
nesC 1.3 Language Reference Manual

David Gay, Philip Levis, David Culler, Eric Brewer

July 2009

1 Introduction

nesC is an extension to C [5] designed to embody the structuring concepts and execution model of
TinyOS [4]. TinyOS is an event-driven operating system designed for sensor network nodes that
have very limited resources (e.g., 8K bytes of program memory, 512 bytes of RAM). TinyOS has
been reimplemented in nesC. This manual describes v1.2 of nesC, changes from v1.0 and v1.1 are
summarised in Section 2.

The basic concepts behind nesC are:

• Separation of construction and composition: programs are built out of components, which are
assembled (“wired”) to form whole programs. Components define two scopes, one for their
specification (containing the names of their interfaces) and one for their implementation.
Components have internal concurrency in the form of tasks. Threads of control may pass into
a component through its interfaces. These threads are rooted either in a task or a hardware
interrupt.

• Specification of component behaviour in terms of set of interfaces. Interfaces may be provided
or used by the component. The provided interfaces are intended to represent the functionality
that the component provides to its user, the used interfaces represent the functionality the
component needs to perform its job.

• Interfaces are bidirectional: they specify a set of functions to be implemented by the inter-
face’s provider (commands) and a set to be implemented by the interface’s user (events).
This allows a single interface to represent a complex interaction between components (e.g.,
registration of interest in some event, followed by a callback when that event happens). This
is critical because all lengthy commands in TinyOS (e.g. send packet) are non-blocking; their
completion is signaled through an event (send packet done). The interface forces a compo-
nent that calls the “send packet” command to provide an implementation for the “send packet
done” event.

Typically commands call “downwards”, i.e., from application components to those closer to
the hardware, while events call “upwards”. Certain primitive events are bound to hardware
interrupts (the nature of this binding is system-dependent, so is not described further in this
reference manual).

1

• Components are statically linked to each other via their interfaces. This increases runtime
efficiency, encourages robust design, and allows for better static analysis of programs.

• nesC is designed under the expectation that code will be generated by whole-program com-
pilers. This allows for better code generation and analysis. An example of this is nesC’s
compile-time data race detector.

• The concurrency model of nesC is based on run-to-completion tasks, and interrupt handlers
which may interrupt tasks and each other. The nesC compiler signals the potential data races
caused by the interrupt handlers.

This document is a reference manual for nesC rather than a tutorial. The TinyOS tutorial1 presents
a gentler introduction to nesC.

The rest of this document is structured as follows: Section 2 summarises the new features in nesC
since v1.0. Section 3 presents the notation used in the reference manual, and Section 4 the scoping
and naming rules of nesC. Sections 5 and 6 present interfaces and components, while Sections 7, 8
and 9 explain how components are implemented. Section 10 presents nesC’s concurrency model and
data-race detection. Sections 11, 12 and 13 cover the extensions to C allowed in nesC programs.
Section 14 explains how C files, nesC interfaces and components are assembled into an application
and how nesC programs interact with the preprocessor and linker. Finally, Appendix A fully defines
nesC’s grammar (as an extension to the C grammar from Appendix A of Kernighan and Ritchie
(K&R) [5, pp234–239]), and Appendix B gives a glossary of terms used in this reference manual.

2 Changes

The changes from nesC 1.2 to 1.3 are:

• Support for applying Deputy [2] type-safety for C system to nesC applications [3]. More
information can be found in the separate “Safe TinyOS” documentation.

• nesC attributes can be placed in documentation comments to reduce clutter in function
declarations.

• New uniqueN(...) compile-time constant function.

• Bitfields supported in external types.

• External types can used as function parameters and results.

• Types defined in interfaces can be used immediately in generic interface arguments (e.g.
interface Timer<TMilli>, where TMilli is defined in Timer.nc).

The changes from nesC 1.1 to 1.2 are:

• Generic interfaces: interfaces can now take type parameters (allowing, e.g., a single interface
definition for a queue of any type of values).

1Available with the TinyOS distribution at http://webs.cs.berkeley.edu

2

• Generic components: components can now be instantiated (at compile-time), and can take
constant and type arguments (e.g., a generic queue component would take type and queue
size arguments).

• Component specifications can include type and enum constant declarations; component se-
lections and wiring statements can be interspersed in configurations; configuration implemen-
tations can refer to the types and enum constants of the components they include.

• Binary components: programs can now use components defined in binary form. The same
functionality supports encapsulating a set of components as a single binary component for
use in other programs.

• External types: types with a platform-independent representation and no alignment represen-
tation can now be defined in nesC (these are useful, e.g., for defining packet representations).

• Attributes: declarations may be decorated with attributes. Information on attribute use may
be extracted for use in external programs. Details on this extraction process is beyond the
scope of this language reference manual; see the nesC compiler documentation for details.
Some predefined attributes have meaning to the nesC compiler. Use of attribute for
nesC-specific features is deprecated (for details on these deprecated usages, see Section 10.3
of the nesC 1.1 reference manual).

• includes is deprecated and components can be preceded by arbitrary C declarations and
macros. As a result, #include behaves in a more comprehensible fashion. For details on
includes, see Section 9 of the nesC 1.1 reference manual.

• return can be used within atomic statements (the atomic statement is implicitly terminated
by the return).

The changes from nesC 1.0 to 1.1 are:

1. atomic statements. These simplify implementation of concurrent data structures, and are
understood by the new compile-time data-race detector.

2. Compile-time data-race detection gives warnings for variables that are potentially accessed
concurrently by two interrupt handlers, or an interrupt handler and a task.

3. Commands and events which can safely be executed by interrupt handlers must be explicitly
marked with the async storage class specifier.

4. The results of calls to commands or events with “fan-out” are automatically combined by
new type-specific combiner functions.

5. uniqueCount is a new constant function (Section 13.2) which counts uses of unique.

6. The NESC preprocessor symbol indicates the language version. It is at least 110 for nesC 1.1,
at least 120 for nesC 1.2.

3

3 Notation

The typewriter font is used for nesC code and for filenames. Single symbols in italics, with
optional subscripts, are used to refer to nesC entities, e.g., “component K” or “value v”.

Explanations of nesC constructs are presented along with the corresponding grammar fragments.
In these fragments, we sometimes use . . . to represent elided productions (irrelevant to the construct
at hand). Appendix A presents the full nesC grammar.

Several examples use the uint8 t and uint16 t types (from the C99 standard inttypes.h file)
and the standard TinyOS result t type (which represents success vs failure of an operation).

The grammar of nesC is an extension the ANSI C grammar. We chose to base our presentation on
the ANSI C grammar from Appendix A of Kernighan and Ritchie (K&R) [5, pp234–239]. Words in
italics are non-terminals and non-literal terminals, typewriter words and symbols are literal ter-
minals. The subscript opt indicates optional terminals or non-terminals. In some cases, we change
some ANSI C grammar rules. We indicate this as follows: also indicates additional productions
for existing non-terminals, replaced by indicates replacement of an existing non-terminal. We do
not repeat the productions from the C grammar here, but Appendix A lists and summarises the C
grammar rules used by nesC.

4 Scopes and Name Spaces in nesC

nesC includes the standard C name spaces: object, which includes variables, functions, typedefs,
and enum-constants; label for goto labels; tag for struct, union, enum tags. It adds an additional
component name space for component and interface definitions. For simplicity, we assume that
each scope contains all four name spaces, though language restrictions mean that many of these
name spaces are empty (e.g., all component and interface definitions are global, so the component
name space is empty in all but the global scope).

nesC follows the standard C scoping rules, with the following additions:

• Each interface definition introduces two scopes. The interface parameter scope is nested in
the global scope and contains the parameters of generic interface definitions. The interface
scope is nested in the interface parameter scope and contains the interface’s commands and
events.

• Each component definition introduces three new scopes. The component parameter scope is
nested in the global scope and contains the parameters of generic component definitions. The
specification scope is nested in the component parameter scope and contains the component’s
specification elements.

The implementation scope is nested in the specification scope. For configurations, the imple-
mentation scope contains the names by which this component refers to its included compo-
nents (Section 9.1). For modules, the implementation scope holds the tasks, C declarations
and definitions that form the module’s body. These declarations, etc may introduce their
own nested scopes within the implementation scope, following the usual C scoping rules.

4

As usual in C, scopes must not have multiple definitions of the same name within the same name
space.

5 Interface and Component Specification

A nesC interface definition specifies a bi-directional interaction between two components, known as
the provider and user. Interactions via interfaces are specified by two sets of functions: commands
are function calls from the user to the provider component, events are function calls from the
provider to the user component. In many cases, the provider component is providing some service
(e.g., sending messages over the radio) and commands represent requests, events responses.

An interface definition has a unique name, optional C type parameters, and contains declarations
for its command and event functions. An interface definition with type parameters is called a
generic interface definition.

An interface type is a reference to an interface definition and, if the referenced definition is generic,
corresponding type arguments. Components can only be connected via two interfaces with the
same type.

A component’s specification is the set of interfaces that it provides and uses. Each provided or
used interface has a name and an interface type. Component specifications can also contain bare
commands and events (i.e., not contained in an interface), typedefs and tagged type declarations;
to simplify the exposition we defer discussion of these to Sections 5.4 and 5.5.

