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Abstract

This TEP documents a Hardware Abstraction Architecture (HAA ) for TinyOS 2.0 that balances the con-
flicting requirements of code reusability and portability on the one hand and efficiency and performance
optimization on the other. Its three-layer design gradually adapts the capabilities of the underlying
hardware platforms to the selected platform-independent hardware interface between the operating sys-
tem core and the application code. At the same time, it allows the applications to utilize a platform’s
full capabilities -- exported at the second layer, when the performance requirements outweigh the need
for cross-platform compatibility.

1. Introduction

The introduction of hardware abstraction in operating systems has proved valuable for increasing porta-
bility and simplifying application development by hiding the hardware intricacies from the rest of the
system. However, hardware abstractions come into conflict with the performance and energy-efficiency
requirements of sensor network applications.

This drives the need for a well-defined architecture of hardware abstractions that can strike a balance
between these conflicting goals. The main challenge is to select appropriate levels of abstraction and to
organize them in form of TinyOS components to support reusability while maintaining energy-efficiency
through access to the full hardware capabilities when it is needed.



This TEP proposes a three-tier Hardware Abstraction Architecture (HAA) for TinyOS 2.0 that
combines the strengths of the component model with an effective organization in form of three different
levels of abstraction. The top level of abstraction fosters portability by providing a platform-independent
hardware interface, the middle layer promotes efficiency through rich hardware-specific interfaces and

the lowest layer structures access to hardware registers and interrupts.
The rest of this TEP specifies:

e the details of the HAA and its three distinct layers (2. Architecture)
e guidelines on selecting the “right” level of abstraction (3. Combining different levels of abstraction)

e how hardware abstractions can be shared among different TinyOS platforms (4. Horizontal de-
composition)

e the level of hardware abstraction for the processing units (5. CPU abstraction)

e how some hardware abstractions may realize different degrees of alignment with the HAA top
layer (6. HIL alignment)

The HAA is the architectural basis for many TinyOS 2.0 documentary TEPs, e.g. [TEP101],
[TEP102], [TEP103] and so forth. Those TEPs focus on the hardware abstraction for a particular
hardware module, and [TEP112] and [TEP115] explain how power management is realized.

2. Architecture

In the proposed architecture (Fig.1), the hardware abstraction functionality is organized in three dis-
tinct layers of components. Each layer has clearly defined responsibilities and is dependent on interfaces
provided by lower layers. The capabilities of the underlying hardware are gradually adapted to the estab-
lished platform-independent interface between the operating system and the applications. As we move
from the hardware towards this top interface, the components become less and less hardware dependent,
giving the developer more freedom in the design and the implementation of reusable applications.
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Fig.1: The proposed Hardware Abstraction Architecture

In contrast to the more traditional two step approach used in other embedded operating systems
like [WindowsCE], the three-level design results in increased flezibility that arises from separating the
platform-specific abstractions and the adaptation wrappers that upgrade or downgrade them to the
current platform-independent interface. In this way, for maximum performance, the platform specific
applications can circumvent the HIL components and directly tap to the HAL interfaces that provide
access to the full capabilities of the hardware module.

The rest of the section discusses the specific roles of each component layer in more detail.



Hardware Presentation Layer (HPL)

The components belonging to the HPL are positioned directly over the HW /SW interface. As the name
suggests, their major task is to “present” the capabilities of the hardware using the native concepts of
the operating system. They access the hardware in the usual way, either by memory or by port mapped
I/0. In the reverse direction, the hardware can request servicing by signaling an interrupt. Using these
communication channels internally, the HPL hides the hardware intricacies and exports a more readable
interface (simple function calls) for the rest of the system.

