X-Git-Url: https://oss.titaniummirror.com/gitweb/?a=blobdiff_plain;f=gcc%2Fada%2Fexp_aggr.adb;fp=gcc%2Fada%2Fexp_aggr.adb;h=0000000000000000000000000000000000000000;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=ae9a24ed83a6687d6ce95290b30368845cabbd2b;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/ada/exp_aggr.adb b/gcc/ada/exp_aggr.adb deleted file mode 100644 index ae9a24ed..00000000 --- a/gcc/ada/exp_aggr.adb +++ /dev/null @@ -1,4034 +0,0 @@ ------------------------------------------------------------------------------- --- -- --- GNAT COMPILER COMPONENTS -- --- -- --- E X P _ A G G R -- --- -- --- B o d y -- --- -- --- $Revision: 1.2.12.1 $ --- -- --- Copyright (C) 1992-2001 Free Software Foundation, Inc. -- --- -- --- GNAT is free software; you can redistribute it and/or modify it under -- --- terms of the GNU General Public License as published by the Free Soft- -- --- ware Foundation; either version 2, or (at your option) any later ver- -- --- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- --- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- --- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- --- for more details. You should have received a copy of the GNU General -- --- Public License distributed with GNAT; see file COPYING. If not, write -- --- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- --- MA 02111-1307, USA. -- --- -- --- GNAT was originally developed by the GNAT team at New York University. -- --- Extensive contributions were provided by Ada Core Technologies Inc. -- --- -- ------------------------------------------------------------------------------- - -with Atree; use Atree; -with Checks; use Checks; -with Einfo; use Einfo; -with Elists; use Elists; -with Expander; use Expander; -with Exp_Util; use Exp_Util; -with Exp_Ch3; use Exp_Ch3; -with Exp_Ch7; use Exp_Ch7; -with Freeze; use Freeze; -with Hostparm; use Hostparm; -with Itypes; use Itypes; -with Nmake; use Nmake; -with Nlists; use Nlists; -with Restrict; use Restrict; -with Rtsfind; use Rtsfind; -with Sem; use Sem; -with Sem_Ch3; use Sem_Ch3; -with Sem_Eval; use Sem_Eval; -with Sem_Res; use Sem_Res; -with Sem_Util; use Sem_Util; -with Sinfo; use Sinfo; -with Snames; use Snames; -with Stand; use Stand; -with Tbuild; use Tbuild; -with Uintp; use Uintp; - -package body Exp_Aggr is - - type Case_Bounds is record - Choice_Lo : Node_Id; - Choice_Hi : Node_Id; - Choice_Node : Node_Id; - end record; - - type Case_Table_Type is array (Nat range <>) of Case_Bounds; - -- Table type used by Check_Case_Choices procedure - - procedure Sort_Case_Table (Case_Table : in out Case_Table_Type); - -- Sort the Case Table using the Lower Bound of each Choice as the key. - -- A simple insertion sort is used since the number of choices in a case - -- statement of variant part will usually be small and probably in near - -- sorted order. - - ------------------------------------------------------ - -- Local subprograms for Record Aggregate Expansion -- - ------------------------------------------------------ - - procedure Expand_Record_Aggregate - (N : Node_Id; - Orig_Tag : Node_Id := Empty; - Parent_Expr : Node_Id := Empty); - -- This is the top level procedure for record aggregate expansion. - -- Expansion for record aggregates needs expand aggregates for tagged - -- record types. Specifically Expand_Record_Aggregate adds the Tag - -- field in front of the Component_Association list that was created - -- during resolution by Resolve_Record_Aggregate. - -- - -- N is the record aggregate node. - -- Orig_Tag is the value of the Tag that has to be provided for this - -- specific aggregate. It carries the tag corresponding to the type - -- of the outermost aggregate during the recursive expansion - -- Parent_Expr is the ancestor part of the original extension - -- aggregate - - procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id); - -- N is an N_Aggregate of a N_Extension_Aggregate. Typ is the type of - -- the aggregate. Transform the given aggregate into a sequence of - -- assignments component per component. - - function Build_Record_Aggr_Code - (N : Node_Id; - Typ : Entity_Id; - Target : Node_Id; - Flist : Node_Id := Empty; - Obj : Entity_Id := Empty) - return List_Id; - -- N is an N_Aggregate or a N_Extension_Aggregate. Typ is the type - -- of the aggregate. Target is an expression containing the - -- location on which the component by component assignments will - -- take place. Returns the list of assignments plus all other - -- adjustments needed for tagged and controlled types. Flist is an - -- expression representing the finalization list on which to - -- attach the controlled components if any. Obj is present in the - -- object declaration and dynamic allocation cases, it contains - -- an entity that allows to know if the value being created needs to be - -- attached to the final list in case of pragma finalize_Storage_Only. - - ----------------------------------------------------- - -- Local subprograms for array aggregate expansion -- - ----------------------------------------------------- - - procedure Expand_Array_Aggregate (N : Node_Id); - -- This is the top-level routine to perform array aggregate expansion. - -- N is the N_Aggregate node to be expanded. - - function Backend_Processing_Possible (N : Node_Id) return Boolean; - -- This function checks if array aggregate N can be processed directly - -- by Gigi. If this is the case True is returned. - - function Build_Array_Aggr_Code - (N : Node_Id; - Index : Node_Id; - Into : Node_Id; - Scalar_Comp : Boolean; - Indices : List_Id := No_List; - Flist : Node_Id := Empty) - return List_Id; - -- This recursive routine returns a list of statements containing the - -- loops and assignments that are needed for the expansion of the array - -- aggregate N. - -- - -- N is the (sub-)aggregate node to be expanded into code. - -- - -- Index is the index node corresponding to the array sub-aggregate N. - -- - -- Into is the target expression into which we are copying the aggregate. - -- - -- Scalar_Comp is True if the component type of the aggregate is scalar. - -- - -- Indices is the current list of expressions used to index the - -- object we are writing into. - -- - -- Flist is an expression representing the finalization list on which - -- to attach the controlled components if any. - - function Number_Of_Choices (N : Node_Id) return Nat; - -- Returns the number of discrete choices (not including the others choice - -- if present) contained in (sub-)aggregate N. - - function Late_Expansion - (N : Node_Id; - Typ : Entity_Id; - Target : Node_Id; - Flist : Node_Id := Empty; - Obj : Entity_Id := Empty) - return List_Id; - -- N is a nested (record or array) aggregate that has been marked - -- with 'Delay_Expansion'. Typ is the expected type of the - -- aggregate and Target is a (duplicable) expression that will - -- hold the result of the aggregate expansion. Flist is the - -- finalization list to be used to attach controlled - -- components. 'Obj' when non empty, carries the original object - -- being initialized in order to know if it needs to be attached - -- to the previous parameter which may not be the case when - -- Finalize_Storage_Only is set. Basically this procedure is used - -- to implement top-down expansions of nested aggregates. This is - -- necessary for avoiding temporaries at each level as well as for - -- propagating the right internal finalization list. - - function Make_OK_Assignment_Statement - (Sloc : Source_Ptr; - Name : Node_Id; - Expression : Node_Id) - return Node_Id; - -- This is like Make_Assignment_Statement, except that Assignment_OK - -- is set in the left operand. All assignments built by this unit - -- use this routine. This is needed to deal with assignments to - -- initialized constants that are done in place. - - function Safe_Slice_Assignment - (N : Node_Id; - Typ : Entity_Id) - return Boolean; - -- If a slice assignment has an aggregate with a single others_choice, - -- the assignment can be done in place even if bounds are not static, - -- by converting it into a loop over the discrete range of the slice. - - --------------------------------- - -- Backend_Processing_Possible -- - --------------------------------- - - -- Backend processing by Gigi/gcc is possible only if all the following - -- conditions are met: - - -- 1. N is fully positional - - -- 2. N is not a bit-packed array aggregate; - - -- 3. The size of N's array type must be known at compile time. Note - -- that this implies that the component size is also known - - -- 4. The array type of N does not follow the Fortran layout convention - -- or if it does it must be 1 dimensional. - - -- 5. The array component type is tagged, which may necessitate - -- reassignment of proper tags. - - function Backend_Processing_Possible (N : Node_Id) return Boolean is - Typ : constant Entity_Id := Etype (N); - -- Typ is the correct constrained array subtype of the aggregate. - - function Static_Check (N : Node_Id; Index : Node_Id) return Boolean; - -- Recursively checks that N is fully positional, returns true if so. - - ------------------ - -- Static_Check -- - ------------------ - - function Static_Check (N : Node_Id; Index : Node_Id) return Boolean is - Expr : Node_Id; - - begin - -- Check for component associations - - if Present (Component_Associations (N)) then - return False; - end if; - - -- Recurse to check subaggregates, which may appear in qualified - -- expressions. If delayed, the front-end will have to expand. - - Expr := First (Expressions (N)); - - while Present (Expr) loop - - if Is_Delayed_Aggregate (Expr) then - return False; - end if; - - if Present (Next_Index (Index)) - and then not Static_Check (Expr, Next_Index (Index)) - then - return False; - end if; - - Next (Expr); - end loop; - - return True; - end Static_Check; - - -- Start of processing for Backend_Processing_Possible - - begin - -- Checks 2 (array must not be bit packed) - - if Is_Bit_Packed_Array (Typ) then - return False; - end if; - - -- Checks 4 (array must not be multi-dimensional Fortran case) - - if Convention (Typ) = Convention_Fortran - and then Number_Dimensions (Typ) > 1 - then - return False; - end if; - - -- Checks 3 (size of array must be known at compile time) - - if not Size_Known_At_Compile_Time (Typ) then - return False; - end if; - - -- Checks 1 (aggregate must be fully positional) - - if not Static_Check (N, First_Index (Typ)) then - return False; - end if; - - -- Checks 5 (if the component type is tagged, then we may need - -- to do tag adjustments; perhaps this should be refined to - -- check for any component associations that actually - -- need tag adjustment, along the lines of the test that's - -- done in Has_Delayed_Nested_Aggregate_Or_Tagged_Comps - -- for record aggregates with tagged components, but not - -- clear whether it's worthwhile ???; in the case of the - -- JVM, object tags are handled implicitly) - - if Is_Tagged_Type (Component_Type (Typ)) and then not Java_VM then - return False; - end if; - - -- Backend processing is possible - - Set_Compile_Time_Known_Aggregate (N, True); - Set_Size_Known_At_Compile_Time (Etype (N), True); - return True; - end Backend_Processing_Possible; - - --------------------------- - -- Build_Array_Aggr_Code -- - --------------------------- - - -- The code that we generate from a one dimensional aggregate is - - -- 1. If the sub-aggregate contains discrete choices we - - -- (a) Sort the discrete choices - - -- (b) Otherwise for each discrete choice that specifies a range we - -- emit a loop. If a range specifies a maximum of three values, or - -- we are dealing with an expression we emit a sequence of - -- assignments instead of a loop. - - -- (c) Generate the remaining loops to cover the others choice if any. - - -- 2. If the aggregate contains positional elements we - - -- (a) translate the positional elements in a series of assignments. - - -- (b) Generate a final loop to cover the others choice if any. - -- Note that this final loop has to be a while loop since the case - - -- L : Integer := Integer'Last; - -- H : Integer := Integer'Last; - -- A : array (L .. H) := (1, others =>0); - - -- cannot be handled by a for loop. Thus for the following - - -- array (L .. H) := (.. positional elements.., others =>E); - - -- we always generate something like: - - -- I : Index_Type := Index_Of_Last_Positional_Element; - -- while I < H loop - -- I := Index_Base'Succ (I) - -- Tmp (I) := E; - -- end loop; - - function Build_Array_Aggr_Code - (N : Node_Id; - Index : Node_Id; - Into : Node_Id; - Scalar_Comp : Boolean; - Indices : List_Id := No_List; - Flist : Node_Id := Empty) - return List_Id - is - Loc : constant Source_Ptr := Sloc (N); - Index_Base : constant Entity_Id := Base_Type (Etype (Index)); - Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base); - Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base); - - function Add (Val : Int; To : Node_Id) return Node_Id; - -- Returns an expression where Val is added to expression To, - -- unless To+Val is provably out of To's base type range. - -- To must be an already analyzed expression. - - function Empty_Range (L, H : Node_Id) return Boolean; - -- Returns True if the range defined by L .. H is certainly empty. - - function Equal (L, H : Node_Id) return Boolean; - -- Returns True if L = H for sure. - - function Index_Base_Name return Node_Id; - -- Returns a new reference to the index type name. - - function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id; - -- Ind must be a side-effect free expression. - -- If the input aggregate N to Build_Loop contains no sub-aggregates, - -- This routine returns the assignment statement - -- - -- Into (Indices, Ind) := Expr; - -- - -- Otherwise we call Build_Code recursively. - - function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id; - -- Nodes L and H must be side-effect free expressions. - -- If the input aggregate N to Build_Loop contains no sub-aggregates, - -- This routine returns the for loop statement - -- - -- for J in Index_Base'(L) .. Index_Base'(H) loop - -- Into (Indices, J) := Expr; - -- end loop; - -- - -- Otherwise we call Build_Code recursively. - -- As an optimization if the loop covers 3 or less scalar elements we - -- generate a sequence of assignments. - - function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id; - -- Nodes L and H must be side-effect free expressions. - -- If the input aggregate N to Build_Loop contains no sub-aggregates, - -- This routine returns the while loop statement - -- - -- I : Index_Base := L; - -- while I < H loop - -- I := Index_Base'Succ (I); - -- Into (Indices, I) := Expr; - -- end loop; - -- - -- Otherwise we call Build_Code recursively. - - function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean; - function Local_Expr_Value (E : Node_Id) return Uint; - -- These two Local routines are used to replace the corresponding ones - -- in sem_eval because while processing the bounds of an aggregate with - -- discrete choices whose index type is an enumeration, we build static - -- expressions not recognized by Compile_Time_Known_Value as such since - -- they have not yet been analyzed and resolved. All the expressions in - -- question are things like Index_Base_Name'Val (Const) which we can - -- easily recognize as being constant. - - --------- - -- Add -- - --------- - - function Add (Val : Int; To : Node_Id) return Node_Id is - Expr_Pos : Node_Id; - Expr : Node_Id; - To_Pos : Node_Id; - - U_To : Uint; - U_Val : Uint := UI_From_Int (Val); - - begin - -- Note: do not try to optimize the case of Val = 0, because - -- we need to build a new node with the proper Sloc value anyway. - - -- First test if we can do constant folding - - if Local_Compile_Time_Known_Value (To) then - U_To := Local_Expr_Value (To) + Val; - - -- Determine if our constant is outside the range of the index. - -- If so return an Empty node. This empty node will be caught - -- by Empty_Range below. - - if Compile_Time_Known_Value (Index_Base_L) - and then U_To < Expr_Value (Index_Base_L) - then - return Empty; - - elsif Compile_Time_Known_Value (Index_Base_H) - and then U_To > Expr_Value (Index_Base_H) - then - return Empty; - end if; - - Expr_Pos := Make_Integer_Literal (Loc, U_To); - Set_Is_Static_Expression (Expr_Pos); - - if not Is_Enumeration_Type (Index_Base) then - Expr := Expr_Pos; - - -- If we are dealing with enumeration return - -- Index_Base'Val (Expr_Pos) - - else - Expr := - Make_Attribute_Reference - (Loc, - Prefix => Index_Base_Name, - Attribute_Name => Name_Val, - Expressions => New_List (Expr_Pos)); - end if; - - return Expr; - end if; - - -- If we are here no constant folding possible - - if not Is_Enumeration_Type (Index_Base) then - Expr := - Make_Op_Add (Loc, - Left_Opnd => Duplicate_Subexpr (To), - Right_Opnd => Make_Integer_Literal (Loc, U_Val)); - - -- If we are dealing with enumeration return - -- Index_Base'Val (Index_Base'Pos (To) + Val) - - else - To_Pos := - Make_Attribute_Reference - (Loc, - Prefix => Index_Base_Name, - Attribute_Name => Name_Pos, - Expressions => New_List (Duplicate_Subexpr (To))); - - Expr_Pos := - Make_Op_Add (Loc, - Left_Opnd => To_Pos, - Right_Opnd => Make_Integer_Literal (Loc, U_Val)); - - Expr := - Make_Attribute_Reference - (Loc, - Prefix => Index_Base_Name, - Attribute_Name => Name_Val, - Expressions => New_List (Expr_Pos)); - end if; - - return Expr; - end Add; - - ----------------- - -- Empty_Range -- - ----------------- - - function Empty_Range (L, H : Node_Id) return Boolean is - Is_Empty : Boolean := False; - Low : Node_Id; - High : Node_Id; - - begin - -- First check if L or H were already detected as overflowing the - -- index base range type by function Add above. If this is so Add - -- returns the empty node. - - if No (L) or else No (H) then - return True; - end if; - - for J in 1 .. 3 loop - case J is - - -- L > H range is empty - - when 1 => - Low := L; - High := H; - - -- B_L > H range must be empty - - when 2 => - Low := Index_Base_L; - High := H; - - -- L > B_H range must be empty - - when 3 => - Low := L; - High := Index_Base_H; - end case; - - if Local_Compile_Time_Known_Value (Low) - and then Local_Compile_Time_Known_Value (High) - then - Is_Empty := - UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High)); - end if; - - exit when Is_Empty; - end loop; - - return Is_Empty; - end Empty_Range; - - ----------- - -- Equal -- - ----------- - - function Equal (L, H : Node_Id) return Boolean is - begin - if L = H then - return True; - - elsif Local_Compile_Time_Known_Value (L) - and then Local_Compile_Time_Known_Value (H) - then - return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H)); - end if; - - return False; - end Equal; - - ---------------- - -- Gen_Assign -- - ---------------- - - function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is - L : List_Id := New_List; - F : Entity_Id; - A : Node_Id; - - New_Indices : List_Id; - Indexed_Comp : Node_Id; - Expr_Q : Node_Id; - Comp_Type : Entity_Id := Empty; - - function Add_Loop_Actions (Lis : List_Id) return List_Id; - -- Collect insert_actions generated in the construction of a - -- loop, and prepend them to the sequence of assignments to - -- complete the eventual body of the loop. - - ---------------------- - -- Add_Loop_Actions -- - ---------------------- - - function Add_Loop_Actions (Lis : List_Id) return List_Id is - Res : List_Id; - - begin - if Nkind (Parent (Expr)) = N_Component_Association - and then Present (Loop_Actions (Parent (Expr))) - then - Append_List (Lis, Loop_Actions (Parent (Expr))); - Res := Loop_Actions (Parent (Expr)); - Set_Loop_Actions (Parent (Expr), No_List); - return Res; - - else - return Lis; - end if; - end Add_Loop_Actions; - - -- Start of processing for Gen_Assign - - begin - if No (Indices) then - New_Indices := New_List; - else - New_Indices := New_Copy_List_Tree (Indices); - end if; - - Append_To (New_Indices, Ind); - - if Present (Flist) then - F := New_Copy_Tree (Flist); - - elsif Present (Etype (N)) and then Controlled_Type (Etype (N)) then - if Is_Entity_Name (Into) - and then Present (Scope (Entity (Into))) - then - F := Find_Final_List (Scope (Entity (Into))); - - else - F := Find_Final_List (Current_Scope); - end if; - else - F := 0; - end if; - - if Present (Next_Index (Index)) then - return - Add_Loop_Actions ( - Build_Array_Aggr_Code - (Expr, Next_Index (Index), - Into, Scalar_Comp, New_Indices, F)); - end if; - - -- If we get here then we are at a bottom-level (sub-)aggregate - - Indexed_Comp := Checks_Off ( - Make_Indexed_Component (Loc, - Prefix => New_Copy_Tree (Into), - Expressions => New_Indices)); - - Set_Assignment_OK (Indexed_Comp); - - if Nkind (Expr) = N_Qualified_Expression then - Expr_Q := Expression (Expr); - else - Expr_Q := Expr; - end if; - - if Present (Etype (N)) - and then Etype (N) /= Any_Composite - then - Comp_Type := Component_Type (Etype (N)); - - elsif Present (Next (First (New_Indices))) then - - -- this is a multidimensional array. Recover the component - -- type from the outermost aggregate, because subaggregates - -- do not have an assigned type. - - declare - P : Node_Id := Parent (Expr); - - begin - while Present (P) loop - - if Nkind (P) = N_Aggregate - and then Present (Etype (P)) - then - Comp_Type := Component_Type (Etype (P)); - exit; - - else - P := Parent (P); - end if; - end loop; - end; - end if; - - if (Nkind (Expr_Q) = N_Aggregate - or else Nkind (Expr_Q) = N_Extension_Aggregate) - then - - -- At this stage the Expression may not have been - -- analyzed yet because the array aggregate code has not - -- been updated to use the Expansion_Delayed flag and - -- avoid analysis altogether to solve the same problem - -- (see Resolve_Aggr_Expr) so let's do the analysis of - -- non-array aggregates now in order to get the value of - -- Expansion_Delayed flag for the inner aggregate ??? - - if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then - Analyze_And_Resolve (Expr_Q, Comp_Type); - end if; - - if Is_Delayed_Aggregate (Expr_Q) then - return - Add_Loop_Actions ( - Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp, F)); - end if; - end if; - - -- Now generate the assignment with no associated controlled - -- actions since the target of the assignment may not have - -- been initialized, it is not possible to Finalize it as - -- expected by normal controlled assignment. The rest of the - -- controlled actions are done manually with the proper - -- finalization list coming from the context. - - A := - Make_OK_Assignment_Statement (Loc, - Name => Indexed_Comp, - Expression => New_Copy_Tree (Expr)); - - if Present (Comp_Type) and then Controlled_Type (Comp_Type) then - Set_No_Ctrl_Actions (A); - end if; - - Append_To (L, A); - - -- Adjust the tag if tagged (because of possible view - -- conversions), unless compiling for the Java VM - -- where tags are implicit. - - if Present (Comp_Type) - and then Is_Tagged_Type (Comp_Type) - and then not Java_VM - then - A := - Make_OK_Assignment_Statement (Loc, - Name => - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Indexed_Comp), - Selector_Name => - New_Reference_To (Tag_Component (Comp_Type), Loc)), - - Expression => - Unchecked_Convert_To (RTE (RE_Tag), - New_Reference_To ( - Access_Disp_Table (Comp_Type), Loc))); - - Append_To (L, A); - end if; - - -- Adjust and Attach the component to the proper final list - -- which can be the controller of the outer record object or - -- the final list associated with the scope - - if Present (Comp_Type) and then Controlled_Type (Comp_Type) then - Append_List_To (L, - Make_Adjust_Call ( - Ref => New_Copy_Tree (Indexed_Comp), - Typ => Comp_Type, - Flist_Ref => F, - With_Attach => Make_Integer_Literal (Loc, 1))); - end if; - - return Add_Loop_Actions (L); - end Gen_Assign; - - -------------- - -- Gen_Loop -- - -------------- - - function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is - L_I : Node_Id; - - L_Range : Node_Id; - -- Index_Base'(L) .. Index_Base'(H) - - L_Iteration_Scheme : Node_Id; - -- L_I in Index_Base'(L) .. Index_Base'(H) - - L_Body : List_Id; - -- The statements to execute in the loop - - S : List_Id := New_List; - -- list of statement - - Tcopy : Node_Id; - -- Copy of expression tree, used for checking purposes - - begin - -- If loop bounds define an empty range return the null statement - - if Empty_Range (L, H) then - Append_To (S, Make_Null_Statement (Loc)); - - -- The expression must be type-checked even though no component - -- of the aggregate will have this value. This is done only for - -- actual components of the array, not for subaggregates. Do the - -- check on a copy, because the expression may be shared among - -- several choices, some of which might be non-null. - - if Present (Etype (N)) - and then Is_Array_Type (Etype (N)) - and then No (Next_Index (Index)) - then - Expander_Mode_Save_And_Set (False); - Tcopy := New_Copy_Tree (Expr); - Set_Parent (Tcopy, N); - Analyze_And_Resolve (Tcopy, Component_Type (Etype (N))); - Expander_Mode_Restore; - end if; - - return S; - - -- If loop bounds are the same then generate an assignment - - elsif Equal (L, H) then - return Gen_Assign (New_Copy_Tree (L), Expr); - - -- If H - L <= 2 then generate a sequence of assignments - -- when we are processing the bottom most aggregate and it contains - -- scalar components. - - elsif No (Next_Index (Index)) - and then Scalar_Comp - and then Local_Compile_Time_Known_Value (L) - and then Local_Compile_Time_Known_Value (H) - and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2 - then - Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr)); - Append_List_To (S, Gen_Assign (Add (1, To => L), Expr)); - - if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then - Append_List_To (S, Gen_Assign (Add (2, To => L), Expr)); - end if; - - return S; - end if; - - -- Otherwise construct the loop, starting with the loop index L_I - - L_I := Make_Defining_Identifier (Loc, New_Internal_Name ('I')); - - -- Construct "L .. H" - - L_Range := - Make_Range - (Loc, - Low_Bound => Make_Qualified_Expression - (Loc, - Subtype_Mark => Index_Base_Name, - Expression => L), - High_Bound => Make_Qualified_Expression - (Loc, - Subtype_Mark => Index_Base_Name, - Expression => H)); - - -- Construct "for L_I in Index_Base range L .. H" - - L_Iteration_Scheme := - Make_Iteration_Scheme - (Loc, - Loop_Parameter_Specification => - Make_Loop_Parameter_Specification - (Loc, - Defining_Identifier => L_I, - Discrete_Subtype_Definition => L_Range)); - - -- Construct the statements to execute in the loop body - - L_Body := Gen_Assign (New_Reference_To (L_I, Loc), Expr); - - -- Construct the final loop - - Append_To (S, Make_Implicit_Loop_Statement - (Node => N, - Identifier => Empty, - Iteration_Scheme => L_Iteration_Scheme, - Statements => L_Body)); - - return S; - end Gen_Loop; - - --------------- - -- Gen_While -- - --------------- - - -- The code built is - - -- W_I : Index_Base := L; - -- while W_I < H loop - -- W_I := Index_Base'Succ (W); - -- L_Body; - -- end loop; - - function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is - - W_I : Node_Id; - - W_Decl : Node_Id; - -- W_I : Base_Type := L; - - W_Iteration_Scheme : Node_Id; - -- while W_I < H - - W_Index_Succ : Node_Id; - -- Index_Base'Succ (I) - - W_Increment : Node_Id; - -- W_I := Index_Base'Succ (W) - - W_Body : List_Id := New_List; - -- The statements to execute in the loop - - S : List_Id := New_List; - -- list of statement - - begin - -- If loop bounds define an empty range or are equal return null - - if Empty_Range (L, H) or else Equal (L, H) then - Append_To (S, Make_Null_Statement (Loc)); - return S; - end if; - - -- Build the decl of W_I - - W_I := Make_Defining_Identifier (Loc, New_Internal_Name ('I')); - W_Decl := - Make_Object_Declaration - (Loc, - Defining_Identifier => W_I, - Object_Definition => Index_Base_Name, - Expression => L); - - -- Theoretically we should do a New_Copy_Tree (L) here, but we know - -- that in this particular case L is a fresh Expr generated by - -- Add which we are the only ones to use. - - Append_To (S, W_Decl); - - -- construct " while W_I < H" - - W_Iteration_Scheme := - Make_Iteration_Scheme - (Loc, - Condition => Make_Op_Lt - (Loc, - Left_Opnd => New_Reference_To (W_I, Loc), - Right_Opnd => New_Copy_Tree (H))); - - -- Construct the statements to execute in the loop body - - W_Index_Succ := - Make_Attribute_Reference - (Loc, - Prefix => Index_Base_Name, - Attribute_Name => Name_Succ, - Expressions => New_List (New_Reference_To (W_I, Loc))); - - W_Increment := - Make_OK_Assignment_Statement - (Loc, - Name => New_Reference_To (W_I, Loc), - Expression => W_Index_Succ); - - Append_To (W_Body, W_Increment); - Append_List_To (W_Body, - Gen_Assign (New_Reference_To (W_I, Loc), Expr)); - - -- Construct the final loop - - Append_To (S, Make_Implicit_Loop_Statement - (Node => N, - Identifier => Empty, - Iteration_Scheme => W_Iteration_Scheme, - Statements => W_Body)); - - return S; - end Gen_While; - - --------------------- - -- Index_Base_Name -- - --------------------- - - function Index_Base_Name return Node_Id is - begin - return New_Reference_To (Index_Base, Sloc (N)); - end Index_Base_Name; - - ------------------------------------ - -- Local_Compile_Time_Known_Value -- - ------------------------------------ - - function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is - begin - return Compile_Time_Known_Value (E) - or else - (Nkind (E) = N_Attribute_Reference - and then Attribute_Name (E) = Name_Val - and then Compile_Time_Known_Value (First (Expressions (E)))); - end Local_Compile_Time_Known_Value; - - ---------------------- - -- Local_Expr_Value -- - ---------------------- - - function Local_Expr_Value (E : Node_Id) return Uint is - begin - if Compile_Time_Known_Value (E) then - return Expr_Value (E); - else - return Expr_Value (First (Expressions (E))); - end if; - end Local_Expr_Value; - - -- Build_Array_Aggr_Code Variables - - Assoc : Node_Id; - Choice : Node_Id; - Expr : Node_Id; - - Others_Expr : Node_Id := Empty; - - Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N)); - Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N)); - -- The aggregate bounds of this specific sub-aggregate. Note that if - -- the code generated by Build_Array_Aggr_Code is executed then these - -- bounds are OK. Otherwise a Constraint_Error would have been raised. - - Aggr_Low : constant Node_Id := Duplicate_Subexpr (Aggr_L); - Aggr_High : constant Node_Id := Duplicate_Subexpr (Aggr_H); - -- After Duplicate_Subexpr these are side-effect free. - - Low : Node_Id; - High : Node_Id; - - Nb_Choices : Nat := 0; - Table : Case_Table_Type (1 .. Number_Of_Choices (N)); - -- Used to sort all the different choice values - - Nb_Elements : Int; - -- Number of elements in the positional aggregate - - New_Code : List_Id := New_List; - - -- Start of processing for Build_Array_Aggr_Code - - begin - -- STEP 1: Process component associations - - if No (Expressions (N)) then - - -- STEP 1 (a): Sort the discrete choices - - Assoc := First (Component_Associations (N)); - while Present (Assoc) loop - - Choice := First (Choices (Assoc)); - while Present (Choice) loop - - if Nkind (Choice) = N_Others_Choice then - Others_Expr := Expression (Assoc); - exit; - end if; - - Get_Index_Bounds (Choice, Low, High); - - Nb_Choices := Nb_Choices + 1; - Table (Nb_Choices) := (Choice_Lo => Low, - Choice_Hi => High, - Choice_Node => Expression (Assoc)); - - Next (Choice); - end loop; - - Next (Assoc); - end loop; - - -- If there is more than one set of choices these must be static - -- and we can therefore sort them. Remember that Nb_Choices does not - -- account for an others choice. - - if Nb_Choices > 1 then - Sort_Case_Table (Table); - end if; - - -- STEP 1 (b): take care of the whole set of discrete choices. - - for J in 1 .. Nb_Choices loop - Low := Table (J).Choice_Lo; - High := Table (J).Choice_Hi; - Expr := Table (J).Choice_Node; - - Append_List (Gen_Loop (Low, High, Expr), To => New_Code); - end loop; - - -- STEP 1 (c): generate the remaining loops to cover others choice - -- We don't need to generate loops over empty gaps, but if there is - -- a single empty range we must analyze the expression for semantics - - if Present (Others_Expr) then - declare - First : Boolean := True; - - begin - for J in 0 .. Nb_Choices loop - - if J = 0 then - Low := Aggr_Low; - else - Low := Add (1, To => Table (J).Choice_Hi); - end if; - - if J = Nb_Choices then - High := Aggr_High; - else - High := Add (-1, To => Table (J + 1).Choice_Lo); - end if; - - -- If this is an expansion within an init_proc, make - -- sure that discriminant references are replaced by - -- the corresponding discriminal. - - if Inside_Init_Proc then - if Is_Entity_Name (Low) - and then Ekind (Entity (Low)) = E_Discriminant - then - Set_Entity (Low, Discriminal (Entity (Low))); - end if; - - if Is_Entity_Name (High) - and then Ekind (Entity (High)) = E_Discriminant - then - Set_Entity (High, Discriminal (Entity (High))); - end if; - end if; - - if First - or else not Empty_Range (Low, High) - then - First := False; - Append_List - (Gen_Loop (Low, High, Others_Expr), To => New_Code); - end if; - end loop; - end; - end if; - - -- STEP 2: Process positional components - - else - -- STEP 2 (a): Generate the assignments for each positional element - -- Note that here we have to use Aggr_L rather than Aggr_Low because - -- Aggr_L is analyzed and Add wants an analyzed expression. - - Expr := First (Expressions (N)); - Nb_Elements := -1; - - while Present (Expr) loop - Nb_Elements := Nb_Elements + 1; - Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr), - To => New_Code); - Next (Expr); - end loop; - - -- STEP 2 (b): Generate final loop if an others choice is present - -- Here Nb_Elements gives the offset of the last positional element. - - if Present (Component_Associations (N)) then - Assoc := Last (Component_Associations (N)); - Expr := Expression (Assoc); - - Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L), - Aggr_High, - Expr), - To => New_Code); - end if; - end if; - - return New_Code; - end Build_Array_Aggr_Code; - - ---------------------------- - -- Build_Record_Aggr_Code -- - ---------------------------- - - function Build_Record_Aggr_Code - (N : Node_Id; - Typ : Entity_Id; - Target : Node_Id; - Flist : Node_Id := Empty; - Obj : Entity_Id := Empty) - return List_Id - is - Loc : constant Source_Ptr := Sloc (N); - L : constant List_Id := New_List; - Start_L : constant List_Id := New_List; - N_Typ : constant Entity_Id := Etype (N); - - Comp : Node_Id; - Instr : Node_Id; - Ref : Node_Id; - F : Node_Id; - Comp_Type : Entity_Id; - Selector : Entity_Id; - Comp_Expr : Node_Id; - Comp_Kind : Node_Kind; - Expr_Q : Node_Id; - - Internal_Final_List : Node_Id; - - -- If this is an internal aggregate, the External_Final_List is an - -- expression for the controller record of the enclosing type. - -- If the current aggregate has several controlled components, this - -- expression will appear in several calls to attach to the finali- - -- zation list, and it must not be shared. - - External_Final_List : Node_Id; - Ancestor_Is_Expression : Boolean := False; - Ancestor_Is_Subtype_Mark : Boolean := False; - - Init_Typ : Entity_Id := Empty; - Attach : Node_Id; - - function Get_Constraint_Association (T : Entity_Id) return Node_Id; - -- Returns the first discriminant association in the constraint - -- associated with T, if any, otherwise returns Empty. - - function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id; - -- Returns the value that the given discriminant of an ancestor - -- type should receive (in the absence of a conflict with the - -- value provided by an ancestor part of an extension aggregate). - - procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id); - -- Check that each of the discriminant values defined by the - -- ancestor part of an extension aggregate match the corresponding - -- values provided by either an association of the aggregate or - -- by the constraint imposed by a parent type (RM95-4.3.2(8)). - - function Init_Controller - (Target : Node_Id; - Typ : Entity_Id; - F : Node_Id; - Attach : Node_Id; - Init_Pr : Boolean) - return List_Id; - -- returns the list of statements necessary to initialize the internal - -- controller of the (possible) ancestor typ into target and attach - -- it to finalization list F. Init_Pr conditions the call to the - -- init_proc since it may already be done due to ancestor initialization - - --------------------------------- - -- Ancestor_Discriminant_Value -- - --------------------------------- - - function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is - Assoc : Node_Id; - Assoc_Elmt : Elmt_Id; - Aggr_Comp : Entity_Id; - Corresp_Disc : Entity_Id; - Current_Typ : Entity_Id := Base_Type (Typ); - Parent_Typ : Entity_Id; - Parent_Disc : Entity_Id; - Save_Assoc : Node_Id := Empty; - - begin - -- First check any discriminant associations to see if - -- any of them provide a value for the discriminant. - - if Present (Discriminant_Specifications (Parent (Current_Typ))) then - Assoc := First (Component_Associations (N)); - while Present (Assoc) loop - Aggr_Comp := Entity (First (Choices (Assoc))); - - if Ekind (Aggr_Comp) = E_Discriminant then - Save_Assoc := Expression (Assoc); - - Corresp_Disc := Corresponding_Discriminant (Aggr_Comp); - while Present (Corresp_Disc) loop - -- If found a corresponding discriminant then return - -- the value given in the aggregate. (Note: this is - -- not correct in the presence of side effects. ???) - - if Disc = Corresp_Disc then - return Duplicate_Subexpr (Expression (Assoc)); - end if; - Corresp_Disc := - Corresponding_Discriminant (Corresp_Disc); - end loop; - end if; - - Next (Assoc); - end loop; - end if; - - -- No match found in aggregate, so chain up parent types to find - -- a constraint that defines the value of the discriminant. - - Parent_Typ := Etype (Current_Typ); - while Current_Typ /= Parent_Typ loop - if Has_Discriminants (Parent_Typ) then - Parent_Disc := First_Discriminant (Parent_Typ); - - -- We either get the association from the subtype indication - -- of the type definition itself, or from the discriminant - -- constraint associated with the type entity (which is - -- preferable, but it's not always present ???) - - if Is_Empty_Elmt_List ( - Discriminant_Constraint (Current_Typ)) - then - Assoc := Get_Constraint_Association (Current_Typ); - Assoc_Elmt := No_Elmt; - else - Assoc_Elmt := - First_Elmt (Discriminant_Constraint (Current_Typ)); - Assoc := Node (Assoc_Elmt); - end if; - - -- Traverse the discriminants of the parent type looking - -- for one that corresponds. - - while Present (Parent_Disc) and then Present (Assoc) loop - Corresp_Disc := Parent_Disc; - while Present (Corresp_Disc) - and then Disc /= Corresp_Disc - loop - Corresp_Disc := - Corresponding_Discriminant (Corresp_Disc); - end loop; - - if Disc = Corresp_Disc then - if Nkind (Assoc) = N_Discriminant_Association then - Assoc := Expression (Assoc); - end if; - - -- If the located association directly denotes - -- a discriminant, then use the value of a saved - -- association of the aggregate. This is a kludge - -- to handle certain cases involving multiple - -- discriminants mapped to a single discriminant - -- of a descendant. It's not clear how to locate the - -- appropriate discriminant value for such cases. ??? - - if Is_Entity_Name (Assoc) - and then Ekind (Entity (Assoc)) = E_Discriminant - then - Assoc := Save_Assoc; - end if; - - return Duplicate_Subexpr (Assoc); - end if; - - Next_Discriminant (Parent_Disc); - - if No (Assoc_Elmt) then - Next (Assoc); - else - Next_Elmt (Assoc_Elmt); - if Present (Assoc_Elmt) then - Assoc := Node (Assoc_Elmt); - else - Assoc := Empty; - end if; - end if; - end loop; - end if; - - Current_Typ := Parent_Typ; - Parent_Typ := Etype (Current_Typ); - end loop; - - -- In some cases there's no ancestor value to locate (such as - -- when an ancestor part given by an expression defines the - -- discriminant value). - - return Empty; - end Ancestor_Discriminant_Value; - - ---------------------------------- - -- Check_Ancestor_Discriminants -- - ---------------------------------- - - procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is - Discr : Entity_Id := First_Discriminant (Base_Type (Anc_Typ)); - Disc_Value : Node_Id; - Cond : Node_Id; - - begin - while Present (Discr) loop - Disc_Value := Ancestor_Discriminant_Value (Discr); - - if Present (Disc_Value) then - Cond := Make_Op_Ne (Loc, - Left_Opnd => - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Target), - Selector_Name => New_Occurrence_Of (Discr, Loc)), - Right_Opnd => Disc_Value); - - Append_To (L, Make_Raise_Constraint_Error (Loc, - Condition => Cond)); - end if; - - Next_Discriminant (Discr); - end loop; - end Check_Ancestor_Discriminants; - - -------------------------------- - -- Get_Constraint_Association -- - -------------------------------- - - function Get_Constraint_Association (T : Entity_Id) return Node_Id is - Typ_Def : constant Node_Id := Type_Definition (Parent (T)); - Indic : constant Node_Id := Subtype_Indication (Typ_Def); - - begin - -- ??? Also need to cover case of a type mark denoting a subtype - -- with constraint. - - if Nkind (Indic) = N_Subtype_Indication - and then Present (Constraint (Indic)) - then - return First (Constraints (Constraint (Indic))); - end if; - - return Empty; - end Get_Constraint_Association; - - --------------------- - -- Init_controller -- - --------------------- - - function Init_Controller - (Target : Node_Id; - Typ : Entity_Id; - F : Node_Id; - Attach : Node_Id; - Init_Pr : Boolean) - return List_Id - is - Ref : Node_Id; - L : List_Id := New_List; - - begin - -- _init_proc (target._controller); - -- initialize (target._controller); - -- Attach_to_Final_List (target._controller, F); - - Ref := Make_Selected_Component (Loc, - Prefix => Convert_To (Typ, New_Copy_Tree (Target)), - Selector_Name => Make_Identifier (Loc, Name_uController)); - Set_Assignment_OK (Ref); - - if Init_Pr then - Append_List_To (L, - Build_Initialization_Call (Loc, - Id_Ref => Ref, - Typ => RTE (RE_Record_Controller), - In_Init_Proc => Within_Init_Proc)); - end if; - - Append_To (L, - Make_Procedure_Call_Statement (Loc, - Name => - New_Reference_To (Find_Prim_Op (RTE (RE_Record_Controller), - Name_Initialize), Loc), - Parameter_Associations => New_List (New_Copy_Tree (Ref)))); - - Append_To (L, - Make_Attach_Call ( - Obj_Ref => New_Copy_Tree (Ref), - Flist_Ref => F, - With_Attach => Attach)); - return L; - end Init_Controller; - - -- Start of processing for Build_Record_Aggr_Code - - begin - - -- Deal with the ancestor part of extension aggregates - -- or with the discriminants of the root type - - if Nkind (N) = N_Extension_Aggregate then - declare - A : constant Node_Id := Ancestor_Part (N); - - begin - - -- If the ancestor part is a subtype mark "T", we generate - -- _init_proc (T(tmp)); if T is constrained and - -- _init_proc (S(tmp)); where S applies an appropriate - -- constraint if T is unconstrained - - if Is_Entity_Name (A) and then Is_Type (Entity (A)) then - - Ancestor_Is_Subtype_Mark := True; - - if Is_Constrained (Entity (A)) then - Init_Typ := Entity (A); - - -- For an ancestor part given by an unconstrained type - -- mark, create a subtype constrained by appropriate - -- corresponding discriminant values coming from either - -- associations of the aggregate or a constraint on - -- a parent type. The subtype will be used to generate - -- the correct default value for the ancestor part. - - elsif Has_Discriminants (Entity (A)) then - declare - Anc_Typ : Entity_Id := Entity (A); - Discrim : Entity_Id := First_Discriminant (Anc_Typ); - Anc_Constr : List_Id := New_List; - Disc_Value : Node_Id; - New_Indic : Node_Id; - Subt_Decl : Node_Id; - begin - while Present (Discrim) loop - Disc_Value := Ancestor_Discriminant_Value (Discrim); - Append_To (Anc_Constr, Disc_Value); - Next_Discriminant (Discrim); - end loop; - - New_Indic := - Make_Subtype_Indication (Loc, - Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc), - Constraint => - Make_Index_Or_Discriminant_Constraint (Loc, - Constraints => Anc_Constr)); - - Init_Typ := Create_Itype (Ekind (Anc_Typ), N); - - Subt_Decl := - Make_Subtype_Declaration (Loc, - Defining_Identifier => Init_Typ, - Subtype_Indication => New_Indic); - - -- Itypes must be analyzed with checks off - - Analyze (Subt_Decl, Suppress => All_Checks); - end; - end if; - - Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); - Set_Assignment_OK (Ref); - - Append_List_To (Start_L, - Build_Initialization_Call (Loc, - Id_Ref => Ref, - Typ => Init_Typ, - In_Init_Proc => Within_Init_Proc)); - - if Is_Constrained (Entity (A)) - and then Has_Discriminants (Entity (A)) - then - Check_Ancestor_Discriminants (Entity (A)); - end if; - - -- If the ancestor part is an expression "E", we generate - -- T(tmp) := E; - - else - Ancestor_Is_Expression := True; - Init_Typ := Etype (A); - - -- Assign the tag before doing the assignment to make sure - -- that the dispatching call in the subsequent deep_adjust - -- works properly (unless Java_VM, where tags are implicit). - - if not Java_VM then - Instr := - Make_OK_Assignment_Statement (Loc, - Name => - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Target), - Selector_Name => New_Reference_To ( - Tag_Component (Base_Type (Typ)), Loc)), - - Expression => - Unchecked_Convert_To (RTE (RE_Tag), - New_Reference_To ( - Access_Disp_Table (Base_Type (Typ)), Loc))); - - Set_Assignment_OK (Name (Instr)); - Append_To (L, Instr); - end if; - - -- If the ancestor part is an aggregate, force its full - -- expansion, which was delayed. - - if Nkind (A) = N_Qualified_Expression - and then (Nkind (Expression (A)) = N_Aggregate - or else - Nkind (Expression (A)) = N_Extension_Aggregate) - then - Set_Analyzed (A, False); - Set_Analyzed (Expression (A), False); - end if; - - Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); - Set_Assignment_OK (Ref); - Append_To (L, - Make_Unsuppress_Block (Loc, - Name_Discriminant_Check, - New_List ( - Make_OK_Assignment_Statement (Loc, - Name => Ref, - Expression => A)))); - - if Has_Discriminants (Init_Typ) then - Check_Ancestor_Discriminants (Init_Typ); - end if; - end if; - end; - - else - -- Generate the discriminant expressions, component by component. - -- If the base type is an unchecked union, the discriminants are - -- unknown to the back-end and absent from a value of the type, so - -- assignments for them are not emitted. - - if Has_Discriminants (Typ) - and then not Is_Unchecked_Union (Base_Type (Typ)) - then - - -- ??? The discriminants of the object not inherited in the type - -- of the object should be initialized here - - null; - - -- Generate discriminant init values - - declare - Discriminant : Entity_Id; - Discriminant_Value : Node_Id; - - begin - Discriminant := First_Girder_Discriminant (Typ); - - while Present (Discriminant) loop - - Comp_Expr := - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Target), - Selector_Name => New_Occurrence_Of (Discriminant, Loc)); - - Discriminant_Value := - Get_Discriminant_Value ( - Discriminant, - N_Typ, - Discriminant_Constraint (N_Typ)); - - Instr := - Make_OK_Assignment_Statement (Loc, - Name => Comp_Expr, - Expression => New_Copy_Tree (Discriminant_Value)); - - Set_No_Ctrl_Actions (Instr); - Append_To (L, Instr); - - Next_Girder_Discriminant (Discriminant); - end loop; - end; - end if; - end if; - - -- Generate the assignments, component by component - - -- tmp.comp1 := Expr1_From_Aggr; - -- tmp.comp2 := Expr2_From_Aggr; - -- .... - - Comp := First (Component_Associations (N)); - while Present (Comp) loop - Selector := Entity (First (Choices (Comp))); - - if Ekind (Selector) /= E_Discriminant - or else Nkind (N) = N_Extension_Aggregate - then - Comp_Type := Etype (Selector); - Comp_Kind := Nkind (Expression (Comp)); - Comp_Expr := - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Target), - Selector_Name => New_Occurrence_Of (Selector, Loc)); - - if Nkind (Expression (Comp)) = N_Qualified_Expression then - Expr_Q := Expression (Expression (Comp)); - else - Expr_Q := Expression (Comp); - end if; - - -- The controller is the one of the parent type defining - -- the component (in case of inherited components). - - if Controlled_Type (Comp_Type) then - Internal_Final_List := - Make_Selected_Component (Loc, - Prefix => Convert_To ( - Scope (Original_Record_Component (Selector)), - New_Copy_Tree (Target)), - Selector_Name => - Make_Identifier (Loc, Name_uController)); - Internal_Final_List := - Make_Selected_Component (Loc, - Prefix => Internal_Final_List, - Selector_Name => Make_Identifier (Loc, Name_F)); - - -- The internal final list can be part of a constant object - - Set_Assignment_OK (Internal_Final_List); - else - Internal_Final_List := Empty; - end if; - - if Is_Delayed_Aggregate (Expr_Q) then - Append_List_To (L, - Late_Expansion (Expr_Q, Comp_Type, Comp_Expr, - Internal_Final_List)); - else - Instr := - Make_OK_Assignment_Statement (Loc, - Name => Comp_Expr, - Expression => Expression (Comp)); - - Set_No_Ctrl_Actions (Instr); - Append_To (L, Instr); - - -- Adjust the tag if tagged (because of possible view - -- conversions), unless compiling for the Java VM - -- where tags are implicit. - - -- tmp.comp._tag := comp_typ'tag; - - if Is_Tagged_Type (Comp_Type) and then not Java_VM then - Instr := - Make_OK_Assignment_Statement (Loc, - Name => - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Comp_Expr), - Selector_Name => - New_Reference_To (Tag_Component (Comp_Type), Loc)), - - Expression => - Unchecked_Convert_To (RTE (RE_Tag), - New_Reference_To ( - Access_Disp_Table (Comp_Type), Loc))); - - Append_To (L, Instr); - end if; - - -- Adjust and Attach the component to the proper controller - -- Adjust (tmp.comp); - -- Attach_To_Final_List (tmp.comp, - -- comp_typ (tmp)._record_controller.f) - - if Controlled_Type (Comp_Type) then - Append_List_To (L, - Make_Adjust_Call ( - Ref => New_Copy_Tree (Comp_Expr), - Typ => Comp_Type, - Flist_Ref => Internal_Final_List, - With_Attach => Make_Integer_Literal (Loc, 1))); - end if; - end if; - end if; - - Next (Comp); - end loop; - - -- If the type is tagged, the tag needs to be initialized (unless - -- compiling for the Java VM where tags are implicit). It is done - -- late in the initialization process because in some cases, we call - -- the init_proc of an ancestor which will not leave out the right tag - - if Ancestor_Is_Expression then - null; - - elsif Is_Tagged_Type (Typ) and then not Java_VM then - Instr := - Make_OK_Assignment_Statement (Loc, - Name => - Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Target), - Selector_Name => - New_Reference_To (Tag_Component (Base_Type (Typ)), Loc)), - - Expression => - Unchecked_Convert_To (RTE (RE_Tag), - New_Reference_To (Access_Disp_Table (Base_Type (Typ)), Loc))); - - Append_To (L, Instr); - end if; - - -- Now deal with the various controlled type data structure - -- initializations - - if Present (Obj) - and then Finalize_Storage_Only (Typ) - and then (Is_Library_Level_Entity (Obj) - or else Entity (Constant_Value (RTE (RE_Garbage_Collected))) - = Standard_True) - then - Attach := Make_Integer_Literal (Loc, 0); - - elsif Nkind (Parent (N)) = N_Qualified_Expression - and then Nkind (Parent (Parent (N))) = N_Allocator - then - Attach := Make_Integer_Literal (Loc, 2); - - else - Attach := Make_Integer_Literal (Loc, 1); - end if; - - -- Determine the external finalization list. It is either the - -- finalization list of the outer-scope or the one coming from - -- an outer aggregate. When the target is not a temporary, the - -- proper scope is the scope of the target rather than the - -- potentially transient current scope. - - if Controlled_Type (Typ) then - if Present (Flist) then - External_Final_List := New_Copy_Tree (Flist); - - elsif Is_Entity_Name (Target) - and then Present (Scope (Entity (Target))) - then - External_Final_List := Find_Final_List (Scope (Entity (Target))); - - else - External_Final_List := Find_Final_List (Current_Scope); - end if; - - else - External_Final_List := Empty; - end if; - - -- initialize and attach the outer object in the is_controlled - -- case - - if Is_Controlled (Typ) then - if Ancestor_Is_Subtype_Mark then - Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); - Set_Assignment_OK (Ref); - Append_To (L, - Make_Procedure_Call_Statement (Loc, - Name => New_Reference_To ( - Find_Prim_Op (Init_Typ, Name_Initialize), Loc), - Parameter_Associations => New_List (New_Copy_Tree (Ref)))); - end if; - - -- ??? when the ancestor part is an expression, the global - -- object is already attached at the wrong level. It should - -- be detached and re-attached. We have a design problem here. - - if Ancestor_Is_Expression - and then Has_Controlled_Component (Init_Typ) - then - null; - - elsif Has_Controlled_Component (Typ) then - F := Make_Selected_Component (Loc, - Prefix => New_Copy_Tree (Target), - Selector_Name => Make_Identifier (Loc, Name_uController)); - F := Make_Selected_Component (Loc, - Prefix => F, - Selector_Name => Make_Identifier (Loc, Name_F)); - - Ref := New_Copy_Tree (Target); - Set_Assignment_OK (Ref); - - Append_To (L, - Make_Attach_Call ( - Obj_Ref => Ref, - Flist_Ref => F, - With_Attach => Make_Integer_Literal (Loc, 1))); - - else -- is_Controlled (Typ) and not Has_Controlled_Component (Typ) - Ref := New_Copy_Tree (Target); - Set_Assignment_OK (Ref); - Append_To (Start_L, - Make_Attach_Call ( - Obj_Ref => Ref, - Flist_Ref => New_Copy_Tree (External_Final_List), - With_Attach => Attach)); - end if; - end if; - - -- in the Has_Controlled component case, all the intermediate - -- controllers must be initialized - - if Has_Controlled_Component (Typ) then - declare - Inner_Typ : Entity_Id; - Outer_Typ : Entity_Id; - At_Root : Boolean; - - begin - - Outer_Typ := Base_Type (Typ); - - -- find outer type with a controller - - while Outer_Typ /= Init_Typ - and then not Has_New_Controlled_Component (Outer_Typ) - loop - Outer_Typ := Etype (Outer_Typ); - end loop; - - -- attach it to the outer record controller to the - -- external final list - - if Outer_Typ = Init_Typ then - Append_List_To (Start_L, - Init_Controller ( - Target => Target, - Typ => Outer_Typ, - F => External_Final_List, - Attach => Attach, - Init_Pr => Ancestor_Is_Expression)); - At_Root := True; - Inner_Typ := Init_Typ; - - else - Append_List_To (Start_L, - Init_Controller ( - Target => Target, - Typ => Outer_Typ, - F => External_Final_List, - Attach => Attach, - Init_Pr => True)); - - Inner_Typ := Etype (Outer_Typ); - At_Root := - not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ; - end