For instance, the following source code

interface SendMsg { // send a radio message
command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg);
event result_t sendDone(TOS_MsgPtr msg, result_t success);

}

interface Init<t> { // a generic interface definition
command void doit(t x);

}

module Simple {
provides interface Init<int> as MyInit;
uses interface SendMsg as MyMessage;

} ...

shows two interface definitions, SendMsg and Init, and the specification of the Simple component.
The specification of Simple has two elements: MyInit, a provided interface of type Init<int> and
MyMessage a used interface of type SendMsg. Simple must implement the MyInit.doit command
and the MyMessage.sendDone event. It can call the MyMessage.send command.

The rest of this section covers interface definitions, interface types and component specifications in
detail. The sections on component definition (Section 6) and implementations (Sections 7 and 9)
explain how commands and events are called and implemented, and how components are linked
together through their interfaces.

5

5.1 Interface Definitions

Interface definitions have the following syntax:

interface-definition:
interface identifier type-parametersopt { declaration-list }

Interface definitions have a name (identifier) with global scope. This name belongs to the compo-
nent name space (Section 4), so interface definitions must have a name distinct from other interface
definitions and from components, however they do not conflict with regular C declarations.

The type-parameters is a list of optional C type parameters for this interface definition:

type-parameters:
< type-parameter-list >

type-parameter-list:
identifier
type-parameter-list , identifier

These parameters belong to the object name space of the interface’s parameter scope (Section 4)
and are therefore visible in the declaration-list. See Section 13.3 for how type parameters interact
with C’s type system (in brief, these type parameters can be used like typedef’d types). An
interface definition with type parameters is called a generic interface definition.

The declaration-list of an interface definition specifies a set of commands and events. It must
consist of function declarations with the command or event storage class:

storage-class-specifier: also one of
command event async

The optional async keyword indicates that the command or event can be executed in an interrupt
handler (see Section 10). The interface’s commands and events belong to the object name space of
the interface’s scope (Section 4).

The example code above showed two simple interface definitions (SendMsg and Init). The following

interface Queue<t> {
async command void push(t x);
async command t pop();
async command bool empty();
async command bool full();

}

defines a generic interface Queue with a single type parameter, defining four commands which can
be executed in an interrupt handler.

6

5.2 Interface Types

An interface type is specified by giving the name of an interface definition and, for generic interface
definitions, any required type arguments:

interface-type:
interface identifier type-argumentsopt

type-arguments:
< type-argument-list >

type-argument-list:
type-name
type-argument-list , type-name

There must be as many types in type-arguments as there are parameters in the interface definition’s
type parameter list. Type arguments can not be incomplete or of function or array type.

Two interface types are the same if they refer to the same interface definition and their corre-
sponding type arguments (if any) are of the same C type. Example interface types are interface
SendMsg and interface Queue<int>.

5.3 Component Specification

The first part of a component’s definition (see Section 6) is its specification, a declaration of pro-
vided or used specification elements, where each element is an interface, a bare command or event
(Section 5.4) or a declaration (Section 5.5):

component-specification:
{ uses-provides-list }

uses-provides-list:
uses-provides
uses-provides-list uses-provides

uses-provides:
uses specification-element-list
provides specification-element-list

specification-element-list:
specification-element
{ specification-elements }

specification-elements:
specification-element
specification-elements specification-element

7

There can be multiple uses and provides directives in a component specification. Multiple used
or provided specification elements can be grouped in a single directive by surrounding them with
{ and }. For instance, these two specifications are identical:

module A1 { module A1 {
uses interface X; uses {
uses interface Y; interface X;

} ... interface Y;
}

} ...

An interface declaration has an interface type and an optional name:

specification-element:
interface-type instance-nameopt instance-parametersopt
. . .

instance-name:
as identifier

instance-parameters:
[parameter-type-list]

If the name is omitted, the interface’s name is the same as the name of the interface definition
specified by the interface type: interface SendMsg means the same thing as interface SendMsg
as SendMsg and interface Queue<int> is the same as interface Queue<int> as Queue. A
specification can contain independent interfaces of the same interface type, e.g.,

provides interface X as X1;
uses interface X as X2;

The interface names belong to the object name space of the specification’s scope (Section 4), thus
there is no confusion between interface names and interface definition names (the latter are in the
component name space).

An interface declaration without instance-parameters (e.g., interface X as Y) declares a single
interface to this component. A declaration with instance-parameters (e.g., interface SendMsg
S[uint8 t id]) declares a parameterised interface, corresponding to multiple interfaces to this
component, one for each distinct tuple of parameter values (so interface SendMsg as S[uint8 t
id, uint8 t id2] declares 256 * 256 interfaces of type SendMsg). The types of the parameters
must be integral types (enums are not allowed at this time).

The specification for AMStandard, a component that dispatches messages received from the serial
port and the radio to the application based on the “active message id” stored in the message, and
sends messages to the radio or serial port depending on the selected destination address, is typical
of many TinyOS system components:

module AMStandard {

8

provides {
interface StdControl;

// The interface are parameterised by the active message id
interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];

}
uses {
interface StdControl as RadioControl;
interface SendMsg as RadioSend;
interface ReceiveMsg as RadioReceive;

interface StdControl as SerialControl;
interface SendMsg as SerialSend;
interface ReceiveMsg as SerialReceive;

}
} ...

It provides or uses nine interfaces:

• The provided interface StdControl of type StdControl supports initialisation of AMStandard.

• The provided parameterised interfaces of type SendMsg and ReceiveMsg (named SendMsg and
ReceiveMsg respectively) support dispatching of received messages and sending of messages
with a particular active message id

• The used interfaces control, send and receive messages from the radio and serial port respec-
tively (another TinyOS component, the GenericComm configuration wires AMStandard to the
lower-level components providing radio and serial port networking).

5.4 Bare Commands and Events

Commands or events can be included directly as specification elements by including a standard C
function declaration with command or event as its storage class specifier:

specification-element:
declaration
. . .

storage-class-specifier: also one of
command event async

It is a compile-time error if the declaration is not a function declaration with the command or event
storage class. As in interfaces, async indicates that the command or event can be called from
an interrupt handler. These bare command and events belong to the object name space of the
specification’s scope (Section 4).

9

As with interface declarations, bare commands (bare events) can have instance parameters; these
are placed before the function’s regular parameter list, e.g., command void send[uint8 t id](int
x):

direct-declarator: also
direct-declarator instance-parameters (parameter-type-list)
. . .

If instance parameters are present, the declaration specifies a bare, parameterised command (bare,
parameterised event). Note that instance parameters are not allowed on commands or events inside
interface definitions.

Module M of Figure 1 (Section 9.6) shows an example of a component specification with a bare
command.

5.5 Other Declarations in Specifications

A component specification can also include regular declarations (these belong to the specification
scope):

uses-provides: also
declaration

These declarations must be either typedefs, or tagged type declarations. For example,

module Fun {
typedef int fun_t;
enum { MYNUMBER = 42 };

}
implementation { ... }

Note that declaration of an enum implicitly places enum constants in the component’s specification
scope.

5.6 Command and Event Terminology

We say that a bare command (event) F provided in the specification of component K is provided
command (event) F of K; similarly, a bare command (event) used in the specification of component
K is used command (event) F of K.

A command F in a provided interface X of component K is provided command X.F of K; a
command F in a used interface X of K is used command X.F of K; an event F in a provided
interface X of K is used event X.F of K; and an event F in a used interface X of K is provided
event X.F of K (note the reversal of used and provided for events due to the bidirectional nature
of interfaces).

We use Greek letters α, β, . . . to refer to any command or event of a component when the distinction
between bare commands (events) and commands (events) in interfaces is not relevant. Commands

10

or events α of K are parameterised if the specification element to which they correspond is param-
eterised.

We will often simply refer to the “command or event α of K” when the used/provided distinction
is not relevant.

6 Component Definition

A nesC component definition has a name, optional arguments, a specification and an implementa-
tion:

component:
comp-kind identifier comp-parametersopt component-specification implementationopt

comp-kind:
module
configuration
component
generic module
generic configuration

implementation:
module-implementation
configuration-implementation

The component name belongs to the component name space of the global scope, hence must be dis-
tinct from other components and from interface definitions. There are three ways a component can
be implemented: modules are components which are implemented with C code (Section 7), binary
components are components which are only available in binary form (Section 8), and configurations
are components which are implemented by assembling other components (Section 9).

Components with parameters are called generic components, they must be instantiated in a con-
figuration before they can be used (Section 9). Components without parameters exist as a single
instance which is implicitly instantiated. The component’s definition must reflect these distinctions
(the comp-kind rule): for instance, a generic module A is defined with generic module A() {. . . ,
a non-generic configuration B is defined with configuration B {. . . Binary components cannot be
generic.

6.1 Generic Components

Generic component parameter lists are similar to function parameter lists, but allow for type
parameters by (re)using the typedef keyword:

comp-parameters:
(component-parameter-list)

component-parameter-list:

11

component-parameter
component-parameter-list , component-parameter

component-parameter:
parameter-declaration
typedef identifier

The parameters belong to the object name space of the component’s parameter scope (Section 4),
and are hence visible both in the component’s specification and implementation. Non-type param-
eters must be of arithmetic or char[] type. These parameters can be used as follows:

• Type parameters can be used as if the argument was of some unknown typedef’d type. Ad-
ditionally, type parameters can be restricted to integral or numerical types, allowing integral
or numerical operations to be used on the type. For more details, see Section 13.3.

