (e.g. the
clock rate of this platform). For example the LEDs are a an example of the first: most platform have a
few LEDs, and the particular pin on this platform is tied to the platform independent implementation
using PlatformLedsC.

TinyOS requires that the header hardware.h is present while other component can be named freely.

4.3.1 Platform Headers

TinyOS relies on a few C-header files being present for each platform. These headers are then auto-
matically included from the respective parts of the TinyOS system. TinyOS expects that the following
files are present and that certain properties are defined in them.

hardware.h

The hardware.h header file is included by tos/system/MainC.nc and usually in turn includes a MCU
specific header file, with a few required macros (such as avrl28hardware.h, see Section 5.1.1). The
header is documented in TinyOS 2 Tutorial Lesson 10[TUT10]

In addition the hardware.h file can set flags that are not related to the hardware in general, but to
this platform (e.g. clock rate). Below is a snippet from mica2/hardware.h

#ifndef MHZ
/* Clock rate is “8MHz except if specified by user
(this value must be a power of 2, see MicaTimer.h and Measure-
ClockC.nc) */
#define MHZ 8
#endif

#include <atml28hardware.h>

enum {
PLATFORM_BAUDRATE = 57600L
};

platform_message.h

As part of the TinyOS 2 message buffer abstraction[TEP111], TinyOS includes the header platform_message.h

from the internal TinyOS header message.h. This header is only strictly required for platforms wishing

to use the message_t abstraction - this is not described further in this TEP, but is used widely through-

out TinyOS (See [TEP111] for details). The is expected to define the structures: message_header-t,

message_footer_t, and message_metadata_t which are used to fill out the generic message_t structure.
Below is an example from the mica2 platform_message.h

12



typedef union message_header {
cc1000_header_t cclk;
serial_header_t serial;

} message_header_t;

typedef union message_footer {
ccl1000_footer_t cclk;
} message_footer_t;

typedef union message_metadata {
ccl1000_metadata_t cclk;
} message_metadata_t;

4.3.2 Platform Specific Components

The code for platform dependent features also resides in the platform directory. If the code can be tied
to a particular chip it can be placed in a separate directory below the chips directory. As an example
the following section of micaz/chips/cc2420/HplCC2420PinsC.nc ties specific pins to general names
on the MicaZ platform.

configuration HplCC2420PinsC {
provides {
interface GenerallIO as CCA;
interface GenerallO as CSN;
interface GenerallO as FIFO;
interface Generall0 as FIFOP;
interface GenerallI0 as RSTN;
interface GenerallIO as SFD;
interface GeneralI0 as VREN;
}
}

implementation {

components HplAtm128GeneralIOC as I0;

CCA = I0.PortD6;
CSN = I0.PortBO;
FIFO = I0.PortB7;
FIFOP = I0.PortE6;
RSTN = I0.PortA6;
SFD = I0.PortD4;
VREN = I0.PortA5;
}

5. The chips

The functionality of each chip is provided by a set of one or more interfaces and one or more components,
in traditional terms this makes up a driver. Each chip is assigned a sub directory in the the tos/chips
directory. All code that define the functionality of a chip is located here regardless of the type of chip
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(MCU, radio, etc.). In addition MCU’s group the code related to separate sub systems into further sub
directories (e.g. tos/chips/atm128/timer).

In this section we will go trough some of the peripherals commonly built into MCUs, but we will
not go trough other chips such as sensors or radio.

5.1 MCU Internals

Apart from the drivers for each of the peripheral units, a few additional definitions are required for the
internals of the MCU. This includes i) atomic begin/end and ii) low power mode. The first is defined
in the header hardware.h and the latter component MCUSleepC.

5.1.1 mcuXardware.h

Each architecture defines a set of required and useful macros in a header filed named after the archi-
tecture (for example atml128hardware.h for ATMegal28). This header is then in turn included from
hardware.h in the platform directory (See Section 4.3.1).