if; - - -- Initialize the internal controllers for tagged types with - -- more than one controller. - - while not At_Root and then Inner_Typ /= Init_Typ loop - if Has_New_Controlled_Component (Inner_Typ) then - F := - Make_Selected_Component (Loc, - Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)), - Selector_Name => - Make_Identifier (Loc, Name_uController)); - F := Make_Selected_Component (Loc, - Prefix => F, - Selector_Name => Make_Identifier (Loc, Name_F)); - Append_List_To (Start_L, - Init_Controller ( - Target => Target, - Typ => Inner_Typ, - F => F, - Attach => Make_Integer_Literal (Loc, 1), - Init_Pr => True)); - Outer_Typ := Inner_Typ; - end if; - - -- Stop at the root - - At_Root := Inner_Typ = Etype (Inner_Typ); - Inner_Typ := Etype (Inner_Typ); - end loop; - - -- if not done yet attach the controller of the ancestor part - - if Outer_Typ /= Init_Typ - and then Inner_Typ = Init_Typ - and then Has_Controlled_Component (Init_Typ) - then - F := - Make_Selected_Component (Loc, - Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)), - Selector_Name => Make_Identifier (Loc, Name_uController)); - F := Make_Selected_Component (Loc, - Prefix => F, - Selector_Name => Make_Identifier (Loc, Name_F)); - - Attach := Make_Integer_Literal (Loc, 1); - Append_List_To (Start_L, - Init_Controller ( - Target => Target, - Typ => Init_Typ, - F => F, - Attach => Attach, - Init_Pr => Ancestor_Is_Expression)); - end if; - end; - end if; - - Append_List_To (Start_L, L); - return Start_L; - end Build_Record_Aggr_Code; - - ------------------------------- - -- Convert_Aggr_In_Allocator -- - ------------------------------- - - procedure Convert_Aggr_In_Allocator (Decl, Aggr : Node_Id) is - Loc : constant Source_Ptr := Sloc (Aggr); - Typ : constant Entity_Id := Etype (Aggr); - Temp : constant Entity_Id := Defining_Identifier (Decl); - Occ : constant Node_Id := Unchecked_Convert_To (Typ, - Make_Explicit_Dereference (Loc, New_Reference_To (Temp, Loc))); - - Access_Type : constant Entity_Id := Etype (Temp); - - begin - Insert_Actions_After (Decl, - Late_Expansion (Aggr, Typ, Occ, - Find_Final_List (Access_Type), - Associated_Final_Chain (Base_Type (Access_Type)))); - end Convert_Aggr_In_Allocator; - - -------------------------------- - -- Convert_Aggr_In_Assignment -- - -------------------------------- - - procedure Convert_Aggr_In_Assignment (N : Node_Id) is - Aggr : Node_Id := Expression (N); - Typ : constant Entity_Id := Etype (Aggr); - Occ : constant Node_Id := New_Copy_Tree (Name (N)); - - begin - if Nkind (Aggr) = N_Qualified_Expression then - Aggr := Expression (Aggr); - end if; - - Insert_Actions_After (N, - Late_Expansion (Aggr, Typ, Occ, - Find_Final_List (Typ, New_Copy_Tree (Occ)))); - end Convert_Aggr_In_Assignment; - - --------------------------------- - -- Convert_Aggr_In_Object_Decl -- - --------------------------------- - - procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is - Obj : constant Entity_Id := Defining_Identifier (N); - Aggr : Node_Id := Expression (N); - Loc : constant Source_Ptr := Sloc (Aggr); - Typ : constant Entity_Id := Etype (Aggr); - Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc); - - begin - Set_Assignment_OK (Occ); - - if Nkind (Aggr) = N_Qualified_Expression then - Aggr := Expression (Aggr); - end if; - - Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj)); - Set_No_Initialization (N); - end Convert_Aggr_In_Object_Decl; - - ---------------------------- - -- Convert_To_Assignments -- - ---------------------------- - - procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is - Loc : constant Source_Ptr := Sloc (N); - Temp : Entity_Id; - - Instr : Node_Id; - Target_Expr : Node_Id; - Parent_Kind : Node_Kind; - Unc_Decl : Boolean := False; - Parent_Node : Node_Id; - - begin - - Parent_Node := Parent (N); - Parent_Kind := Nkind (Parent_Node); - - if Parent_Kind = N_Qualified_Expression then - - -- Check if we are in a unconstrained declaration because in this - -- case the current delayed expansion mechanism doesn't work when - -- the declared object size depend on the initializing expr. - - begin - Parent_Node := Parent (Parent_Node); - Parent_Kind := Nkind (Parent_Node); - if Parent_Kind = N_Object_Declaration then - Unc_Decl := - not Is_Entity_Name (Object_Definition (Parent_Node)) - or else Has_Discriminants ( - Entity (Object_Definition (Parent_Node))) - or else Is_Class_Wide_Type ( - Entity (Object_Definition (Parent_Node))); - end if; - end; - end if; - - -- Just set the Delay flag in the following cases where the - -- transformation will be done top down from above - -- - internal aggregate (transformed when expanding the parent) - -- - allocators (see Convert_Aggr_In_Allocator) - -- - object decl (see Convert_Aggr_In_Object_Decl) - -- - safe assignments (see Convert_Aggr_Assignments) - -- so far only the assignments in the init_procs are taken - -- into account - - if Parent_Kind = N_Aggregate - or else Parent_Kind = N_Extension_Aggregate - or else Parent_Kind = N_Component_Association - or else Parent_Kind = N_Allocator - or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl) - or else (Parent_Kind = N_Assignment_Statement - and then Inside_Init_Proc) - then - Set_Expansion_Delayed (N); - return; - end if; - - if Requires_Transient_Scope (Typ) then - Establish_Transient_Scope (N, Sec_Stack => - Is_Controlled (Typ) or else Has_Controlled_Component (Typ)); - end if; - - -- Create the temporary - - Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('A')); - - Instr := - Make_Object_Declaration (Loc, - Defining_Identifier => Temp, - Object_Definition => New_Occurrence_Of (Typ, Loc)); - - Set_No_Initialization (Instr); - Insert_Action (N, Instr); - Target_Expr := New_Occurrence_Of (Temp, Loc); - - Insert_Actions (N, Build_Record_Aggr_Code (N, Typ, Target_Expr)); - Rewrite (N, New_Occurrence_Of (Temp, Loc)); - Analyze_And_Resolve (N, Typ); - end Convert_To_Assignments; - - ---------------------------- - -- Expand_Array_Aggregate -- - ---------------------------- - - -- Array aggregate expansion proceeds as follows: - - -- 1. If requested we generate code to perform all the array aggregate - -- bound checks, specifically - - -- (a) Check that the index range defined by aggregate bounds is - -- compatible with corresponding index subtype. - - -- (b) If an others choice is present check that no aggregate - -- index is outside the bounds of the index constraint. - - -- (c) For multidimensional arrays make sure that all subaggregates - -- corresponding to the same dimension have the same bounds. - - -- 2. Check if the aggregate can be statically processed. If this is the - -- case pass it as is to Gigi. Note that a necessary condition for - -- static processing is that the aggregate be fully positional. - - -- 3. If in place aggregate expansion is possible (i.e. no need to create - -- a temporary) then mark the aggregate as such and return. Otherwise - -- create a new temporary and generate the appropriate initialization - -- code. - - procedure Expand_Array_Aggregate (N : Node_Id) is - Loc : constant Source_Ptr := Sloc (N); - - Typ : constant Entity_Id := Etype (N); - Ctyp : constant Entity_Id := Component_Type (Typ); - -- Typ is the correct constrained array subtype of the aggregate and - -- Ctyp is the corresponding component type. - - Aggr_Dimension : constant Pos := Number_Dimensions (Typ); - -- Number of aggregate index dimensions. - - Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id; - Aggr_High : array (1 .. Aggr_Dimension) of Node_Id; - -- Low and High bounds of the constraint for each aggregate index. - - Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id; - -- The type of each index. - - Maybe_In_Place_OK : Boolean; - -- If the type is neither controlled nor packed and the aggregate - -- is the expression in an assignment, assignment in place may be - -- possible, provided other conditions are met on the LHS. - - Others_Present : array (1 .. Aggr_Dimension) of Boolean - := (others => False); - -- If Others_Present (I) is True, then there is an others choice - -- in one of the sub-aggregates of N at dimension I. - - procedure Build_Constrained_Type (Positional : Boolean); - -- If the subtype is not static or unconstrained, build a constrained - -- type using the computable sizes of the aggregate and its sub- - -- aggregates. - - procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id); - -- Checks that the bounds of Aggr_Bounds are within the bounds defined - -- by Index_Bounds. - - procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos); - -- Checks that in a multi-dimensional array aggregate all subaggregates - -- corresponding to the same dimension have the same bounds. - -- Sub_Aggr is an array sub-aggregate. Dim is the dimension - -- corresponding to the sub-aggregate. - - procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos); - -- Computes the values of array Others_Present. Sub_Aggr is the - -- array sub-aggregate we start the computation from. Dim is the - -- dimension corresponding to the sub-aggregate. - - procedure Convert_To_Positional (N : Node_Id); - -- If possible, convert named notation to positional notation. This - -- conversion is possible only in some static cases. If the conversion - -- is possible, then N is rewritten with the analyzed converted - -- aggregate. - - function Has_Address_Clause (D : Node_Id) return Boolean; - -- If the aggregate is the expression in an object declaration, it - -- cannot be expanded in place. This function does a lookahead in the - -- current declarative part to find an address clause for the object - -- being declared. - - function In_Place_Assign_OK return Boolean; - -- Simple predicate to determine whether an aggregate assignment can - -- be done in place, because none of the new values can depend on the - -- components of the target of the assignment. - - procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos); - -- Checks that if an others choice is present in any sub-aggregate no - -- aggregate index is outside the bounds of the index constraint. - -- Sub_Aggr is an array sub-aggregate. Dim is the dimension - -- corresponding to the sub-aggregate. - - ---------------------------- - -- Build_Constrained_Type -- - ---------------------------- - - procedure Build_Constrained_Type (Positional : Boolean) is - Loc : constant Source_Ptr := Sloc (N); - Agg_Type : Entity_Id; - Comp : Node_Id; - Decl : Node_Id; - Typ : constant Entity_Id := Etype (N); - Indices : List_Id := New_List; - Num : Int; - Sub_Agg : Node_Id; - - begin - Agg_Type := - Make_Defining_Identifier ( - Loc, New_Internal_Name ('A')); - - -- If the aggregate is purely positional, all its subaggregates - -- have the same size. We collect the dimensions from the first - -- subaggregate at each level. - - if Positional then - Sub_Agg := N; - - for D in 1 .. Number_Dimensions (Typ) loop - Comp := First (Expressions (Sub_Agg)); - - Sub_Agg := Comp; - Num := 0; - - while