• Non-type parameters are constants of some unknown value (for more details, see Section 13.1);
they can be used in any constant expression. They cannot be assigned to.

An instantiation with arguments a1, . . . , an of generic component X with parameters p1, . . . , pn

behaves like a new, non-generic component with the specification and implementation of X where
all uses of parameter pi have been replaced by the corresponding ai value or type.2 Section 14.2
details when generic components get instantiated.

6.2 Examples

Some examples (with simple specifications):

module A { provides interface X; } ...
component B { uses interface X } // no implementation for binary components!
generic configuration B() { uses interface Y; } ...
generic module AQueue(int n, typedef t) { provides interface Queue<t>; } ...

A is a simple module, B a generic configuration with no arguments but which can be instantiated
multiple times, AQueue a generic module implementing an n entry queue with elements of type t.
Note how AQueue instantiates the generic interface Queue with its type parameter t.

7 Component Implementation: Modules

Modules implement a component specification with C code:

module-implementation:
implementation { translation-unit }

2The most straightforward implementation of these semantics for generic modules is to duplicate X’s code. In
some cases (e.g., no arguments to X), a nesC compiler might be able to share code between the instances of X at
some runtime cost.

12

where translation-unit is a list of C declarations and definitions (see K&R [5, pp234–239]).

The top-level declarations of the module’s translation-unit belong to the module’s implementation
scope (Section 4). These declarations have indefinite extent and can be: any standard C declaration
or definition, a task declaration or definition (placed in the object name space), a command or event
implementation.

7.1 Implementing the Module’s Specification

The translation-unit must implement all provided commands (events) α of the module (i.e., all
commands in provided interfaces, all events in used interfaces, and all bare, provided commands
and events). A module can call any of its commands and signal any of its events.

These command and event implementations are specified with the following C syntax extensions:
storage-class-specifier: also one of

command event async

declaration-specifiers: also
default declaration-specifiers

direct-declarator: also
identifier . identifier
direct-declarator interface-parameters (parameter-type-list)

The implementation of non-parameterised command or event α has the syntax of a C function
definition for α (note the extension to direct-declarator to allow . in function names) with storage
class command or event. Additionally, the async keyword must be included iff it was included in
α’s declaration. For example, in a module that provides interface Send of type SendMsg (shown at
the start of Section 5):

command result_t Send.send(uint16_t address, uint8_t length, TOS_MsgPtr msg) {
...
return SUCCESS;

}

The implementation of parameterised command or event α with instance parameters P has the
syntax of a C function definition for α with storage class command or event where the function’s
regular parameter list is prefixed with the parameters P within square brackets. These instance
parameter declarations P belong to α’s function-parameter scope and have the same extent as
regular function parameters. For example, in a module that provides interface Send[uint8 t id]
of type SendMsg:

command result_t Send.send[uint8_t id](uint16_t address, uint8_t length,
TOS_MsgPtr msg) {

...
return SUCCESS;

}

13

Compile-time errors are reported when:

• There is no implementation for a provided command or event.

• The type signature, optional interface parameters and presence or absence of the async
keyword of a command or event does not match that given in the module’s specification.

7.2 Calling Commands and Signaling Events

The following extensions to C syntax are used to call events and signal commands:

postfix-expression:
postfix-expression [argument-expression-list]
call-kindopt primary (argument-expression-listopt)
. . .

call-kind: one of
call signal post

A non-parameterised command α is called with call α(...), a non-parameterised event α is
signaled with signal α(...). For instance, in a module that uses interface Send of type SendMsg:
call Send.send(1, sizeof(Message), &msg1).

A parameterised command α (respectively, an event) with n instance parameters of type τ1, . . . , τn

is called with instance arguments e1, . . . , en as follows: call α[e1, . . . , en](...) (respectively,
signal α[e1, . . . , en](...)). Interface argument ei must be assignable to type τi; the actual
interface argument value is the value of ei cast to type τi. For instance, in a module that uses
interface Send[uint8 t id] of type SendMsg:

int x = ...;
call Send.send[x + 1](1, sizeof(Message), &msg1);

Execution of commands and events is immediate, i.e., call and signal behave similarly to function
calls. The actual command or event implementations executed by a call or signal expression
depend on the wiring statements in the program’s configurations. These wiring statements may
specify that 0, 1 or more implementations are to be executed. When more than 1 implementation
is executed, we say that the module’s command or event has “fan-out”.

A module can specify a default implementation for a used command or event α (a compile-time
error occurs if a default implementation is supplied for a provided command or event). Default
implementations are executed when α is not connected to any command or event implementa-
tion (see Section 9.6). A default command or event is defined by prefixing a command or event
implementation with the default keyword:

declaration-specifiers: also
default declaration-specifiers

14

For instance, in a in a module that uses interface Send of type SendMsg:

default command result_t Send.send(uint16_t address, uint8_t length,
TOS_MsgPtr msg) {

return SUCCESS;
}
/* call is allowed even if interface Send is not connected */
... call Send.send(1, sizeof(Message), &msg1) ...

Section 9.6 specifies what command or event implementations are actually executed and what result
gets returned by call and signal expressions.

7.3 Tasks

A task is an independent locus of control defined by a function of storage class task returning
void and with no arguments: task void myTask() { ... }.3 A task can also have a forward
declaration, e.g., task void myTask();.

Tasks are posted for later execution by prefixing a call to the task with post, e.g., post myTask().
Post returns immediately; its return value is 1 if the task was successfully posted, 0 otherwise. The
type of a post expression is unsigned char.

storage-class-specifier: also one of
task

call-kind: also one of
post

Section 10, which presents nesC’s concurrency model, explains when tasks get executed.

7.4 Atomic statements

Atomic statements:

atomic-stmt:
atomic statement

guarantee that the statement is executed “as-if” no other computation occurred simultaneously,
and furthermore any values stored inside an atomic statement are visible inside all subsequent
atomic statements. Atomic statements are used to implement mutual exclusion, for updates to
concurrent data structures, etc. The following example uses atomic to prevent concurrent execution
of do something:

bool busy; // global

3nesC functions with no arguments are declared with (), not (void). See Section 13.4.

15

void f() { // called from an interrupt handler
bool available;

atomic {
available = !busy;
busy = TRUE;

}
if (available) do_something;
atomic busy = FALSE;

}

Atomic sections should be short, though this is not currently enforced in any way. Except for
return statements, control may only flow “normally” in or out of on atomic statement: any goto,
break or continue that jumps in or out of an atomic statement is an error. A return statement
is allowed inside an atomic statement; at runtime the atomic section ends after evaluating the
returned expression (if any) but before actually returning from the function.

Section 10 discusses the relation between atomic, nesC’s concurrency model, and the data-race
detector.

8 Component Implementation: Binary Components

Binary components are declared with the component keyword and have no implementation section.
Instead, program’s using binary components must be linked with an object file providing the binary
component’s implementation — this object file might be the result of compiling a different nesC
program.

This object file must provide definitions for the provided commands and events of the binary
component, and can call its used commands and events. For more details on external linkage rules
for nesC, see Section 14.5.

Note that default commands and events (see Sections 7 and 9.6) do not work across binary
component boundaries — the used commands and events of a binary component must be fully
wired.

9 Component Implementation: Configurations

Configurations implement a component specification by selecting regular components or instanti-
ating generic components, and then connecting (“wiring”) these components together. The imple-
mentation section of a configuration consists of a list of configuration elements:

configuration-implementation:
implementation { configuration-element-listopt }

configuration-element-list:

16

configuration-element
configuration-element-list configuration-element

configuration-element:
components
connection
declaration

A components element specifies the components that are used to build this configuration (Sec-
tion 9.1), a connection specifies a single wiring statement (Section 9.2), and a declaration can
declare a typedef or tagged type (other C declarations are compile-time errors) (Section 9.4).

A configuration C’s wiring statements connects two sets of specification elements:

• C’s specification elements. In this section, we refer to these as external specification elements.

• The specification elements of the components referred to instantiated in C. We refer to these
as internal specification elements.

9.1 Included components

A components elements specifies some components used to build this configuration. These can be:

• A non-generic component X. Non-generic components are implicitly instantiated, references
to X in different configurations all refer to the same component.

• An instantiation of a generic component Y . Instantiations of Y in different configurations,
or multiple instantiations in the same configuration represent different components (see Sec-
tion 6.1).

The syntax of components is as follows:

components:
components component-line ;

component-line:
component-ref instance-nameopt
component-line , component-ref instance-nameopt

instance-name:
as identifier

component-ref:
identifier
new identifier (component-argument-list)

17

component-argument-list:
component-argument
component-argument-list , component-argument

component-argument:
expression
type-name

Each component-ref specifies a non-generic component X by simply giving its name (a compile-
time error occurs if X is generic) and a generic component Y with newY (args) (a compile-time
error occurs if Y is not generic). The arguments to Y must match the number of parameters of
Y ’s definition, and:

• If the parameter is a type parameter, then the argument must be a type which is not incom-
plete, or of function or array type.

