
Coding Standard

TEP: 3
Group: TinyOS 2.0 Working Group
Type: Best Current Practice
Status: Draft
TinyOS-Version: 2.x
Author: Ion Yannopoulos, David Gay
Draft-Created: 31-Dec-2004
Draft-Version: 1.5
Draft-Modified: 2006-12-12
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This document specifies a Best Current Practices for the TinyOS Community, and requests dis-
cussion and suggestions for improvements. Distribution of this memo is unlimited. This memo is
in full compliance with [TEP 1].

Contents

1 Introduction

2 General Conventions

2.1 General

3 Packages

3.1 Directory structure

4 Language Conventions

4.1 nesC convention

4.1.1 Names
4.1.2 Packages
4.1.3 Preprocessor

4.2 C Convention

4.3 Java convention

4.4 Other languages

5 TinyOS Conventions

5.1 Error returns

1

5.2 Passing pointers between components

5.3 Usage of wiring annotations

6 Citations

1 Introduction

The purpose of a naming convention is twofold: • To avoid collisions which prevent compi-
lation or lead to errors. In TinyOS the most important place to avoid such collisions is in
interface and component names.

• To enable readers of the code to identify which names are grouped together and which
packages they are defined in.

Remember that code that is useful will end up being read far more often than it is written. If you
deviate from the suggestions or requirements below, be consistent in how you do so. If you add any
new conventions to your code, note it in a README.

2 General Conventions

2.1 General

• Avoid the use of acronyms and abbreviations that are not well known. Try not to
abbreviate “just because”.

• Acronyms should be capitalized (as in Java), i.e., Adc, not ADC. Exception: 2-letter
acronyms should be all caps (e.g., AM for active messages, not Am)

• If you need to abbreviate a word, do so consistently. Try to be consistent with code
outside your own.

• All code should be documented using nesdoc [nesdoc], Doxygen [Doxygen] or Javadoc
[Javadoc]. Ideally each command, event and function has documentation. At a bare
minimum the interface, component, class or file needs a paragraph of description.

• If you write code for a file, add an @author tag to the toplevel documentation block.

3 Packages

For the purposes of this document a package is a collection of related source and other files, in whatever
languages are needed. A package is a logical grouping. It may or may not correspond to a physical
grouping such as a single directory. In TinyOS a package is most often a directory with zero or more
subdirectories.

nesC and C do not currently provide any package support, thus names of types and components in
different packages might accidentally clash. To make this less likely, judiciously use prefixes on groups
of related files (often, but not always, part of a single package). See the examples below.

In a package, we distinguish between public components (intended to be used and wired outside
the package) and private components (only used and wired within the package). This distinction is not
enforced by nesC.

2

3.1 Directory structure

• Each package should have it’s own directory. It may have as many subdirectories as
are necessary.

• The package’s directory should match the package’s prefix (if it uses one), but in lower-
case.

• The default packages in a TinyOS distribution are:
– tos/system/. Core TinyOS components. This directory’s components are

the ones necessary for TinyOS to actually run.
– tos/interfaces/. Core TinyOS interfaces, including hardware-independent ab-

stractions. Expected to be heavily used not just by tos/system but throughout
all other code. tos/interfaces should only contain interfaces named in TEPs.

– tos/platforms/. Contains code specific to mote platforms, but chip-independent.
– tos/chips/. Contains code specific to particular chips and to chips on par-

ticular platforms.
– tos/libs/. Contains interfaces and components which extend the usefulness

of TinyOS but which are not viewed as essential to its operation. Libraries will
likely contain subdirectories.

– apps/, apps/demos, apps/tests, apps/tutorials. Contain applications with
some division by purpose. Applications may contain subdirectories.

• It is not necessary that packages other than the core break up their components and
their interfaces. The core should allow overrides of components fairly easily however.

• Each directory should have a README describing its purpose.

4 Language Conventions

4.1 nesC convention

4.1.1 Names

• All nesC files must have a .nc extension. The nesC compiler requires that the filename
match the interface or component name.