A few of the macros are required by nesC code generation. nesC will output code using these macros
and they must be defined in advance, other useful macros such as interrupt handlers on this particular
platform can be defined here as well. The required macros are:

e __nesc_enable_interrupt / __nesc_disable_interrupt

e __nesc_atomic_start /| _nesc_atomic_end
Below is a few examples from atm128hardware.h

/* We need slightly different defs than SIGNAL, INTERRUPT x*/
#define AVR_ATOMIC_HANDLER(signame) \
void signame() __attribute__ ((signal)) Qatomic_hwevent() @C()

#define AVR_NONATOMIC_HANDLER(signame) \
void signame() __attribute__ ((interrupt)) Ghwevent() @C()

inline void __nesc_enable_interrupt() { sei(); }
inline void __nesc_disable_interrupt() { cli(); }

inline __nesc_atomic_t
__nesc_atomic_start(void) @spontaneous() {
__nesc_atomic_t result = SREG;
__nesc_disable_interrupt();
asm volatile("" : : : "memory");
return result;

}

/* Restores interrupt mask to original state. */

inline void

__nesc_atomic_end(__nesc_atomic_t original SREG) @spontaneous() {
asm volatile("" : : : "memory");
SREG = original_SREG;

}

14



5.1.2 MCUSleepC

TinyOS manages the power state of the MCU through a few interfaces. These interfaces allow compo-
nents to signal how and when this platform should enter low power mode. Each new MCU in TinyOS
must implement the MCUSleepC' component that provide the McuSleep and McuPowerState interfaces.

The TinyOS scheduler calls McuSleep.sleep() when it runs out of tasks to start. The purpose of this
function is to make the MCU enter the appropriate sleep mode. The call to McuSleep.sleep() is made
from within an atomic section making it essential that sleep() enables interrupts before entering sleep
mode! If the interrupts not enabled prior to entering sleep mode the MCU will not be able to power
back up.

A dummy MCU sleep component that does not enter sleep mode, but merely switches interrupts
on and off is shown below. This ensures that the platform will not lock up even without proper sleep
support.

#include "hardware.h"

module McuSleepC {
provides interface McuSleep;
provides interface McuPowerState;
uses interface McuPowerQOverride;
} implementation {
async command void McuSleep.sleep() {
__nesc_enable_interrupt();
// Enter sleep here
__nesc_disable_interrupt();

}

async command void McuPowerState.update() { }

5.2 GenerallO

Virtually all micro controllers feature a set of input output (I/O) pins. The features of these pins is
often configurable and often some pins only support a subset of features. The HIL level interface for
TinyOS is described in [TEP117] and uses two interface to describe general purpose I/O pins common
to many MCUs:

e GenerallO: Digital input/output. The GenerallO interface describes a digital pin with a state
of either clr or set, the pin must be capable of both input and output. Some MCUs provide pins
with different capabilities: more modes (e.g. an alternate peripheral mode), less modes (e.g. only
input) or a third “tri-state” mode. Such chip specific additional features are not supported. Some
chips group a set of pins into “ports” that can be read or written simultaneously, the HIL level
interface does not support reading or setting an entire port.

e Gpiolnterrupt: Edge triggered interrupts. Gpiolnterrupt support a single pin providing an
interrupt triggered on a rising or falling edge. Pins capable of triggering on an input level or only
triggering on one edge is not supported.

While these interfaces are aimed at the HIL level some platforms use the GenerallO and Gpiolnter-
rupt interface to represent the HPL level (atm128 for example) and others platforms define their own
interface to capture the entire functionality (msp430, pxa27x for example).

[TEP117] states that each platform must provide the general 10 pins of that platform through the
GenerallO interface and should do this though the component GenerallOC. It is however not clear how
the entire set of pins should be provided - this could be in the form of a list of pins, group of pins, a
generic component, etc.
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The pin implementations are usually found in the pins sub directory for a particular MCU (e.g.
msp430/pins for MSP430 pin implementation).