• If the parameter is of type char[], the argument must be a string constant.

• If the parameter is of arithmetic type, the argument must be a constant whose value is in the
range of the parameter type.

Within a connection, a component specified in components is referred to by:

• The name explicitly specified by the X as Y syntax (instance-name). Use of as is necessary,
e.g., when instantiating the same generic component more than once in a given configuration.

• The name of the component definition (components new X(), Y; is the same as components
new X() as X, Y as Y;).

The names specified by components elements belong to the object name space of the component’s
implementation scope (Section 4).

This NoWiring configuration:

configuration NoWiring { }
implementation {
components A, new AQueue(10, int);
components new AQueue(20, float) as SecondQueue;

}

selects component A, and instantiates generic component AQueue twice. The two instances of AQueue
are known as AQueue and SecondQueue within NoWiring.

9.2 Wiring

Wiring is used to connect specification elements (interfaces, commands, events) together. This
section and the next (Section 9.3) define the syntax and compile-time rules for wiring. Section 9.6

18

details how a program’s wiring statements dictate which functions get called by the call and
signal expressions found in modules.

connection:
endpoint = endpoint
endpoint -> endpoint
endpoint <- endpoint

endpoint:
identifier-path
identifier-path [argument-expression-list]

identifier-path:
identifier
identifier-path . identifier

Wiring statements connect two endpoints. The identifier-path of an endpoint specifies a specification
element (either internal or external). The argument-expression-list optionally specifies instance
arguments. We say that an endpoint is parameterised if its specification element is parameterised
and the endpoint has no arguments. A compile-time error occurs if an endpoint has arguments and
any of the following is true:

• Some arguments is not a constant expression.

• The endpoint’s specification element is not parameterised.

• There are more (or less) arguments than there are parameters on the specification element.

• The argument’s values are not in range for the specification element’s parameter types.

A compile-time error occurs if the identifier-path of an endpoint is not of one the three following
forms:

• X, where X names an external specification element.

• K.X where K is a component from the component-list and X is a specification element of K.

• K where K is a some component name from the component-list. This form is used in implicit
connections, discussed in Section 9.3. This form cannot be used when arguments are specified.

Note that a component name can hide an external specification element, preventing the
element from being wired:

configuration AA { provides interface X as Y; }
implementation {
components Z as Y, Z2 as Y2;

Y /* refers to component Z, not interface X */ -> Y2.A;
}

19

Hiding specification elements will always result in a compile-time error as external specifica-
tion elements must all be wired.

There are three wiring statements in nesC:

• endpoint1 = endpoint2 (equate wires): Any connection involving an external specification
element. These effectively make two specification elements equivalent.

Let S1 be the specification element of endpoint1 and S2 that of endpoint2. One of the following
two conditions must hold or a compile-time error occurs:

– S1 is internal, S2 is external (or vice-versa) and S1 and S2 are both provided or both
used,

– S1 and S2 are both external and one is provided and the other used.

• endpoint1 -> endpoint2 (link wires): A connection between two internal specification ele-
ments. Link wires always connect a used specification element specified by endpoint1 to a
provided one specified by endpoint2 . If these two conditions do not hold, a compile-time
error occurs.

• endpoint1 <- endpoint2 is equivalent to endpoint2 -> endpoint1.

In all three kinds of wiring, the two specification elements specified must be compatible, i.e., they
must both be commands, or both be events, or both be interfaces. Also, if they are commands (or
events), then they must both have the same function signature. If they are interfaces they must
have the same interface type. If these conditions do not hold, a compile-time error occurs.

If one endpoint is parameterised, the other must be too and must have the same parameter types;
otherwise a compile-time error occurs.

A configuration’s external specification elements must all be wired or a compile-time error occurs.
However, internal specification elements may be left unconnected (these may be wired in another
configuration, or they may be left unwired if the modules have the appropriate default event or
command implementations, see Section 9.6).

9.3 Implicit Connections

It is possible to write K1 <- K2.X or K1.X <- K2 (and the same with =, or ->). This syntax
iterates through the specification elements of K1 (resp. K2) to find a specification element Y such
that K1.Y <- K2.X (resp. K1.X <- K2.Y) forms a valid connection. If exactly one such Y
can be found, then the connection is made, otherwise a compile-time error occurs.

For instance, with:

module M1 { module M2 {
provides interface StdControl; uses interface StdControl as SC;

} ... } ...

configuration C { }

20

implementation {
components M1, M2;
M2.SC -> M1;

}

The M2.SC -> M1 line is equivalent to M2.SC -> M1.StdControl.

9.4 Declarations in Configurations

As we saw above, like component specifications (Section 5.5), configurations can include typedef
and tagged type declarations. These declarations belong to the configuration’s implementation
scope.

Additionally, a configuration can refer to the typedefs and enum constants of the components that
it includes. To support this, the syntax for referring to typedefs is extended as follows:

typedef-name: also one of
identifier . identifier

where the first identifier must refer to one of the configuration’s components with an appropriate
typedef in its specification. Similarly, enum constants are referenced by extending C’s field-
reference syntax to allow the object to be the name of one of the configuration’s components.

For example:

module M {
typedef int t;
enum { MAGIC = 54 };

} ...

configuration C { }
implementation {
components M as Someone;

typedef Someone.t Ct;
enum { GREATERMAGIC = Someone.MAGIC + 1 };

}

9.5 Examples

The first example shows all possible wiring cases (comments within the example):

configuration All {
provides interface A as ProvidedA1;
provides interface A as ProvidedA2;
provides interface A as ProvidedA3;
uses interface A as UsedA1;

21

}
implementation {
components new MyComponent() as Comp1, new MyComponent() as Comp2;

// equate our interface ProvidedA1 with MyA provided by Comp1
ProvidedA1 = Comp1.MyA;

// the same, for ProvidedA2 and MyA of Comp2. We rely on the implicit
// connection to avoid naming MyA
ProvidedA2 = Comp2;

// An equate wire connecting ProvidedA3 with UsedA1. We’re just passing
// the interface through
ProvidedA3 = UsedA1;

// Link some B interfaces together:
Comp1.UsedB -> Comp2.MyB; // fully explicit connection
Comp1 -> Comp2.MyB; // implicit equivalent of above line
Comp1 <- Comp2.UsedB; // implicit equivalent of Comp2.UsedB -> Comp1.MyB

}

generic module MyComponent() {
provides interface A as MyA;
provides interface B as MyB;
uses interface B as UsedB;

} implementation { ... }

The same specification element may be connected multiple times, e.g.,:

configuration C {
provides interface X;

} implementation {
components C1, C2;

X = C1.X;
X = C2.X;

}

In this example, the multiple wiring will lead to multiple signalers (“fan-in”) for the events in
interface X and for multiple functions being executed (“fan-out”) when commands in interface X
are called. Note that multiple wiring can also happen when two configurations independently wire
the same interface, e.g., the following example wires C2.Y twice:

configuration C { } configuration D { }
implementation { implementation {
components C1, C2; components C3, C2;

22

interface X { module M {
command int f(); provides interface X as P;
event bool g(int x); uses interface X as U;

} provides command void h();
} implementation { ... }

configuration C {
provides interface X;
provides command void h2();

}
implementation {
components M;
X = M.P;
M.U -> M.P;
h2 = M.h;

}

Figure 1: Simple Wiring Example

C1.Y -> C2.Y; C3.Y -> C2.Y;
} }

9.6 Wiring Semantics

We first explain the semantics of wiring in the absence of parameterised interfaces. Section 9.6.1
below covers parameterised interfaces. Section 9.6.2 specifies requirements on the wiring statements
of an application when viewed as a whole. We will use the simple application of Figure 1 as our
running example.

For the purposes of this section, we will assume that all instantiations of generic components have
been expanded into non-generic components as explained in Sections 6.1 and 14.2.

We define the meaning of wiring in terms of intermediate functions.4 There is one intermediate
function Iα for every command or event α of every component. For instance, in Figure 1, module
M has intermediate functions IM.P.f, IM.P.g, IM.U.f, IM.U.g, IM.h. In examples, we name intermediate
functions based on their component, interface name and function name.

An intermediate function is either used or provided. Each intermediate function takes the same
arguments as the corresponding command or event in the component’s specification. The body of
an intermediate function I is a list of calls (executed sequentially) to other intermediate functions.
These other intermediate functions are the functions to which I is connected by the application’s
wiring statements. The arguments I receives are passed on to the called intermediate functions
unchanged. The result of I is a list of results (the type of this list’s elements is the result type

4nesC can be compiled without explicit intermediate functions, so the behaviour described in this section has no
runtime cost beyond the actual function calls and the runtime dispatch necessary for parameterised commands or
events.

23

of the command or event corresponding to I), built by concatenating the result lists of the called
intermediate functions. An intermediate function which returns an empty result list corresponds
to an unconnected command or event; an intermediate function which returns a list of two or more
elements corresponds to “fan-out”.