• Directory names should be lowercase.
• Interface and component names should be mixed case, starting upper case.
• All public components should be suffixed with ’C’.
• All private components should be suffixed with ’P’.
• Avoid interfaces ending in ’C’ or ’P’.
• If an interface and component are related it is useful if they have the same name except

for the suffix of the component.
• Commands, events, tasks and functions should be mixed case, starting lower case.
• Events which handle the second half of a split-phase operation begun in a command

should have names that are related to the commands. Making the command past tense
or appending ’Done’ are suggested.

• Constants should be all upper case, words separated by underscores. - Use of #define
for integer constants is discouraged: use enum.

• Type arguments to generic components and interfaces should use the same case as C
types: all lower-case separated by underscores, ending in ’ t’.

• Module (global) variables should be mixed case, starting lower case.

3

4.1.2 Packages

• Each package may use a prefix for its component, interface and global C names. These
prefixes may sometimes be common to multiple packages. Examples:

– All hardware presentation layer names start with Hpl (this is an example
of a shared prefix).

– Chip-specific hardware abstraction layer components and interfaces start
with the chip name, e.g., Atm128 for ATmega128.

– The Maté virtual machine uses the Mate to prefix all its names.
– Core TinyOS names (e.g., the timer components, the Init interface) do not

use a prefix.

• Some packages may use multiple prefixes. For instance, the ATmega128 chip pack-
age uses an Hpl prefix for hardware presentation layer components and Atm128 for
hardware abstraction layer components.

4.1.3 Preprocessor

• Don’t use the nesC includes statement. It does not handle macro inclusion properly.
Use #include instead.

• Macros declared in an .nc file must be #define’d after the module or configuration
keyword to actually limit their scope to the module.

• Macros which are meant for use in multiple .nc files should be #define’d in a #include’d
C header file.

• Use of macros should be minimized: #define should only be used where enum and
inline do not suffice.

– Arguments to unique() should be #define string constants rather than strings.
This minimizes nasty bugs from typos the compiler can’t catch.

4.2 C Convention

• All C files have a .h (header) or (rarely) a .c (source) extension.

– Filenames associated with a component should have the same name as the compo-
nent.

– Filenames of a package should have a name with the package prefix (if any).
– Filenames which are not associated with a component should be lowercase.

• C does not protect names in any way. If a package uses a prefix, it should also use it
for all types, tags, functions, variables, constants and macros. This leads naturally to:

– Minimize C code outside of nesC files. In particular: most uses of hardware specific
macros in TinyOS 1.x should be replaced with nesC components in TinyOS 2.x.

• C type names (define with typedef) should be lower case, words separated by under-
scores and ending in ’ t’.

• C tag names (for struct, union, or enum) should be lower case, words separated by
underscores. Types with tag names should provide a typedef.

• C types which represent opaque pointers (for use in parameters) should be named
similar to other types but should end in ’ ptr t’.

• Functions should be lower case, words separated by underscores.

• Function macros (#define) should be all upper case, words separated by underscores.

4

– Using function macros is discouraged: use inline functions.

• Constants should be all upper case, words separated by underscores. - Use of #define
for integer constants is discouraged: use enum.

• Global variables should be mixed case, starting lower case.

4.3 Java convention

• The standard Java coding convention [Java Coding Convention] should be followed.

• All core TinyOS code is in the package net.tinyos.

4.4 Other languages

• No established conventions.

5 TinyOS Conventions

TinyOS also follows a number of higher-level programming conventions, mostly designed to provide a
consistent “look” to TinyOS interfaces and components, and to increase software reliability.

5.1 Error returns

TinyOS defines a standard error return type, error_t, similar to Unix’s error returns, except that error
codes are positive:

enum {
SUCCESS = 0,
FAIL = 1,
ESIZE = 2, // Parameter passed in was too big.
...

};

SUCCESS represents successful execution of an operation, and FAIL represents some undescribed
failure. Operations can also return more descriptive failure results using one of the Exxx constants, see
the tos/types/TinyError.h file for the current list of errors.

The error_t type has a combining function to support multiple wiring of commands or events
retuning error_t, defined as follows:

error_t ecombine(error_t r1, error_t r2) { return r1 == r2 ? r1 : FAIL; }

This function returns SUCCESS if both error returns are SUCCESS, an error code if they both return
the same error, and FAIL otherwise.