5.2.1 Example MSP430

The MSP430 implementation builds the platform independent pin implementation as a stack of com-
ponents starting with a platform specific component for each pin.

| GenerallO
o +
| Msp430GpioC |
e +

| HplMsp430GenerallIO
e +
| HplMsp430GeneralIOC |
e +

| HplMsp430GeneralIO
s +
| HplMsp430GeneralIOP |
o +

At the bottom the component HplMsp430GeneralIOP provides a general implementation of one
Msp430 pin using the HplMsp430GeneralIO interface. The generic component HplMsp430GeneralIQOP
is then instantiated for each pin by Hp1lMsp430GeneralIOC.

interface HplMsp430GeneralIO {
async command void set();
async command void clr();
async command void toggle();
async command uint8_t getRaw();
async command bool get();
async command void makeInput();
async command bool isInput();
async command void makeOutput();
async command bool isOutput();
async command void selectModuleFunc();
async command bool isModuleFunc();
async command void selectIOFunc();
async command bool isIOFunc();

}
This interface is implemented in the generic component HplMsp430GenerallOP (abbreviated):

generic module HplMsp430GeneralIOP(uint8_t port_in_addr, ...) {
provides interface HplMsp430GenerallIO as IO0;

} implementation {
#define PORTx (*(volatile TYPE_PORT_QUT*)port_out_addr)

async command void I0.set() { atomic PORTx |= (0x01 << pin); }
async command void I0.clr() { atomic PORTx &= ~(0x01 << pin); }
async command void IO.toggle() { atomic PORTx “= (0x01 << pin); }

These are then instantiated from HplMsp430GenerallOC (abbreviated):
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configuration HplMsp430GeneralIOC {
provides interface HplMsp430GenerallO as Portl0;
provides interface HplMsp430GenerallO as Portll;

} implementation {
components
new HplMsp430GeneralIOP(P1IN_, P10UT_, PIDIR_, P1SEL_, 0) as P10,
new HplMsp430GeneralIOP(P1IN_, P10UT_, PIDIR_, P1SEL_, 1) as P11,

Port10
Portii

P10;
P11;

And finally these are transformed from the interface HplMsp430GenerallO to the platform indepen-
dent GenerallO using the generic component Msp430GpioC (abbreviated):

generic module Msp430GpioC() {
provides interface Generall(;
uses interface HplMsp430GenerallO as HplGenerallO;
} implementation {
async command void GenerallIO.set() { call HplGeneralIO.set(); }
async command void GenerallO.clr() { call HplGeneralIO.clr(); }
async command void GenerallO.toggle() { call HplGenerallIO.toggle(); }

5.3 LEDs

Having a few leds on a platform is quite common and TinyOS supports three leds in a platform indepen-

dent manner. Three leds are provided through the LedsC component regardless of the amount of leds

available on the platform. The LED implementation is not covered by a TEP at the time of writing,

but the general consensus between most platforms seems to be to provide access to 3 LEDs through

the component PlatformLedsC. This component is then used by LedC and LedP (from tos/system) to

provide a platform independent Led interface.

The PlatformLedsC implementation is found in the platform directory of each platform (e.g. tos/platforms/mica2

for mica2). The consensus is as follows:

e Each platform provides the component PlatformLedsC

e PlatformLedsC provides Led0, Led1, Led2 using the GenerallO interface. If the platform has less
than 3 Leds these are wired to the component NoPinC

e PlatformLedsC uses the Init interface and usually it wired back to an initialization in PlatformP
- this way when LedC is included in an application it will be initialized when PlatformP call this
interface

5.3.1 Example Mica2dot

configuration PlatformLedsC

{
provides interface GeneralIO as LedO;
provides interface GeneralIO as Ledl;
provides interface GeneralIO as Led2;
uses interface Init;
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implementation {
components HplAtm128GeneralIOC as I0;
components new NoPinC();
components PlatformP;

Init = PlatformP.Motelnit;

Led0 = I0.PortA2; // Pin A2 = Red LED
Ledl = NoPinC;

Led2 = NoPinC;

5.3.2 LEDs implementation discussion

The Led interface described above is not specified in a TEP, though at the time of writing most platforms
seem to follow this pattern. Not being covered by a TEP leads to a few uncertainties:

e PlatformLedsC exports leds using the GenerallO interface. The intention is of course that a led
is connected to a pin and this pin is used to turn the led on. LedC uses this assumption to
calls the appropriate makeOutput and set/clr calls. However this might not be the case - a led
could be connected differently making the semantics of, say makeOutput unclear. Furthermore
it is assumed that the set call turns the led on, while the actual pin might have to be cleared
(active low). And what is the semantics of makelnput on a LED? Abstracting these differences
into on/off, enable/disable semantics would clear up the uncertainties.