Intermediate Functions and Configurations The wiring statements in a configuration specify
the body of intermediate functions. We first expand the wiring statements to refer to intermediate
functions rather than specification elements, and we suppress the distinction between = and ->
wiring statements. We write I1 <-> I2 for a connection between intermediate functions I1 and I2.
For instance, configuration C from Figure 1 specifies the following intermediate function connections:
IC.X.f <-> IM.P.f IM.U.f <-> IM.P.f IC.h2 <-> IM.h
IC.X.g <-> IM.P.g IM.U.g <-> IM.P.g

In a connection I1 <-> I2 from a configuration C one of the two intermediate functions is the callee
and the other is the caller. The connection simply specifies that a call to the callee is added to
the body of the caller. I1 (similarly, I2) is a callee if any of the following conditions hold (we use
the internal, external terminology for specification elements with respect to the configuration C
containing the connection):

• If I1 corresponds to an internal specification element that is a bare, provided command or
event.

• If I1 corresponds to an external specification element that is a bare, used command or event.

• If I1 corresponds to a command of interface instance X, and X is an internal, provided or
external, used specification element.

• If I1 corresponds to an event of interface instance X, and X is an external, provided or
internal, used specification element.

If none of these conditions hold, I1 is a caller. The rules for wiring in Section 9.2 ensure that a
connection I1 <-> I2 cannot connect two callers or two callees. In configuration C from Figure 1,
IC.X.f, IC.h2, IM.P.g, IM.U.f are callers and IC.X.g, IM.P.f, IM.U.g, IM.h are callees. Thus the connections of
C specify that a call to IM.P.f is added to IC.X.f, a call to IC.X.g is added to IM.P.g, etc.

Intermediate Functions and Modules The C code in modules calls, and is called by, inter-
mediate functions.

The intermediate function I for provided command or event α of module M contains a single call
to the implementation of α in M . Its result is the singleton list of this call’s result.

The expression call α(e1, . . . , en) is evaluated as follows:

• The arguments e1, . . . , en are evaluated, giving values v1, . . . , vn.

• The intermediate function I corresponding to α is called with arguments v1, . . . , vn, with
results list L.

• If L = (w) (a singleton list), the result of the call is w.

24

list of int IM.P.f() { list of bool IM.P.g(int x) {
return list(M.P.f()); list of bool r1 = IC.X.g(x);

} list of bool r1 = IM.U.g(x);
return list concat(r1, r2);

}

list of int IM.U.f() { list of bool IM.U.g(int x) {
return IM.P.f(); return list(M.U.g(x));

} }

list of int IC.X.f() { list of bool IC.X.g(int x) {
return IM.P.f(); return empty list;

} }

list of void IC.h2() { list of void IM.h() {
return IM.h(); return list(M.h());

} }

Figure 2: Intermediate Functions for Figure 1

• If L = (w1, w2, . . . , wm) (two or more elements), the result of the call depends on the result
type τ of α. If τ = void, then the result is void. Otherwise, τ must have an associated
combining function c (Section 11 shows how combining functions are associated with types),
or a compile-time error occurs. The combining function takes two values of type τ and returns
a result of type τ . The result of the call is c(w1, c(w2, . . . , c(wm−1, wm))) (note that the order
of the elements of L was arbitrary).

• If L is empty the default implementation for α is called with arguments v1, . . . , vn, and its
result is the result of the call. Section 9.6.2 specifies that a compile-time error occurs if L
can be empty and there is no default implementation for α.

The rules for signal expressions are identical.

Example Intermediate Functions Figure 2 shows the intermediate functions that are produced
for the components of Figure 1, using a C-like syntax, where list(x) produces a singleton list
containing x, empty list is a constant for the 0 element list and concat list concatenates two
lists. The calls to M.P.f, M.U.g, M.h represent calls to the command and event implementations in
module M (not shown).

9.6.1 Wiring and Parameterised Functions

If a command or event α of component K has instance parameters of type τ1, . . . , τn then there is
an intermediate function Iα,v1,...,vn for every distinct tuple (v1 : τ1, . . . , vn : τn).

In modules, if intermediate function Iv1,...,vn corresponds to parameterised, provided command (or
event) α then the call in Iv1,...,vn to α’s implementation passes values v1, . . . , vn as the values for

25

α’s instance parameters.

The expression call α[e′1, . . . , e
′
m](e1, . . . , en) is evaluated as follows:

• The arguments e1, . . . , en are evaluated, giving values v1, . . . , vn.

• The arguments e′1, . . . , e
′
m are evaluated, giving values v′1, . . . , v

′
m.

• The v′i values are cast to type τi, where τi is the type of the ith interface parameter of α.

• The intermediate function Iv′
1,...,v′

m
corresponding to α is called with arguments v1, . . . , vn,

with results list L.5

• If L has one or more elements, the result of the call is produced as in the non-parameterised
case.

• If L is empty the default implementation for α is called with interface parameter values
v′1, . . . , v

′
m and arguments v1, . . . , vn, and its result is the result of the call. Section 9.6.2

specifies that a compile-time error occurs if L can be empty and there is no default imple-
mentation for α.

The rules for signal expressions are identical.

There are two cases when an endpoint in a wiring statement refers to a parameterised specification
element:

• The endpoint specifies parameter values v1, . . . , vn. If the endpoint corresponds to com-
mands or events α1, . . . , αm then the corresponding intermediate functions are Iα1,v1,...,vn ,
. . . , Iαm,v1,...,vn and wiring behaves as before.

• The endpoint does not specify parameter values. In this case, both endpoints in the wiring
statement correspond to parameterised specification elements, with identical interface param-
eter types τ1, . . . , τn. If one endpoint corresponds to commands or events α1, . . . , αm and the
other to corresponds to commands or events β1, . . . , βm, then there is a connection Iαi,w1,...,wn

<-> Iβi,w1,...,wn for all 1 ≤ i ≤ m and all tuples (w1 : τ1, . . . , wn : τn) (i.e., the endpoints are
connected for all corresponding parameter values).

9.6.2 Application-level Requirements

There are two requirement that the wiring statements of an application must satisfy, or a compile-
time error occurs:

• There must be no infinite loop involving only intermediate functions.

• At every call α (or signal α) expression in the application’s modules:
5This call typically involves a runtime selection between several command implementations - this is the only place

where intermediate functions have a runtime cost.

26

– If the call is unparameterised: if the call returns an empty result list there must be a
default implementation of α (the number of elements in the result list depends only on
the wiring).

– If the call is parameterised: if substitution of any values for the interface parameters of α
returns an empty result list there must be a default implementation of α (the number of
elements in the result list for a given parameter value tuple depends only on the wiring).
Note that this condition does not consider the expressions used to specify interface
parameter values at the call-site.

10 Concurrency in nesC

nesC’s execution model is based on run-to-completion tasks (that typically represent the ongoing
computation), and interrupt handlers that are signaled asynchronously by hardware. The compiler
relies on the user-provided hwevent and atomic hwevent attributes to recognise interrupt handlers
(see Section 11). A scheduler for nesC can execute tasks in any order, but must obey the run-
to-completion rule (the standard TinyOS scheduler follows a FIFO policy). Because tasks are not
preempted and run to completion, they are atomic with respect to each other, but are not atomic
with respect to interrupt handlers.

As this is a concurrent execution model, nesC programs are susceptible to race conditions, in
particular data races on the program’s shared state, i.e., its global and module variables (nesC does
not include dynamic memory allocation). Races are avoided either by accessing shared state only
in tasks, or only within atomic statements. The nesC compiler reports potential data races to the
programmer at compile-time.

Formally, we divide the code of a nesC program into two parts:

Synchronous Code (SC): code (functions, commands, events, tasks) that is only
reachable from tasks.

Asynchronous Code (AC): code that is reachable from at least one interrupt handler.

Although non-preemption eliminates data races among tasks, there are still potential races between
SC and AC, as well as between AC and AC. To prevent data races, nesC issues warnings for
violations of the following rules:

Race-Free Invariant 1: If a variable x is written in AC, then all accesses to x must
occur in atomic sections.

Race-Free Invariant 2: If a variable x is read in AC, then all writes to x must occur
in atomic sections.

The body of a function f called from an atomic statement is considered to be “in” the atomic
statement as long as all calls to f are “in” atomic statements.

It is possible to introduce a race condition that the compiler cannot detect, but it must span
multiple atomic statements or tasks and use storage in intermediate variables.

27

nesC may report data races that cannot occur in practice, e.g., if all accesses are protected by
guards on some other variable. To avoid redundant messages in this case, the programmer can
annotate a variable v with the norace storage-class specifier to eliminate all data race warnings for
v. The norace keyword should be used with caution.

nesC reports a compile-time error for any command or event that is AC and that was not declared
with async. This ensures that code that was not written to execute safely in an interrupt handler
is not called inadvertently.

11 Attributes

All C and nesC declarations can be decorated with attributes (inspired by Java 1.5’s attributes [1])
that:

• Avoid reserving lots of keywords and burdening the syntax. For example, @integer() is used
to mark generic component type arguments that must be integer types (Section 13.3).

• Allow user-specified annotations which are accessible to external tools. The mechanism by
which these user-specified attributes are accessed is beyond the scope of this reference manual;
please see the nesC compiler manual for details.

User-defined attributes must be declared prior to use, and have no effect on code generation except
when the attribute is declared with @macro(...). The language-defined attributes are implicitly
declared; their effects are described in Section 11.