Commands that initiate a split-phase operation SHOULD return error_t if the operation may be
refused (i.e., the split-phase event may not be signaled under some conditions). With such functions,
the split-phase event will be signaled iff the split-phase command returns SUCCESS.

5

5.2 Passing pointers between components

Sharing data across components can easily lead to bugs such as data races, overwriting data, etc. To
minimise the likelyhood of these occurrences, we discourage the use of pointers in TinyOS interfaces.

However, there are circumstances where pointers are necessary for efficiency or convenience, for
instance when receiving messages, reading data from a flash chip, returning multiple results, etc. Thus
we allow the use of pointers within interfaces as long as use of those pointers follows an “ownership”
model: at any time, only one component may refer to the object referenced by the pointer. We
distinguish two cases:

• Ownership transferred for the duration of a call: in the following command:

command void getSomething(uint16_t *value1, uint32_t *value2);

we are using pointers to return multiple results. The component implementing getSomething
MAY read/write *value1 or *value2 during the call and MUST NOT access these pointers after
getSomething returns.

• Permanent ownership transfer: in the following split-phase interface:

interface Send {
command void send(message_t *PASS msg);
event void sendDone(message_t *PASS msg);

}

components calling send or signaling sendDone relinquish ownership of the message buffer. For
example, take a program where component A uses the Send interface and B provides it. If A
calls send with a pointer to message_t x, then ownership of x passes to B and A MUST NOT
access x while B MAY access x. Later, when B signals the sendDone event with a pointer to x as
parameter, ownership of x returns to A and A MAY access x, while B MUST NOT access x.

If an interface with PASS parameters has a return type of error_t, then ownership is transferred
iff the result is SUCCESS. For instance, in

interface ESend {
command error_t esend(message_t *PASS msg);
event void esendDone(message_t *PASS msg, error_t sendResult);

}

ownership is transferred only if esend returns SUCCESS, while ownership is always transferred
with esendDone. This convention matches the rule for signaling split-phase completion events
discussed above.

PASS is a do-nothing macro defined as follows:

#define PASS

In the future, some tool may check that programs respect these ownership transfer rules.

5.3 Usage of wiring annotations

TinyOS checks constraints on a program’s wiring graph specified by annotations on a component’s
interfaces. Wiring constraints are specified by placing @atmostonce(), @atleastonce() and @exact-
lyonce() attributes on the relevant interfaces. For instance, writing

module Fun {
provides interface Init @atleastonce();

...

6

ensures that programs using module Fun must wire its Init interface at least once.
The @atleastonce() and @exactlyonce() annotations SHOULD be used sparingly, as they can

easily prevent modularising subsystem implementations, which is undesirable. However, the @atleas-
tonce() annotation SHOULD be used on initialisation interfaces (typically, the Init interface) in
modules, to prevent the common bug of forgetting to wire initialisation code.

6 Citations

[TEP 1] TEP 1 <http://www.tinyos.net/working groups/tinyos-2.0wg/teps/tep-1.html>
[TEP 2] TEP 2 <http://www.tinyos.net/working groups/tinyos-2.0wg/teps/tep-2.html>
[Doxygen] Doxygen <http://www.doxygen.org>

[Java Coding Convention] Java Coding Convention <http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html>
[JavaDoc] JavaDoc <http://java.sun.com/j2se/javadoc>
[nesdoc] nesdoc <http://www.tinyos.net/tinyos-1.x/doc/nesc/nesdoc.html>

7

http://www.tinyos.net/working_groups/tinyos-2.0wg/teps/tep-1.html
http://www.tinyos.net/working_groups/tinyos-2.0wg/teps/tep-2.html
http://www.doxygen.org
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/j2se/javadoc
http://www.tinyos.net/tinyos-1.x/doc/nesc/nesdoc.html

	Contents
	1 Introduction
	2 General Conventions
	2.1 General

	3 Packages
	3.1 Directory structure

	4 Language Conventions
	4.1 nesC convention
	4.1.1 Names
	4.1.2 Packages
	4.1.3 Preprocessor

	4.2 C Convention
	4.3 Java convention
	4.4 Other languages

	5 TinyOS Conventions
	5.1 Error returns
	5.2 Passing pointers between components
	5.3 Usage of wiring annotations

	6 Citations