e Initializing the Leds is important - the Leds can consume power even when turned off, if the
corresponding pins are configured inappropriately. Including the LedsC component initializes
the Leds as output when this component is used, if not they must be initialized elsewhere (e.g.
PlatformP). It would seem elegant to group related code (e.g. one Leds component).

e The interface does not provide a uniform way of accessing any additional LEDs other than the 3
found on the Mica motes. While this is inherently platform specific, having a common consensus
would be useful, say for example exporting an array of Led. In this way a program requiring say
4 leds could be compiled if 4 leds are available.

5.4 Timers

The timer subsystem in TinyOS 2 is described in [TEP102] the TEP specifies interfaces at HAL and
HIL levels that a platform must adhere to. The timer does not cover the possible design choices at the
HPL level. The timers defined in this TEP are described in terms of width of the underlying counters
(e.g. 8, 16, 32 bit) and in the tick period or frequency denoted precision (e.g. 10 kHz, 1 ms, 1 us). The
timer subsystem is provided through a set of hardware independent interfaces and a set of recommended
configuration modules. As such some features of a particular device may not be available in a device
independent manner.

The functionality commonly seen in MCU timer units is often split in 3 parts: control, timer/counter,
capture/compare(trigger). Timer control in is inherently platform specific and is not covered by a TEP.
The timer [TEP102] covers timer/counter while capture/compare is covered by [TEP117]. From the
TEPs it is not clear how capture/compare and timer/counter relate to each other even though they are
likely to refer to the same time base. The calibration of the system clock is often connected with the
timer system and lives in the timer directory, but it is not covered in [TEP102].

The timer implementation for a given MCU is placed in the timer sub directory of the directory for
a given MCU (e.g. tos/chips/avr/timer). Often clock initialization components are placed in the same
directory, but these are not covered by the TEPs.
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5.4.1 Timer Layers

TEP117 follows the 3 layer architecture and separates the platform dependent and independent abstrac-
tions. It poses not restrictions on the HPL layer, but provides a suggested HAL layer and requirements
at the HIL level. It defines a set of interfaces and precisions that are used at the HAL and HIL levels.

The common features of a timer are separated into a set of interfaces, corresponding roughly to
common features in MCU timer units. The interfaces covered by the [TEP102] are (capture from
[TEP117]):

e BusyWait<precision_tag,size_type> Short synchronous delays

e Counter<precision_tag, size_type> Current time, and overflow events

Alarm<precision_tag,size_type> Extend Counter with at a given time

e Timer<precision_tag> 32 bit current time, one shot and periodic events
e LocalTime<precision_tag> 32 bit current time without overflow

e GpioCapture 16 bit time value on an external event (precision unspecified)

The precisions defined in [TEP117] are defined as “binary” meaning 1024 parts of a second. Platforms
must provide these precisions (if possible) regardless of the underlying system frequency (i.e. this could
be a power of 10).

e TMilli 1024 Hz (period 0.98 ms)
e TMicro 1048576 Hz (period 0.95 us)
e T32khz 32.768 kHz (period 30.5 us)

HPL

The features of the underlying hardware timers are generally exposed using one or more hardware
specific interfaces. Many MCU provide a rich a set of different timer units varying in timer width,
frequency and features.

Many MCUs provides features that are quite close to the features described by the interfaces above.
The HPL layer exposes these features and the layers above utilize the available hardware and virtualize
the features if necessary.

Consider for example generating events at a specific time. Often a timer unit has a single counter
and a few compare registers that generate interrupts. The counter and compare registers often translate
relative straightforward to Counter and Alarm interfaces.