The HPL components SHOULD be stateless and expose an interface that is fully determined by
the capabilities of the hardware module that is abstracted. This tight coupling with the hardware
leaves little freedom in the design and the implementation of the components. Even though each HPL
component will be as unique as the underlying hardware, all of them will have a similar general structure.
For optimal integration with the rest of the architecture, each HPL component SHOULD have:

e commands for initialization, starting, and stopping of the hardware module that are necessary for
effective power management policy

e “get” and “set” commands for the register(s) that control the operation of the hardware

e separate commands with descriptive names for the most frequently used flag-setting/testing op-
erations

e commands for enabling and disabling of the interrupts generated by the hardware module
e service routines for the interrupts that are generated by the hardware module

The interrupt service routines in the HPL components perform only the most time critical operations
(like copying a single value, clearing some flags, etc.), and delegate the rest of the processing to the
higher level components that possess extended knowledge about the state of the system.

The above HPL structure eases manipulation of the hardware. Instead of using cryptic macros and
register names whose definitions are hidden deep in the header files of compiler libraries, the programmer
can now access hardware through a familiar interface.

This HPL does not provide any substantial abstraction over the hardware beyond automating fre-
quently used command sequences. Nonetheless, it hides the most hardware-dependent code and opens
the way for developing higher-level abstraction components. These higher abstractions can be used with
different HPL hardware-modules of the same class. For example, many of the microcontrollers used
on the existing sensornet platforms have two USART modules for serial communication. They have
the same functionality but are accessed using slightly different register names and generate different
interrupt vectors. The HPL components can hide these small differences behind a consistent interface,
making the higher-level abstractions resource independent. The programmer can then switch between
the different USART modules by simple rewiring (not rewriting) the HPL components, without any
changes to the implementation code.

Hardware Adaptation Layer (HAL)

The adaptation layer components represent the core of the architecture. They use the raw interfaces
provided by the HPL components to build useful abstractions hiding the complexity naturally associated
with the use of hardware resources. In contrast to the HPL components, they are allowed to maintain
state that can be used for performing arbitration and resource control.

Due to the efficiency requirements of sensor networks, abstractions at the HAL level are tailored
to the concrete device class and platform. Instead of hiding the individual features of the hardware
class behind generic models, HAL interfaces expose specific features and provide the “best” possible
abstraction that streamlines application development while maintaining effective use of resources.

For example, rather than using a single “file-like” abstraction for all devices, we propose domain spe-
cific models like Alarm, ADC channel, EEPROM. According to the model, HAL components SHOULD



provide access to these abstractions via rich, customized interfaces, and not via standard narrow ones
that hide all the functionality behind few overloaded commands. This also enables more efficient
compile-time detection of abstraction interface usage errors.

Hardware Interface Layer (HIL)

The final tier in the architecture is formed by the HIL components that take the platform-specific
abstractions provided by the HAL and convert them to hardware-independent interfaces used by cross-
platform applications. These interfaces provide a platform independent abstraction over the hardware
that simplifies the development of the application software by hiding the hardware differences. To be
successful, this API “contract” SHOULD reflect the typical hardware services that are required in a
sensornet application.

The complexity of the HIL components mainly depends on how advanced the capabilities of the
abstracted hardware are with respect to the platform-independent interface. When the capabilities of
the hardware exceed the current API contract, the HIL “downgrades” the platform-specific abstractions
provided by the HAL until they are leveled-off with the chosen standard interface. Consequently,
when the underlying hardware is inferior, the HIL might have to resort to software simulation of the
missing hardware capabilities. As newer and more capable platforms are introduced in the system,
the pressure to break the current API contract will increase. When the performance requirements
outweigh the benefits of the stable interface, a discrete jump will be made that realigns the API with
the abstractions provided in the newer HAL. The evolution of the platform-independent interface will
force a reimplementation of the affected HIL components. For newer platforms, the HIL will be much
simpler because the API contract and their HAL abstractions are tightly related. On the other extreme,
the cost of boosting up (in software) the capabilities of the old platforms will rise.

Since we expect HIL interfaces to evolve as new platforms are designed, we must determine when
the overhead of software emulation of hardware features can no longer be sustained. At this point,
we introduce versioning of HIL interfaces. By assigning a version number to each iteration of an HIL
interface, we can design applications using a legacy interface to be compatible with previously deployed
devices. This is important for sensor networks since they execute long-running applications and may
be deployed for years. An HIL MAY also branch, providing multiple different HIL interfaces with
increasing levels of functionality.