An attribute declaration is simply a struct declaration where the struct’s name is preceded by
@:

struct-or-union-specifier: also one of
struct @ identifier { struct-declaration-list }

A use of an attribute specifies the attribute’s name and gives an initialiser (in parentheses) that
must be valid for attribute’s declaration:

attribute:
@ identifier (initializer-list)

Attributes can be placed on all C and nesC declarations and definitions. Generally, attributes
appear after the annotated object’s name and associated arguments, but before any other syntactic
elements (e.g., initialisers, function bodies, etc). See Appendix A for the full set of rules. The
attributes of x are the union of all attributes on all declarations and definitions of x.

Example:

struct @myattr {
int x;

28

char *why;
};

extern int z @myattr(5, "fun"); // simple use

// a second attribute on z at it’s definition
int z @myattr(3, "morefun") = 22;

// use on a function, with a C99-style initialiser
void f(void) @myattr(.x=5, .why="for f") {

...
}

// use in a module, with an empty initialiser
module X {
provides interface I @myattr();

}
...

11.1 nesC Attributes

nesC includes seven predefined attributes with various effects. Except where otherwise specified,
these take no arguments:

• @C(): This attribute is used for a C declaration or definition d at the top-level of a module
(it is ignored for all other declarations). It specifies that d’s should appear in the global C
scope rather than in the module’s per-component-implementation scope. This allows d to be
used (e.g., called if it is a function) from C code.

• @spontaneous(): This attribute can be used on any function f (in modules or C code). It
indicates that there are calls f that are not visible in the source code. The C main function is a
typical example. Section 14 discusses how the nesC compiler uses the spontaneous attribute
during compilation.

• @hwevent(): This attribute can be used on any function f (in modules or C code). It indicates
that f is an interrupt handler, i.e., that there are spontaneous calls to f and that f is AC
(Section 10). The use of @hwevent() implies @spontaneous().

• @atomic hwevent(): This attribute can be used on any function f (in modules or C code).
This behaves the same as @hwevent(), but, additionally, informs nesC that the body of
f behaves as if it were an atomic statement (on typical hardware this means that this
interrupt handler runs with interrupts disabled). The use of @atomic hwevent() implies
@spontaneous().

Note that neither @hwevent() or @atomic hwevent() provide any linkage of f with a partic-
ular interrupt handler. The mechanism by which that is achieved is platform-specific.

29

Inside a function with the @atomic hwevent() attribute, a call to nesc enable interrupt()
is assumed to terminate the implicit atomic statement. This is useful for interrupt handlers
which must start with interrupts disabled, but can reenable interrupts after a little work.

• @combine(fnname): This attribute specifies the combining function for a type in a typedef
declaration. The combining function specifies how to combine the multiple results of a call
to a command or event which has “fan-out”. For example:

typedef uint8_t result_t @combine("rcombine");

result_t rcombine(result_t r1, result_t r2)
{
return r1 == FAIL ? FAIL : r2;

}

specifies logical-and-like behaviour when combining commands (or events) whose result type
is result t. See Section 9.6 for the detailed semantics.

A compile-time error occurs if the combining function c for a type t does not have the following
type: t c(t, t).

• @integer(), @number(): declare properties of generic component type parameters. See Sec-
tion 13.3.

• @macro(name), @deputy scope(): used to declare attributes used with the Deputy system
that provides type-safety for C [2] and nesC [3]. See the separate “Safe TinyOS” documen-
tation for more information.

Example of attribute use:

module RealMain { ... }
implementation {
int main(int argc, char **argv) @C() @spontaneous() {
...

}
}

This example declares that function main should actually appear in the C global scope (@C()),
so that the linker can find it. It also declares that main can be called even though there are no
function calls to main anywhere in the program (@spontaneous()).

11.2 Attributes in Documentation Comments

To reduce clutter due to annotations, nesC allows attributes placed within a documentation com-
ment before a function signature to apply to that function’s parameters and return type.

Specifically, a comment of the form

30

/**
... @param ’<parameter-declaration>’

*/

before a function declaration or definition will replace the correspondingly named parameter with
parameter-declaration. It is a compile-time error if the type doesn’t match, i.e. the two declarations
must only differ in their attributes (on the parameter or in its type). It is also a compile-time error
if parameter-declaration does not name a parameter of the function.

For instance:

struct @count { int size; };
/** f is an exiciting function.

@param ’int *@count(n) x’ x is an array of n ints.
@param n n is size of array x.

*/
void f(int *x, int n);

is the same as

struct @count { int size; };
void f(int *@count(n) x, int n);

Macros can be used in the documentation comment, so the above could also be written:

#define COUNT(expr) @count(expr)
struct @count { int size; };
/** f is an exiciting function.

@param ’int *COUNT(n) x’ x is an array of n ints.
@param n n is the size of array x.

*/
void f(int *x, int n);

For return types, a comment of the form

/**
... @return ’<type-name>’

*/

before a function declaration or definition will replace the function’s return type with type-name.
It is a compile-time error if the type doesn’t match, i.e. the two types must only differ in their
attributes.

For instance:

struct @count { int size; };
/** g gives us some data.

@param n n is the size of the returned data.

31

@return ’int *@count(n)’ the returned data is n ints.
*/

int *g(int n);

is the same as

struct @count { int size; };
int *@count(n) g(int n);

As with parameters, the type in @return may use macros.

12 External Types

External types are an extension to C that allows definition of types with a platform-independent
representation and no alignment restriction (i.e., an arbitrary char array can be cast to, and
accessed via, an external type). They are intended for communication with entities external to the
nesC program (e.g., other devices via a network), hence their name.

nesC has three kinds of external types:

• External base types are 2’s complement integral types with a fixed size and endianness. These
types are nx intN t, nx uintN t, nxle intN t, nxle uintN t for N = 8, 16, 32, 64. The
nx types are big-endian, the nxle types are little endian, the int types are signed and the
uint types are unsigned. Note that these types are not keywords.

• External array types are any array built from an external type, using the usual C syntax, e.g,
nx int16 t x[10].

External structures and unions are declared like C structures and unions, but using the
nx struct and nx union keywords. An external structure can only contain external types as
elements. Bitfields are supported as follows:

– Big-endian bitfields start filling from a byte’s high-order bits, while little-endian bitfields
fill from the low-order bits.

– Consecutive bitfields of the same endianness are packed together. Bitfields of different
endianness are not stored in the same byte.

External types have no alignment restrictions and external structures contain no byte padding (but
there may be unused bits when bitfields are used). External types can be used exactly like regular
C types.6

6The current nesC compiler does not support using external base types in casts, or to declare initialised variables.

32

13 Miscellaneous

13.1 Constant Folding in nesC

There are two extensions to C’s constant folding (see A.7.19 in K&R [5]) in nesC: constant functions
and unknown constants. Constant functions are functions provided by the nesC language which
return a compile-time constant. The definition of nesC’s constant functions is given in Section 13.2.
An unknown constant is a constant whose value is not known at some stage of semantic checking,
e.g., non-type parameters to generic components are unknown constants when a generic component
is loaded and checked. Unknown constants allow the definition of a generic component to be (mostly,
see next paragraph) checked for correctness before its arguments’ values are known.

An expression involving an unknown constant is considered a constant expression if the resulting
expression is constant irrespective of the unknown constant’s value, with the following exceptions:
a/b and a%b can assume that b is not zero. Constant expressions involving unknown constants
are re-checked once the values of constant expressions become known.7 As a result, the following
generic component definition is legal:

generic module A(int n) { }
implementation {
int s = 20 / n;

}

but the following instantiation will report a compile-time error:

configuration B { }
implementation {
components new A(0) as MyA;

}

13.2 Compile-time Constant Functions

nesC currently has three constant functions:

• unsigned int unique(char *identifier)
unsigned int uniqueN(char *identifier, unsigned int nb)

Given a program with k uses of uniqueN with the same identifier and values n1, . . . nk for
nb, each use returns an integer ui from the sequence 0 . . . (

∑k
i=0 ni) − 1. Furthermore, the

sequences ui . . . ui + ni − 1 do not overlap with each other. Note that ni = 0 is allowed. The
behaviour is undefined if

∑k
i=0 ni >= UINT MAX (UINT MAX from <limits.h>).

Less formally, uniqueN("S", N) allocates a sequence of N consecutive numbers distinct from
all other sequences allocated for identifier S, returns the smallest value from the sequence,
and guarantees that the sequences are compact (start at 0, no gaps between sequences).

A use of unique(S) is short for uniqueN(S, 1).
7The time at which the value of unknown constants become known is unspecified by this language definition.

33

The expansion of uniqueN calls happens after generic component instantiation (Section 14.2):
calls to uniqueN in generic components return a different value in each instantiation.

For purposes of checking constant expressions, uniqueN(s, n) behaves as if it were an un-
known constant.

Using unique, a component providing a service (defined by interface X) can uniquely identify
its clients with the following idiom:

module XService {
provides interface X[uint8_t id];

} implementation { ... }

module UserOfX {
uses interface X;

} implementation { ... }

configuration ConnectUserToService { }
implementation {
components XService, UserOfX;

UserOfX.X -> XService.X[unique("X")];
}

Each client of XService will be connected to interface X with a different id.