HAL

Each platform should expose a hardware timer of precision P and width W as Counter${P}${W}C,
Alarm${P}${W}C(). For example an 8 bit, 32.768 kHz timer should be exposed as Counter32khz8C
and Alarm32khz8C

Alarm/Counters come in pairs and refer to a particular hardware unit, while there is only one counter
there is commonly multiple compare registers. Alarm is a generic component and each instantiation
must provide an independent alarm allocating more Alarm components than available compare register
should provide a compile time error.
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HIL

Each platform must expose the following components that provide specific width and precision that are
guaranteed to exist on TEP compliant platforms.

e HilTimerMilliC A 32 bit Timer interface of TMilli precision
¢ BusyWaitMicroC A BusyWait interface of TMicro precision

5.4.2 Timer Implementation

Implementing the timers for TinyOS in short consists of utilizing the available HW timer features to
provide TinyOS style timers interfaces. In general the approach taken by existing platforms is to create
a set of HPL level timer and control interfaces that export the available hardware features and adapt
these to specific precisions and widths at the HAL level. However the specific HPL level design choices
differ from platform to platform.

For example one could export all timers as a simple list, a component for each timer, a parameterised
interface, etc. Similarly for the control features this could be provided with the timer interfaces or kept
as a separate interface. In the following we will go through a few examples and point out their differences.

5.4.3 Example: ATMegal281

The ATMegal28l implementation (atm128) exports the system timers one component each. Each
component provide 4 interfaces - one for each of the functions of the unit: timer, capture, compare and
control. The timer, capture, and compare interfaces are generic based on the width (either 8 or 16 bit)
while two separate control interfaces are provided.

Depicted below is a diagram of how HplAtm128Timer1C could be stacked to provide platform inde-
pendent interfaces (not shown are HplAtm128TimerOAsync, HplAtm128Timer2, HplAtm128Timer3):

et +
| HplAtm128Timer1C |
et e ettt e o+
HplAtm128Capture| HplAtm128Timer| HplAtm128Compare |
| | |
o e + | |
| Atm128GpioCaptureC | | |
o o + | |
| o +——+
GpioCapture| | Atm128AlarmC |
| tom— o +
| Alarm|

The hardware features is exported using 3 interfaces: HplAtm128Timer, HplAtm128Compare and
HplAtm128Capture.

interface HplAtm128Timer<timer_size>
{
async command timer_size get();
async command void set( timer_size t );
async event void overflow();
async command void reset();
async command void start();

interface HplAtm128Compare<size_type>
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async command size_type get();

async command void set(size_type t);
void fired(); //<! Signalled on compare interrupt
async command void reset();

async event

interface HplAtm128Capture<size_type>

{

async command size_type get();

async command void
async event void captured(size_type t);

async command void reset();

set(size_type t);

In addition to the timer related interfaces two control interfaces are provided: "HplAtm128TimerCtrl16’
and "HplAtm128TimerCtrl8’ (below).

#include <Atmil

interface HplA
{

28Timer.h>

tm128TimerCtrl8

/// Timer control register: Direct access
async command Atm128TimerControl_t getControl();
async command void setControl( Atm128TimerControl_t control );

/// Interrup

t mask register: Direct access

async command Atm128_TIMSK_t getInterruptMask() ;
async command void setInterruptMask( Atm128_TIMSK_t mask);

/// Interrup

t flag register: Direct access

async command Atm128_TIFR_t getInterruptFlag();
async command void setInterruptFlag( Atm128_TIFR_t flags );

}

Each of the hardware timers are exported in one component for example "HplAtm128 Timer1P’:

#include <Atmi

module HplAtml
{
provides {
// 16-bit
interface
interface
interface
interface
interface
interface
}
uses interfa
}
implementation
{
//=== Read t

28Timer.h>

28Timer1P

Timers
HplAtm128Timer<uinti16_t>
HplAtm128TimerCtrli16
HplAtm128Capture<uintl6_t>
HplAtm128Compare<uintl16_t>
HplAtm128Compare<uintl16_t>
HplAtm128Compare<uint16_t>

ce HplAtm128TimerCtrl8

as
as
as
as
as
as

as

Timer;
TimerCtrl;
Capture;
CompareAl;
CompareB;
CompareC;

TimerOCtrl;

he current timer value.
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async command uintl6_t Timer.get() { return TCNT1; }

//=== Set/clear the current timer value.
async command void Timer.set(uintl6_t t) { TCNT1 = t; 1}

5.4.4 Example: MSP430

The MSP430 features two very similar (but not identical) timers. Both timers are provided through the
same interfaces in a way similar to ATMegal28l: Msp430Timer’, 'Msp430Capture’ "Msp430Compare’,
"Msp430TimerControl’. All timer interfaces (for both timers) are accessed through the component
Msp430TimerC.