3. Combining different levels of abstraction

Providing two levels of abstraction to the application --the HIL and HAL-- means that a hardware
asset may be accessed at two levels in parallel, e.g. from different parts of the application and the OS
libraries.

The standard Oscilloscope application in TinyOS 2.0, for example, may use the ADC to sample
several values from a sensor, construct a message out of them and send it over the radio. For the sake of
cross-platform compatibility, the application uses the standard Read interface provided by the ADC HIL
and forwarded by the DemoSensorC component wired to, for example, the temperature sensor wrapper.
When enough samples are collected in the message buffer, the application passes the message to the
networking stack. The MAC protocol might use clear channel assessment to determine when it is safe
to send the message, which could involve taking several ADC samples of an analog RSSI signal provided
by the radio hardware. Since this is a very time critical operation in which the correlation between
the consecutive samples has a significant influence, the programmer of the MAC might directly use the
hardware specific interface of the HAL component as it provides much finer control over the conversion
process. (Fig.2) depicts how the ADC hardware stack on the MSP430 MCU on the level of HIL and
HAL in parallel.
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Fig.2: Accessing the MSP430 ADC hardware abstraction
via *HIL* and *HAL* in parallel

To support this type of “vertical” flexibility the ADC HAL includes more complex arbitration and
resource control functionality [TEP108] so that a safe shared access to the HPL exported resources can
be guaranteed.

4. Horizontal decomposition

In addition to the wvertical decomposition of the HAA, a horizontal decomposition can promote reuse
of the hardware resource abstractions that are common on different platforms. To this aim, TinyOS
2.0 introduces the concept of chips, the self-contained abstraction of a given hardware chip: micro-
controller, radio-chip, flash-chip, etc. Each chip decomposition follows the HAA model, providing HIL
implementation(s) as the topmost component(s). Platforms are then built as compositions of different
chip components with the help of “glue” components that perform the mapping (Fig.3)
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Fig.3: The CC2420 software depends on a physical and dedicated
timer. The micaZ platform code maps this to a specific Atmegal28
timer.

Some of the shared hardware modules are connected to the microcontroller using one of the standard
bus interfaces: SPI, 12C, UART. To share hardware drivers across different platforms the issue of the
abstraction of the interconnect has to be solved. Clearly, greatest portability and reuse would be
achieved using a generic bus abstraction like in NetBSD [netBSD]. This model abstracts the different
bus protocols under one generic bus access scheme. In this way, it separates the abstraction of the chip
from the abstraction of the interconnect, potentially allowing the same chip abstraction to be used with
different connection protocols on different platforms. However, this generalization comes at high costs
in performance. This may be affordable for desktop operating systems, but is highly sub-optimal for
the application specific sensor network platforms.

TinyOS 2.0 takes a less generic approach, providing HIL-level, microcontroller-independent abstrac-
tions of the main bus protocols like 12C, SPI, UART and pin-1/O. This distinction enables protocol-
specific optimizations, for example, the SPI abstraction does not have to deal with client addresses,
where the 12C abstraction does. Furthermore, the programmer can choose to tap directly into the chip-
specific HAL-level component, which could further improve the performance by allowing fine tuning
using chip-specific configuration options.

The TinyOS 2.0 bus abstractions, combined with the ones for low-level pin-I/O and pin-interrupts
(see [TEP117]), enable a given chip abstraction to be reused on any platform that supports the required
bus protocol. The CC2420 radio, for example, can be used both on the Telos and on micaZ platforms,
because the abstractions of the serial modules on the MSP430 and Atmegal28 microcontrollers support
the unified SPI bus abstraction, which is used by the same CC2420 radio stack implementation.