• unsigned int uniqueCount(char *identifier)

uniqueCount(s) returns the sum of all nb parameters for all uses of uniqueN(s, nb), or 0 if
there are no calls to uniqueN(s). For purposes of checking constant expressions, uniqueCount(s)
behaves as if it were an unknown constant.

The intended use of uniqueCount is for dimensioning arrays (or other data structures) which
will be indexed using the numbers returned by unique and uniqueN. For instance, a Timer
service that identifies its clients (and hence each independent timer) via a parameterised
interface and unique can use uniqueCount to allocate the correct number of timer data
structures.

In the following example:

generic module A() { }
implementation {
int x = unique("A");
int y = uniqueCount("A");

}
configuration B { }
implementation {
components new A() as A1, new A() as A2;

}

B.A1.y = B.A2.y = 2 and either B.A1.x = 0, B.A2.x = 1 or B.A1.x = 1, B.A2.x = 0.

34

13.3 Type Parameters and C Type Checking

Generic interface and component definitions can have type parameters. Syntactically, type pa-
rameters behave the same as typedef’d identifiers. When a generic component or interface is
instantiated, the type parameter will be replaced with the argument type, which cannot be incom-
plete, of function or of array type. The size and alignment of a type parameter are an unknown
constant (Section 13.1). The rules for assignment and type equivalence for a type parameter t are
simple: a value of type t is assignable to an lvalue of type t (extends A.7.17 in K&R [5]) and type
t is only equivalent to itself (extends A.8.10 in K&R [5]).

If a type parameter t has the @number() attribute (Section 11), the corresponding argument must
be a numerical (integral or floating-point) type, and all numerical operations (i.e., those valid for
floating-point types) are allowed on type t.

If a type parameter t has the @integer() attribute (Section 11), the corresponding argument must
be an integral type, and all integral operations are allowed on type t.

13.4 Functions with no arguments, old-style C declarations

nesC functions with no arguments can be declared with () or (void).

Old-style C declarations (with ()) and function definitions (parameters specified after the argument
list) are not allowed in interfaces or components (and cause compile-time errors).

Note that neither of these changes apply to C files (so that existing .h files can be used unchanged).

13.5 // comments

nesC allows // comments in C, interface and component files.

14 nesC Applications

A nesC application has two executable parts: C declarations and definitions, and a set of compo-
nents (non-generic components and instantiated generic components). The components are con-
nected to each other via interfaces specified by a set of interface definitions.

The C declarations and definitions, interfaces and components that form a nesC application are
determined by an on-demand loading process. The input to the nesC compiler is a single non-
generic component K. The nesC compiler first loads a user-specified set of C files8 (Section 14.1),
then loads the component definition for K (Section 14.2). The resulting program contains:

• All C declarations from the initially loaded C files (Section 14.1).

• All C declarations from all component and interface definitions (Sections 14.2 and 14.3).

• All components output by the rules of Section 14.2.
8ncc, the TinyOS frontend for nesC always loads the TinyOS tos.h file.

35

Section 14.4 discusses the interactions between nesC and the C preprocessor. The external linkage
rules for a compiled nesC program are given in Section 14.5. The process by which C files, nesC
component and interface definitions are located is outside the scope of this reference manual; for
details see the ncc and nescc man pages.

14.1 Loading C file X.h

File X.h is located and preprocessed. Changes made to C macros (via #define and #undef)
are visible to all subsequently preprocessed files. The C declarations and definitions from the
preprocessed X.h file are entered into the C global scope, and are therefore visible to all subsequently
processed C files, interfaces and components.

The nesC keywords are not reserved when a C file is loaded in this fashion.

14.2 Loading Component Definition K

If K has already been loaded, nothing more is done. Otherwise, file K.nc is located and pre-
processed. Changes made to C macros (via #define and #undef) before the component, module
and configuration keyword are preserved and visible to all subsequently loaded files; changes
made after this point are discarded. The preprocessed file is parsed using the following grammar
(translation-unit is a list of C declarations and function definitions):

nesC-file:
translation-unitopt interface
translation-unitopt module
translation-unitopt configuration

Note that the nesC keywords are reserved while parsing the C code in translation-unit. If K.nc
does not define module K or configuration K, a compile-time error is reported.

The component’s definition is then processed (Sections 5.3, 9, and 7). All referenced component
and interface definitions are loaded (see also Section 14.3) during this processing. C declarations
and definitions from a referenced component or interface definition D are available after the first
reference to D. Note however that macros defined in D are not available in K as K was already
preprocessed (see Section 14.4 for more discussion of macros in nesC).

Finally, the set of components output by K is defined by the following algorithm:

Expand(K):

• If K is a generic component, no component is output.

• If K is a non-generic module, K is output.

• If K is a non-generic configuration: for each component instantiation new L(a1, . . . , an) in
K, a new component X is created according to the rules of Section 6.1 and Expand(X) is
called recursively (instantiating further generic components if L contained component instan-
tiations). Then K is output.

36

14.3 Loading Interface Definition I

If I has already been loaded, nothing more is done. Otherwise, file I.nc is located and prepro-
cessed. Changes made to C macros (via #define and #undef) before the interface keyword are
preserved and visible to all subsequently loaded files; changes made after this point are discarded.
The preprocessed file is parsed following the nesC-file production above. If I.nc does not define
interface I a compile-time error is reported. Then I’s definition is processed (Section 5).

14.4 nesC and the C Preprocessor

During preprocessing, nesC defines the NESC symbol to a number XYZ which identifies the version
of the nesC language and compiler. For nesC 1.2, XYZ is at least 120.9

The loading of component and interface definitions is driven by syntactic rules; as a result it must
happen after preprocessing. Thus if a component X references, e.g., an interface I, macros defined
in I cannot be used in X even though I’s C declarations can be. We suggest the following structure
to avoid confusion:

1. All C declarations, function definitions and macros should be placed in a .h file, e.g., I.h.
This file should be wrapped in the usual #ifndef I H / #define I H / #endif way.

2. The file(s) with which the .h file is naturally associated (e.g., an interface I) should #include
"I.h").

3. Files which wish to use the macros defined in the .h file should #include it.

4. Files which wish to use the C declarations and definitions from the .h file should #include
it if they do not reference one of the components or interfaces from point 2.

These rules are similar to how #include is typically used in C.

14.5 External Linkage Rules

The following rules specify the external visibility of symbols defined in a nesC program:

• The external linkage of C variable declarations is the same as for C (note that this does not
include variables declared inside modules).

• All function definitions marked with spontaneous, hwevent or atomic hwevent attributes
(Section 11) are external definitions.

• All used commands and events of binary components are external definitions.

• All non-static C function declarations without a definition are external references.

• All provided commands and events of binary components are external references.
9The NESC symbol was not defined in versions of nesC prior to 1.1.

37

The external names of C declarations, and of function definitions inside modules using the C at-
tribute, are the same as the corresponding C name. The external names of all other externally
visible symbols is implementation-defined.10

The nesC compiler can assume that only code reachable from external definitions will be executed
(i.e., there are no “invisible” calls to any other functions).11

A Grammar

Please refer to Appendix A of Kernighan and Ritchie (K&R) [5, pp234–239] while reading this
grammar (see the “Imported rules”, Section A.1, for a quick summary of references to the K&R
grammar).

The following additional keywords are used by nesC: as, atomic, async, call, command, component,
components, configuration, event, generic, implementation, includes, interface, module,
new, norace, nx struct, nx union, post, provides, signal, task, uses. The following keywords
are reserved for future use: abstract and extends.

nesC reserves all identifiers starting with nesc for internal use.

nesC files follow the nesC-file production; .h files loaded before the program’s main component
(see Section 14) follow the translation-unit directive from K&R and do not reserve any of the nesC
keywords except for nx struct and nx union.

New rules:

nesC-file:
translation-unitopt interface-definition
translation-unitopt component

interface-definition:
interface identifier type-parametersopt attributesopt { declaration-list }

type-parameters:
< type-parameter-list >

type-parameter-list:
identifier attributesopt
type-parameter-list , identifier attributesopt

component:
comp-kind identifier comp-parametersopt attributesopt component-specification implementationopt

comp-kind:

10The current nesC compiler uses “componentname$functionname”.
11The current nesC compiler uses this information to eliminate unreachable code.