The Msp430TimerControl is show below. It is slightly different than the ATMega equivalent -
notice that ’setControl’ accepts a struct with configuration parameters instead of setting these with a
command each.

#include "Msp430Timer.h"

interface Msp430TimerControl

{
async command msp430_compare_control_t getControl();
async command bool isInterruptPending();
async command void clearPendingInterrupt();

async command void setControl(msp430_compare_control_t control );
async command void setControlAsCompare();
async command void setControlAsCapture(bool low_to_high);

async command void enableEvents();
async command void disableEvents();
async command bool areEventsEnabled();

3

Each timer is implemented through the generic component 'Msp430TimerP’ that is instantiated for
each timer in "Msp430TimerC’:

configuration Msp430TimerC

{
provides interface Msp430Timer as TimerA;
provides interface Msp430TimerControl as ControlAO;
provides interface Msp430TimerControl as ControlAl;
provides interface Msp430TimerControl as ControlA2;
provides interface Msp430Compare as CompareAO;
provides interface Msp430Compare as CompareAl;
provides interface Msp430Compare as CompareA2;
provides interface Msp430Capture as CaptureAO;
provides interface Msp430Capture as CaptureAl;
provides interface Msp430Capture as CaptureA2;

}
implementation

{
components new Msp430TimerP( TAIV_, TAR_, TACTL_, TAIFG, TACLR, TAIE,
TASSELO, TASSEL1, FALSE ) as Msp430TimerA
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, new Msp430TimerP( TBIV_, TBR_, TBCTL_, TBIFG, TBCLR, TBIE,
TBSSELO, TBSSEL1, TRUE ) as Msp430TimerB

, new Msp430TimerCapComP( TACCTLO_, TACCRO_ ) as Msp430TimerAO

, new Msp430TimerCapComP( TACCTL1_, TACCR1_ ) as Msp430TimerAl

, new Msp430TimerCapComP( TACCTL2_, TACCR2_ ) as Msp430TimerA2

5.4.5 Example: PXA27x

The PXA27x (XScale) platform provides a component for each of the timers classes on the system. Each
component provides a few interfaces that exposes all features of that unit. Each interface combines
timer and control interface features. For example "HplPXA27xOSTimerC’ provides 12 instances of
the "HplPXA27xOSTimer’ interface and one instace "HplPXA27xOSTimerWatchdog’. Similarly for
"HplPXA27xSleep’” and "HplPXA27xWatchdog’.

interface HplPXA27x0STimer

{
async command void setOSCR(uint32_t val);
async command uint32_t getO0SCRQ) ;

async event void fired();

}
All the OS timers are exported through HplPXA27xOSTimerC

configuration HplPXA27x0STimerC {

provides {
interface Init;
interface HplPXA27x0STimer as 0STO;
interface HplPXA27x0STimer as OSTOM1;
interface HplPXA27x0STimer as 0STOM2;
interface HplPXA27x0STimer as OSTOM3;

implementation {
components HplPXA27x0STimerM, HplPXA27xInterruptM;

Init

HplPXA27x0STimerM;

0STO = HplPXA27x0STimerM.PXA27x0ST[0];

0STOM1 = HplPXA27x0STimerM.PXA27x0ST[1];
0STOM2 = HplPXA27x0STimerM.PXA27x0ST[2];
0STOM3 = HplPXA27x0STimerM.PXA27x0ST[3];

These interfaces are further abstracted through 'HalPXA27xOSTimerMapC’ as a parameterised
interface:

configuration HalPXA27x0STimerMapC {
provides {
interface Init;
interface HplPXA27x0STimer as O0STChnl[uint8_t id];
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}

} implementation {
components HplPXA27x0STimerC;

Init = HplPXA27x0STimerC;