Sharing chips across platforms raises the issue of resource contention on the bus when multiple chips
are connected to it. For example, on the micaZ the CC2420 is connected to a dedicated SPI bus, while
on the Telos platform one SPI bus is shared between the CC2420 radio and the flash chip. To dissolve
conflicts the resource reservation mechanism proposed in [TEP108] is applied: every chip abstraction
that uses a bus protocol MUST use the Resource interface in order to gain access to the bus resource.
In this way, the chip can be safely used both in dedicated scenarios, as well as in situations where
multiple chips are connected to the same physical bus interconnect.



5. CPU abstraction

In TinyOS most of the variability between the processing units is hidden from the OS simply by using a
nesC/C based programming language with a common compiler suite (GCC). For example, the standard
library distributed with the compiler creates the necessary start-up code for initializing the global
variables, the stack pointer and the interrupt vector table, shielding the OS from these tasks. To unify
things further, TinyOS provides common constructs for declaring reentrant and non-reentrant interrupt
service routines and critical code-sections.

The HAA is not currently used to abstract the features of the different CPUs. For the currently
supported MCUs, the combination of the compiler suite support and the low-level 1/O is sufficient.
Nevertheless, if new cores with radically different architectures need to be supported by TinyOS in the
future, this part of the hardware abstraction functionality will have to be explicitly addressed.

6. HIL alignment

While the HAA requires that the HIL provides full hardware independence (Strong/Real HILs), some
abstractions might only partially meet this goal (Weak HILs). This section introduces several terms
describing different degrees of alignment with the concept of a HIL. It also uses the following differen-
tiation:

o platform-defined X: X is defined on all platforms, but the definition may be different

e platform-specific X: X is defined on just one platform

Strong/Real HILs

Strong/Real HILs mean that “code using these abstractions can reasonably be expected to behave
the same on all implementations”. This matches the original definition of the HIL level according
to the HAA. Examples include the HIL for the Timer (TimerMilliC, [TEP102]), for LEDs (LedsC),
active messages (ActiveMessageC, [TEP116], if not using any radio metadata at least), sensor wrappers
(DemoSensorC, [TEP109]) or storage ([TEP103]). Strong HILs may use platform-defined types if they
also provide operations to manipulate them (i.e., they are platform-defined abstract data types), for
example, the TinyOS 2.x message buffer abstraction, message_t ([TEP111]).

Weak HILs

Weak HILs mean that one “can write portable code over these abstractions, but any use of them involves
platform-specific behavior”. Although such platform-specific behavior can --at least at a rudimentary
syntactical level-- be performed by a platform-independent application, the semantics require knowledge
of the particular platform. For example, the ADC abstraction requires platform-specific configuration
and the returned data must be interpreted in light of this configuration. The ADC configuration
is exposed on all platforms through the “AdcConfigure” interface that takes a platform-defined type
(adc_config t) as a parameter. However, the returned ADC data may be processed in a platform-
independent way, for example, by calculating the max/min or mean of multiple ADC readings.

The benefit from weak HILs are that one can write portable utility code, e.g., a repeated sampling
for an ADC on top of the data path. While code using these abstractions may not be fully portable, it
will still be easier to port than code built on top of HALs, because weak HILs involve some guidelines
on how to expose some functionality, which should help programmers and provide guidance to platform
developers.



Hardware Independent Interfaces (HII)

Hardware Independent Interfaces (HII), is just an interface definition intended for use across multiple
platforms.

Examples include the SID interfaces, the pin interfaces from [TEP117], the Alarm/Counter/etc
interfaces from [TEP102].

Utility components

Utility components are pieces of clearly portable code (typically generic components), which aren’t
exposing a self-contained service. Examples include the components in tos/lib/timer and the Arbitrat-
edRead* components. These provide and use HlIs.

6. Conclusion

The proposed hardware abstraction architecture provides a set of core services that eliminate duplicated
code and provide a coherent view of the system across different platforms. It supports the concurrent
use of platform-independent and the platform-dependent interfaces in the same application. In this
way, applications can localize their platform dependence to only the places where performance matters,
while using standard cross-platform hardware interfaces for the remainder of the application.
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