38

module
component
configuration
generic module
generic configuration

implementation:
module-implementation
configuration-implementation

comp-parameters:
(component-parameter-list)

component-parameter-list:
component-parameter
component-parameter-list , component-parameter

component-parameter:
parameter-declaration
typedef identifier attributesopt

module-implementation:
implementation { translation-unit }

configuration-implementation:
implementation { configuration-element-listopt }

configuration-element-list:
configuration-element
configuration-element-list configuration-element

configuration-element:
components
connection
declaration

components:
components component-line ;

component-line:
component-ref instance-nameopt
component-line , component-ref instance-nameopt

instance-name:
as identifier

39

component-ref:
identifier
new identifier (component-argument-list)

component-argument-list:
component-argument
component-argument-list , component-argument

component-argument:
expression
type-name

connection:
endpoint = endpoint
endpoint -> endpoint
endpoint <- endpoint

endpoint:
identifier-path
identifier-path [argument-expression-list]

identifier-path:
identifier
identifier-path . identifier

component-specification:
{ uses-provides-list }

uses-provides-list:
uses-provides
uses-provides-list uses-provides

uses-provides:
uses specification-element-list
provides specification-element-list
declaration

specification-element-list:
specification-element
{ specification-elements }

specification-elements:
specification-element
specification-elements specification-element

40

specification-element:
declaration
interface-type instance-nameopt instance-parametersopt attributesopt

interface-type:
interface identifier type-argumentsopt

type-arguments:
< type-argument-list >

type-argument-list:
type-name
type-argument-list , type-name

instance-parameters:
[parameter-type-list]

attributes:
attributes attribute
attribute

attribute:
@ identifier (initializer-list)

Changed rules:

typedef-name: also one of
identifier . identifier

storage-class-specifier: also one of
command event async task norace

declaration-specifiers: also
default declaration-specifiers

direct-declarator: also
identifier . identifier
direct-declarator instance-parameters (parameter-type-list)

struct-or-union-specifier: also one of
struct @ identifier attributes { struct-declaration-list }
struct-or-union identifier attributes { struct-declaration-list }

struct-or-union: also one of

41

nx struct
nx union

enum-specifier: also one of
enum identifier attributes { enumerator-list }

init-declarator: also
declarator attributes
declarator attributes = initializer

struct-declarator: also
declarator attributes
declarator : constant-expression attributes

parameter-declaration: also
declaration-specifiers declarator attributes

function-definition: also
declaration-specifiersopt declarator attributes declaration-listopt compound-statement

type-qualifier: also
attribute

statement: also
atomic-statement

atomic-statement:
atomic statement

postfix-expression: replaced by
primary-expression
postfix-expression [argument-expression-list]
call-kindopt primary (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

call-kind: one of
call signal post

Note that like like regular typedefs, the extended rule for typedef-name (to refer to types from other
components) cannot be directly used in a LALR(1) parser.

42

A.1 Imported Rules

This list is for reference purposes only:

• argument-expression-list : A list of comma-separated expressions.

• compound-stmt : A C { } block statement.

• declaration: A C declaration.

• declaration-list : A list of C declarations.

• declaration-specifiers: A list of storage classes, type specifiers and type qualifiers.

• declarator : The part of a C declaration that specifies the array, function and pointer parts of
the declared entity’s type.

• direct-declarator : Like declarator, but with no leading pointer-type specification.

• enumerator-list : List of constant declarations inside an enum.

• expression: Any C expression.

• identifier : Any C identifier.

• init-declarator : The part of a C declaration that specifies the array, function and pointer
parts of the declared entity’s type, and its initialiser (if any).

• initializer : An initializer for a variable declaration.

• initializer-list : An initializer for a compound type without the enclosing {, kw}.

• parameter-declaration: A function parameter declaration.

• parameter-type-list : Specification of a function’s parameters.

• postfix-expression: A restricted class of C expressions.

• primary : An identifier, constant, string or parenthesised expression.

• statement : Any C statement.

• storage-class-specifier : A storage class specification for a C declaration.

• struct-declaration-list : Declarations inside a struct or union.

• translation-unit : A list of C declarations and function definitions.

• type-name: A C type specification.

43

B Glossary

• attribute: a user-specified decoration that can be placed on C and nesC declarations. At-
tributes must be declared (see attribute kind).

• attribute kind : a declaration of an attribute, which specifies the attribute’s arguments.

• bare command, bare event : See command.

• binary component : a component provided in binary rather than source code form. Binary
components cannot be generic.

• combining function: C function that combines the multiple results of a command call (or
event signal) in the presence of fan-out.

• command, event : A function that is part of a component’s specification, either directly as a
bare command or event, or within one of the component’s interfaces.

Bare commands and events have roles (provider, user) and can have instance parameters.
When these parameters are present, the command or event is known as a bare, parameterised
command or event. The instance parameters of a command or event are distinct from its
regular function parameters.

• compile-time error : An error that the nesC compiler must report at compile-time.

• component : The basic unit of nesC programs. Components have a name and are of two kinds:
generic components, which take type and constant parameters and must be instantiated be-
fore they can be used, and non-generic components which exist implicitly in a single instance.
A component has a specification and an implementation. A module is a component whose
implementation is C code; a configuration is a component whose implementation is built by
selecting or instantiating other components, and wiring them together.

• configuration: A component whose implementation is built by selecting or instantiating other
components, and wiring them together.

• endpoint : A specification of a particular specification element, and optionally some instance
arguments, in a wiring statement of a configuration. A parameterised endpoint is an endpoint
without instance arguments that corresponds to a parameterised specification element.

• event : See command.

• extent : The lifetime of a variable. nesC has the standard C extents: indefinite, function, and
block.

• external : In a configuration C, describes a specification element from C’s specification. See
internal.

• external type: a special kind of type with a platform-independent representation and no
alignment restrictions.

• fan-in: Describes a provided command or event called from more than one place.

44

• fan-out : Describes a used command or event connected to more than one command or event
implementation. A combining function combines the results of calls to these used commands
or events.

• generic: See component, interface.

• interface: An instance of a particular interface type in the specification of a component. An
interface has a name, a role (provider or user), an interface type and, optionally, instance
parameters. An interface with parameters is a parameterised interface.

• interface definition: An interface definition specifies the interaction between two components,
the provider and the user. This specification takes the form of a set of commands and events.
Each interface definition has a distinct name, and may optionally take type parameters.
Interface definitions with type parameters are called generic interface definitions. Argument
types must be provided before a generic interface definition can be used as an interface type.

Interfaces are bi-directional: the provider of an interface implements its commands, the user
of an interface implements its events.

• interface type: A reference to an interface definition, along with argument types if the defini-
tion is generic. Configurations can only connect two interface instances if they have the same
interface type and instance parameters.

• instance parameter : An instance parameter is a parameter added to an interface type. It has
a name and must be of integral type.

There is (conceptually) a separate interface for each distinct list of instance parameter values
of a parameterised interface (and, similarly, separate commands or events in the case of pa-
rameterised commands or events). In a module, parameterised interfaces, commands, events
allow runtime selection or a call or signal target.

• intermediate function: A pseudo-function that represents the behaviour of the commands
and events of a component, as specified by the wiring statements of the whole application.
See Section 9.6.

• internal : In a configuration C, describes a specification element from one of the components
specified in C’s component list. See external.

• module: A component whose implementation is provided by C code.

• name space: nesC has the standard C object (variables, functions, typedefs, enum-constants),
tag (struct, union and enum tags) and label (goto labels) name spaces. Additionally, nesC
has a component name space for component and interface definitions.

• parameterised command, parameterised event, parameterised interface, parameterised end-
point : See command, event, interface instance, endpoint.

• provided, provider : A role for a specification element. A module K must implement the
provided commands of K and provided events of K.

• provided command of K: A command that is either a provided specification element of K, or
a command of a provided interface of K.

45

• provided event of K: An event that is either a provided specification element of K, or an
event of a used interface of K.

• scope: nesC has the standard C global, function-parameter and block scopes. Additionally
there is a component parameter, specification and implementation scope for each component
and an interface parameter and interface scope for each interface. Scopes are divided into
name spaces.

• specification: A list of specification elements that specifies the interaction of a component
with other components.

• specification element : An interface, bare command or bare event in a specification. Specifi-
cation elements are either provided or used.

• task : A TinyOS task representing an independent thread of control whose execution is re-
quested by the application and initiated by the TinyOS scheduler.

• used, user : A role for a specification element.

• used command of K: A command that is either a used specification element of K, or a
command of a used interface of K.

• used event of K: An event that is either a used specification element of K, or an event of a
provided interface of K.

• wiring : The connections between component’s specification elements specified by a configu-
ration.

References

[1] JSR 175: A Metadata Facility for the Java Programming Language.
http://jcp.org/aboutJava/communityprocess/review/jsr175/.

[2] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. Necula. Dependent types for low-level
programming. In ESOP’07.

[3] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. Efficient memory safety for TinyOS.
In Sensys’07.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System Architecture
Directions for Networked Sensors. In Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000. TinyOS is available at http://webs.cs.berkeley.edu.

[5] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second Edition. Prentice
Hall, 1988.

46

	Introduction
	Changes
	Notation
	Scopes and Name Spaces in nesC
	Interface and Component Specification
	Interface Definitions
	Interface Types
	Component Specification
	Bare Commands and Events
	Other Declarations in Specifications
	Command and Event Terminology

	Component Definition
	Generic Components
	Examples

	Component Implementation: Modules
	Implementing the Module's Specification
	Calling Commands and Signaling Events
	Tasks
	Atomic statements

	Component Implementation: Binary Components
	Component Implementation: Configurations
	Included components
	Wiring
	Implicit Connections
	Declarations in Configurations
	Examples
	Wiring Semantics
	Wiring and Parameterised Functions
	Application-level Requirements

	Concurrency in nesC
	Attributes
	nesC Attributes
	Attributes in Documentation Comments

	External Types
	Miscellaneous
	Constant Folding in nesC
	Compile-time Constant Functions
	Type Parameters and C Type Checking
	Functions with no arguments, old-style C declarations
	// comments

	nesC Applications
	Loading C file X.h
	Loading Component Definition K
	Loading Interface Definition I
	nesC and the C Preprocessor
	External Linkage Rules

	Grammar
	Imported Rules

	Glossary