0STChnl [0] = HplPXA27x0STimerC.0ST4;
0STChnl[1] = HplPXA27x0STimerC.0ST5;
0STChnl[2] = HplPXA27x0STimerC.0ST6;

5.4.6 Timer Discussion

While the TEP is clear on many points there are few that are left up to the implementer. The relation be-
tween timers and capture events is unclear and covered in two TEPs. Capture refers to timers|TEP102]
but the reverse is not clear[TEP102]. This has a few implications for the timer/capture relationship:

e Many devices feature multiple timers of the same width and precision. It is not clear how this is
provided. In particular how this relates to a capture event - e.g. how does a capture event from
timer 2 relate to a time value from timer 1. Presumably TinyOS has one system time based on a
single timer which is used by all timer capture interfaces and visualized if necessary.

e The interfaces provide a an elegant way to expand a 16 bit timer to a 32 bit interface. However
this is not the case for capture events.

5.5 I/O buses (UART, SPI, I12C)

Most modern microprocessors provide a selection of standard I/O bus units such as serial (UART or
USART), 12C, SPI, etc. The drivers for the available buses are usually put in a sub directory for the
MCU (e.g. chip/atm128/spi for SPT on ATMegal28l).

There are a few TEP that cover different buses in TinyOS, and low level serial communication:

e TEP113 Serial Communication: Serial
e TEP117 Low-Level 1/0: Serial, SPI, 12C

On some hardware platforms a single I/O unit is shared among a number of buses. The MSP430 for
example implements SPI, 12C and USART in a single USART unit that can only operate in one mode
at a time. In such cases the single hardware unit must be shared among the drivers.

5.5.1 Serial Communication

Serial communication in TinyOS 2.x is implemented as a serial communications stack with a UART or
USART at the bottom. The bottom layer is covered in [TEP113] and [TEP117]. TEP117 states that
each platform must provide access to a serial port through the ’SerialByteComm’ interface from the
component UartC. However UartC is not provided by any platforms at the time of writing. There seems
to be a consensus to build the component "PlatformSerial C’ providing the 'UartStream’ and ’StdControl’
interfaces. Either component will be placed in the platform directory (e.g. tos/platforms/mica2 for
mica2). The serial stack is built upon "PlatformSerialC’ and this component will be required to take
advantage of the serial stack.

[TEP117] defines *UartStream’ and 'UartByte’ to access the a UART multiple bytes at a time and
one byte at a time (synchronously), while [TEP113] defines 'UartByte’ to send and receive one byte at
a time (asynchronously).
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5.5.2 12C, SPI

SPI and I2C buses are provided through straightforward interfaces that match the functionality of the
buses closely.

SpiByte, SpiPacket

interface SpiByte {
async command uint8_t write( uint8_t tx );

}

interface SpiPacket {
async command er-
ror_t send( uint8_t* txBuf, uint8_t* rxBuf, uintl6_t len );
async event void sendDone( uint8_t* txBuf, uint8_t* rxBuf, uintl6_t len,
error_t error );

I2CPacket

interface I2CPacket<addr_size> {
async command error_t read(i2c_flags_t flags, uintl6_t addr,
uint8_t length, uint8_t* data);
async command error_t write(i2c_flags_t flags, uintl6_t addr,
uint8_t length, uint8_t* data);
async event void readDone(error_t error, uintl6_t addr,
uint8_t length, uint8_t* data);
async event void writeDone(error_t error, uintl6_t addr,
uint8_t length, uint8_t* data);

5.5.3 Example
..ATMegal28 -> does not provide SerialByteComm

..MSP430 -> Uart1C provides SerialByteComm along with Init and StdControl -> sender det meste
videre til Msp430Uart1C (som mangler Init!?!?) Msp430Uart0C -> SerialByteComm, Msp430UartControl,
Msp430UartConfigure, Resurce -> Sender videre til Msp430Uart1P & Msp430Usart1C -> Sender
videre til HplMsp430Usart1C->HplMsp430Usart1P

..PXA27 Parametriseret m. HplPXA27xUARTP (Init && HplPXA27xUART) -> init seetter en masse
registre og enabler interrupt HalPXA27xSerialP: HplPXA27xUART, Init, noget DMA noget
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