Present (Comp) loop - Num := Num + 1; - Next (Comp); - end loop; - - Append ( - Make_Range (Loc, - Low_Bound => Make_Integer_Literal (Loc, 1), - High_Bound => - Make_Integer_Literal (Loc, Num)), - Indices); - end loop; - - else - - -- We know the aggregate type is unconstrained and the - -- aggregate is not processable by the back end, therefore - -- not necessarily positional. Retrieve the bounds of each - -- dimension as computed earlier. - - for D in 1 .. Number_Dimensions (Typ) loop - Append ( - Make_Range (Loc, - Low_Bound => Aggr_Low (D), - High_Bound => Aggr_High (D)), - Indices); - end loop; - end if; - - Decl := - Make_Full_Type_Declaration (Loc, - Defining_Identifier => Agg_Type, - Type_Definition => - Make_Constrained_Array_Definition (Loc, - Discrete_Subtype_Definitions => Indices, - Subtype_Indication => - New_Occurrence_Of (Component_Type (Typ), Loc))); - - Insert_Action (N, Decl); - Analyze (Decl); - Set_Etype (N, Agg_Type); - Set_Is_Itype (Agg_Type); - Freeze_Itype (Agg_Type, N); - end Build_Constrained_Type; - - ------------------ - -- Check_Bounds -- - ------------------ - - procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is - Aggr_Lo : Node_Id; - Aggr_Hi : Node_Id; - - Ind_Lo : Node_Id; - Ind_Hi : Node_Id; - - Cond : Node_Id := Empty; - - begin - Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi); - Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi); - - -- Generate the following test: - -- - -- [constraint_error when - -- Aggr_Lo <= Aggr_Hi and then - -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)] - -- - -- As an optimization try to see if some tests are trivially vacuos - -- because we are comparing an expression against itself. - - if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then - Cond := Empty; - - elsif Aggr_Hi = Ind_Hi then - Cond := - Make_Op_Lt (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Lo), - Right_Opnd => Duplicate_Subexpr (Ind_Lo)); - - elsif Aggr_Lo = Ind_Lo then - Cond := - Make_Op_Gt (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Hi), - Right_Opnd => Duplicate_Subexpr (Ind_Hi)); - - else - Cond := - Make_Or_Else (Loc, - Left_Opnd => - Make_Op_Lt (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Lo), - Right_Opnd => Duplicate_Subexpr (Ind_Lo)), - - Right_Opnd => - Make_Op_Gt (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Hi), - Right_Opnd => Duplicate_Subexpr (Ind_Hi))); - end if; - - if Present (Cond) then - Cond := - Make_And_Then (Loc, - Left_Opnd => - Make_Op_Le (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Lo), - Right_Opnd => Duplicate_Subexpr (Aggr_Hi)), - - Right_Opnd => Cond); - - Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False); - Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False); - Insert_Action (N, - Make_Raise_Constraint_Error (Loc, Condition => Cond)); - end if; - end Check_Bounds; - - ---------------------------- - -- Check_Same_Aggr_Bounds -- - ---------------------------- - - procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is - Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr)); - Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr)); - -- The bounds of this specific sub-aggregate. - - Aggr_Lo : constant Node_Id := Aggr_Low (Dim); - Aggr_Hi : constant Node_Id := Aggr_High (Dim); - -- The bounds of the aggregate for this dimension - - Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim); - -- The index type for this dimension. - - Cond : Node_Id := Empty; - - Assoc : Node_Id; - Expr : Node_Id; - - begin - -- If index checks are on generate the test - -- - -- [constraint_error when - -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi] - -- - -- As an optimization try to see if some tests are trivially vacuos - -- because we are comparing an expression against itself. Also for - -- the first dimension the test is trivially vacuous because there - -- is just one aggregate for dimension 1. - - if Index_Checks_Suppressed (Ind_Typ) then - Cond := Empty; - - elsif Dim = 1 - or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi) - then - Cond := Empty; - - elsif Aggr_Hi = Sub_Hi then - Cond := - Make_Op_Ne (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Lo), - Right_Opnd => Duplicate_Subexpr (Sub_Lo)); - - elsif Aggr_Lo = Sub_Lo then - Cond := - Make_Op_Ne (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Hi), - Right_Opnd => Duplicate_Subexpr (Sub_Hi)); - - else - Cond := - Make_Or_Else (Loc, - Left_Opnd => - Make_Op_Ne (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Lo), - Right_Opnd => Duplicate_Subexpr (Sub_Lo)), - - Right_Opnd => - Make_Op_Ne (Loc, - Left_Opnd => Duplicate_Subexpr (Aggr_Hi), - Right_Opnd => Duplicate_Subexpr (Sub_Hi))); - end if; - - if Present (Cond) then - Insert_Action (N, - Make_Raise_Constraint_Error (Loc, Condition => Cond)); - end if; - - -- Now look inside the sub-aggregate to see if there is more work - - if Dim < Aggr_Dimension then - - -- Process positional components - - if Present (Expressions (Sub_Aggr)) then - Expr := First (Expressions (Sub_Aggr)); - while Present (Expr) loop - Check_Same_Aggr_Bounds (Expr, Dim + 1); - Next (Expr); - end loop; - end if; - - -- Process component associations - - if Present (Component_Associations (Sub_Aggr)) then - Assoc := First (Component_Associations (Sub_Aggr)); - while Present (Assoc) loop - Expr := Expression (Assoc); - Check_Same_Aggr_Bounds (Expr, Dim + 1); - Next (Assoc); - end loop; - end if; - end if; - end Check_Same_Aggr_Bounds; - - ---------------------------- - -- Compute_Others_Present -- - ---------------------------- - - procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is - Assoc : Node_Id; - Expr : Node_Id; - - begin - if Present (Component_Associations (Sub_Aggr)) then - Assoc := Last (Component_Associations (Sub_Aggr)); - if Nkind (First (Choices (Assoc))) = N_Others_Choice then - Others_Present (Dim) := True; - end if; - end if; - - -- Now look inside the sub-aggregate to see if there is more work - - if Dim < Aggr_Dimension then - - -- Process positional components - - if Present (Expressions (Sub_Aggr)) then - Expr := First (Expressions (Sub_Aggr)); - while Present (Expr) loop - Compute_Others_Present (Expr, Dim + 1); - Next (Expr); - end loop; - end if; - - -- Process component associations - - if Present (Component_Associations (Sub_Aggr)) then - Assoc := First (Component_Associations (Sub_Aggr)); - while Present (Assoc) loop - Expr := Expression (Assoc); - Compute_Others_Present (Expr, Dim + 1); - Next (Assoc); - end loop; - end if; - end if; - end Compute_Others_Present; - - --------------------------- - -- Convert_To_Positional -- - --------------------------- - - procedure Convert_To_Positional (N : Node_Id) is - Typ : constant Entity_Id := Etype (N); - Ndim : constant Pos := Number_Dimensions (Typ); - Xtyp : constant Entity_Id := Etype (First_Index (Typ)); - Blo : constant Node_Id := - Type_Low_Bound (Etype (First_Index (Base_Type (Typ)))); - Lo : constant Node_Id := Type_Low_Bound (Xtyp); - Hi : constant Node_Id := Type_High_Bound (Xtyp); - Lov : Uint; - Hiv : Uint; - - Max_Aggr_Size : constant := 500; - -- Maximum size of aggregate produced by converting positional to - -- named notation. This avoids running away with attempts to - -- convert huge aggregates. - - Max_Others_Replicate : constant := 5; - -- This constant defines the maximum expansion of an others clause - -- into a list of values. This applies when converting a named - -- aggregate to positional form for processing by the back end. - -- If a given others clause generates more than five values, the - -- aggregate is retained as named, since the loop is more compact. - -- However, this constant is completely overridden if restriction - -- No_Elaboration_Code is active, since in this case, the loop - -- would not be allowed anyway. Similarly No_Implicit_Loops causes - -- this parameter to be ignored. - - begin - -- For now, we only handle the one dimensional case and aggregates - -- that are not part of a component_association - - if Ndim > 1 or else Nkind (Parent (N)) = N_Aggregate - or else Nkind (Parent (N)) = N_Component_Association - then - return; - end if; - - -- If already positional, nothing to do! - - if No (Component_Associations (N)) then - return; - end if; - - -- Bounds need to be known at compile time - - if not Compile_Time_Known_Value (Lo) - or else not Compile_Time_Known_Value (Hi) - then - return; - end if; - - -- Do not attempt to convert bit packed arrays, since they cannot - -- be handled by the backend in any case. - - if Is_Bit_Packed_Array (Typ) then - return; - end if; - - -- Do not convert to positional if controlled components are - -- involved since these require special processing - - if Has_Controlled_Component (Typ) then - return; - end if; - - -- Get bounds and check reasonable size (positive, not too large) - -- Also only handle bounds starting at the base type low bound for - -- now since the compiler isn't able to handle different low bounds - -- yet - - Lov := Expr_Value (Lo); - Hiv := Expr_Value (Hi); - - if Hiv < Lov - or else (Hiv - Lov > Max_Aggr_Size) - or else not Compile_Time_Known_Value (Blo) - or else (Lov /= Expr_Value (Blo)) - then - return; - end if; - - -- Bounds must be in integer range (for array Vals below) - - if not UI_Is_In_Int_Range (Lov) - or else - not UI_Is_In_Int_Range (Hiv) - then - return; - end if; - - -- Determine if set of alternatives is suitable for conversion - -- and build an array containing the values in sequence. - - declare - Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv)) - of Node_Id := (others => Empty); - -- The values in the aggregate sorted appropriately - - Vlist : List_Id; - -- Same data as Vals in list form - - Rep_Count : Nat; - -- Used to validate Max_Others_Replicate limit - - Elmt : Node_Id; - Num : Int := UI_To_Int (Lov); - Choice : Node_Id; - Lo, Hi : Node_Id; - - begin - if Present (Expressions (N)) then - Elmt := First (Expressions (N)); - while Present (Elmt) loop - Vals (Num) := Relocate_Node (Elmt); - Num := Num + 1; - Next (Elmt); - end loop; - end if; - - Elmt := First (Component_Associations (N)); - Component_Loop : while Present (Elmt) loop - - Choice := First (Choices (Elmt)); - Choice_Loop : while Present (Choice) loop - - -- If we have an others choice, fill in the missing elements - -- subject to the limit established by Max_Others_Replicate. - - if Nkind (Choice) = N_Others_Choice then - Rep_Count := 0; - - for J in Vals'Range loop - if No (Vals (J)) then - Vals (J) := New_Copy_Tree (Expression (Elmt)); - Rep_Count := Rep_Count + 1; - - if Rep_Count > Max_Others_Replicate - and then not Restrictions (No_Elaboration_Code) - and then not Restrictions (No_Implicit_Loops) - then - return; - end if; - end if; - end loop; - - exit Component_Loop; - - -- Case of a subtype mark - - elsif (Nkind (Choice) = N_Identifier - and then Is_Type (Entity (Choice))) - then - Lo := Type_Low_Bound (Etype (Choice)); - Hi := Type_High_Bound (Etype (Choice)); - - -- Case of subtype indication - - elsif Nkind (Choice) = N_Subtype_Indication then - Lo := Low_Bound (Range_Expression (Constraint (Choice))); - Hi := High_Bound (Range_Expression (Constraint (Choice))); - - -- Case of a range - - elsif Nkind (Choice) = N_Range then - Lo := Low_Bound (Choice); - Hi := High_Bound (Choice); - - -- Normal subexpression case - - else pragma Assert (Nkind (Choice) in N_Subexpr); - if not Compile_Time_Known_Value (Choice) then - return; - - else - Vals (UI_To_Int (Expr_Value (Choice))) := - New_Copy_Tree (Expression (Elmt)); - goto Continue; - end if; - end if; - - -- Range cases merge with Lo,Hi said - - if not Compile_Time_Known_Value (Lo) - or else - not Compile_Time_Known_Value (Hi) - then - return; - else - for J in UI_To_Int (Expr_Value (Lo)) .. - UI_To_Int (Expr_Value (Hi)) - loop - Vals (J) := New_Copy_Tree (Expression (Elmt)); - end loop; - end if; - - <> - Next (Choice); - end loop Choice_Loop; - - Next (Elmt); - end loop Component_Loop; - - -- If we get here the conversion is possible - - Vlist := New_List; - for J in Vals'Range loop - Append (Vals (J), Vlist); - end loop; - - Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist)); - Analyze_And_Resolve (N, Typ); - end; - end Convert_To_Positional; - - ------------------------- - -- Has_Address_Clause -- - ------------------------- - - function Has_Address_Clause (D : Node_Id) return Boolean is - Id : Entity_Id := Defining_Identifier (D); - Decl : Node_Id := Next (D); - - begin - while Present (Decl) loop - - if Nkind (Decl) = N_At_Clause - and then Chars (Identifier (Decl)) = Chars (Id) - then - return True; - - elsif Nkind (Decl) = N_Attribute_Definition_Clause - and then Chars (Decl) = Name_Address - and then Chars (Name (Decl)) = Chars (Id) - then - return True; - end if; - - Next (Decl); - end loop; - - return False; - end Has_Address_Clause; - - ------------------------ - -- In_Place_Assign_OK -- - ------------------------ - - function In_Place_Assign_OK return Boolean is - Aggr_In : Node_Id; - Aggr_Lo : Node_Id; - Aggr_Hi : Node_Id; - Obj_In : Node_Id; - Obj_Lo : Node_Id; - Obj_Hi : Node_Id; - - function Safe_Aggregate (Aggr : Node_Id) return Boolean; - -- Check recursively that each component of a (sub)aggregate does - -- not depend on the variable being assigned to. - - function Safe_Component (Expr : Node_Id) return Boolean; - -- Verify that an expression cannot depend on the variable being - -- assigned to. Room for improvement here (but less than before). - - -------------------- - -- Safe_Aggregate -- - -------------------- - - function Safe_Aggregate (Aggr : Node_Id) return Boolean is - Expr : Node_Id; - - begin - if Present (Expressions (Aggr)) then - Expr := First (Expressions (Aggr)); - - while Present (Expr) loop - if Nkind (Expr) = N_Aggregate then - if not Safe_Aggregate (Expr) then - return False; - end if; - - elsif not Safe_Component (Expr) then - return False; - end if; - - Next (Expr); - end loop; - end if; - - if Present (Component_Associations (Aggr)) then - Expr := First (Component_Associations (Aggr)); - - while Present (Expr) loop - if Nkind (Expression (Expr)) = N_Aggregate then - if not Safe_Aggregate (Expression (Expr)) then - return False; - end if; - - elsif not Safe_Component (Expression (Expr)) then - return False; - end if; - - Next (Expr); - end loop; - end if; - - return True; - end Safe_Aggregate; - - -------------------- - -- Safe_Component -- - -------------------- - - function Safe_Component (Expr : Node_Id) return Boolean is - Comp : Node_Id := Expr; - - function Check_Component (Comp : Node_Id) return Boolean; - -- Do the recursive traversal, after copy. - - function Check_Component (Comp : Node_Id) return Boolean is - begin - if Is_Overloaded (Comp) then - return False; - end if; - - return Compile_Time_Known_Value (Comp) - - or else (Is_Entity_Name (Comp) - and then Present (Entity (Comp)) - and then No (Renamed_Object (Entity (Comp)))) - - or else (Nkind (Comp) = N_Attribute_Reference - and then Check_Component (Prefix (Comp))) - - or else (Nkind (Comp) in N_Binary_Op - and then Check_Component (Left_Opnd (Comp)) - and then Check_Component (Right_Opnd (Comp))) - - or else (Nkind (Comp) in N_Unary_Op - and then Check_Component (Right_Opnd (Comp))) - - or else (Nkind (Comp) = N_Selected_Component - and then Check_Component (Prefix (Comp))); - end Check_Component; - - -- Start of processing for Safe_Component - - begin - -- If the component appears in an association that may - -- correspond to more than one element, it is not analyzed - -- before the expansion into assignments, to avoid side effects. - -- We analyze, but do not resolve the copy, to obtain sufficient - -- entity information for the checks that follow. If component is - -- overloaded we assume an unsafe function call. - - if not Analyzed (Comp) then - if Is_Overloaded (Expr) then - return False; - end if; - - Comp := New_Copy_Tree (Expr); - Analyze (Comp); - end if; - - return Check_Component (Comp); - end Safe_Component; - - -- Start of processing for In_Place_Assign_OK - - begin - if Present (Component_Associations (N)) then - - -- On assignment, sliding can take place, so we cannot do the - -- assignment in place unless the bounds of the aggregate are - -- statically equal to those of the target. - - -- If the aggregate is given by an others choice, the bounds - -- are derived from the left-hand side, and the assignment is - -- safe if the expression is. - - if No (Expressions (N)) - and then Nkind - (First (Choices (First (Component_Associations (N))))) - = N_Others_Choice - then - return - Safe_Component - (Expression (First (Component_Associations (N)))); - end if; - - Aggr_In := First_Index (Etype (N)); - Obj_In := First_Index (Etype (Name (Parent (N)))); - - while Present (Aggr_In) loop - Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi); - Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi); - - if not Compile_Time_Known_Value (Aggr_Lo) - or else not Compile_Time_Known_Value (Aggr_Hi) - or else not Compile_Time_Known_Value (Obj_Lo) - or else not Compile_Time_Known_Value (Obj_Hi) - or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo) - or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi) - then - return False; - end if; - - Next_Index (Aggr_In); - Next_Index (Obj_In); - end loop; - end if; - - -- Now check the component values themselves. - - return Safe_Aggregate (N); - end In_Place_Assign_OK; - - ------------------ - -- Others_Check -- - ------------------ - - procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is - Aggr_Lo : constant Node_Id := Aggr_Low (Dim); - Aggr_Hi : constant Node_Id := Aggr_High (Dim); - -- The bounds of the aggregate for this dimension. - - Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim); - -- The index type for this dimension. - - Need_To_Check : Boolean := False; - - Choices_Lo : Node_Id := Empty; - Choices_Hi : Node_Id := Empty; - -- The lowest and highest discrete choices for a named sub-aggregate - - Nb_Choices : Int := -1; - -- The number of discrete non-others choices in this sub-aggregate - - Nb_Elements : Uint := Uint_0; - -- The number of elements in a positional aggregate - - Cond : Node_Id := Empty; - - Assoc : Node_Id; - Choice : Node_Id; - Expr : Node_Id; - - begin - -- Check if we have an others choice. If we do make sure that this - -- sub-aggregate contains at least one element in addition to the - -- others choice. - - if Range_Checks_Suppressed (Ind_Typ) then - Need_To_Check := False; - - elsif Present (Expressions (Sub_Aggr)) - and then Present (Component_Associations (Sub_Aggr)) - then - Need_To_Check := True; - - elsif Present (Component_Associations (Sub_Aggr)) then - Assoc := Last (Component_Associations (Sub_Aggr)); - - if Nkind (First (Choices (Assoc))) /= N_Others_Choice then - Need_To_Check := False; - - else - -- Count the number of discrete choices. Start with -1 - -- because the others choice does not count. - - Nb_Choices := -1; - Assoc := First (Component_Associations (Sub_Aggr)); - while Present (Assoc) loop - Choice := First (Choices (Assoc)); - while Present (Choice) loop - Nb_Choices := Nb_Choices + 1; - Next (Choice); - end loop; - - Next (Assoc); - end loop; - - -- If there is only an others choice nothing to do - - Need_To_Check := (Nb_Choices > 0); - end if; - - else - Need_To_Check := False; - end if; - - -- If we are dealing with a positional sub-aggregate with an - -- others choice, compute the number or positional elements. - - if Need_To_Check and then Present (Expressions (Sub_Aggr)) then - Expr := First (Expressions (Sub_Aggr)); - Nb_Elements := Uint_0; - while Present (Expr) loop - Nb_Elements := Nb_Elements + 1; - Next (Expr); - end loop; - - -- If the aggregate contains discrete choices and an others choice - -- compute the smallest and largest discrete choice values. - - elsif Need_To_Check then - Compute_Choices_Lo_And_Choices_Hi : declare - Table : Case_Table_Type (1 .. Nb_Choices); - -- Used to sort all the different choice values - - I : Pos := 1; - Low : Node_Id; - High : Node_Id; - - begin - Assoc := First (Component_Associations (Sub_Aggr)); - while Present (Assoc) loop - Choice := First (Choices (Assoc)); - while Present (Choice) loop - if Nkind (Choice) = N_Others_Choice then - exit; - end if; - - Get_Index_Bounds (Choice, Low, High); - Table (I).Choice_Lo := Low; - Table (I).Choice_Hi := High; - - I := I + 1; - Next (Choice); - end loop; - - Next (Assoc); - end loop; - - -- Sort the discrete choices - - Sort_Case_Table (Table); - - Choices_Lo := Table (1).Choice_Lo; - Choices_Hi := Table (Nb_Choices).Choice_Hi; - end Compute_Choices_Lo_And_Choices_Hi; - end if; - - -- If no others choice in this sub-aggregate, or the aggregate - -- comprises only an others choice, nothing to do. - - if not Need_To_Check then - Cond := Empty; - - -- If we are dealing with an aggregate containing an others - -- choice and positional components, we generate the following test: - -- - -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) > - -- Ind_Typ'Pos (Aggr_Hi) - -- then - -- raise Constraint_Error; - -- end if; - - elsif Nb_Elements > Uint_0 then - Cond := - Make_Op_Gt (Loc, - Left_Opnd => - Make_Op_Add (Loc, - Left_Opnd => - Make_Attribute_Reference (Loc, - Prefix => New_Reference_To (Ind_Typ, Loc), - Attribute_Name => Name_Pos, - Expressions => - New_List (Duplicate_Subexpr (Aggr_Lo))), - Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)), - - Right_Opnd => - Make_Attribute_Reference (Loc, - Prefix => New_Reference_To (Ind_Typ, Loc), - Attribute_Name => Name_Pos, - Expressions => New_List (Duplicate_Subexpr (Aggr_Hi)))); - - -- If we are dealing with an aggregate containing an others - -- choice and discrete choices we generate the following test: - -- - -- [constraint_error when - -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi]; - - else - Cond := - Make_Or_Else (Loc, - Left_Opnd => - Make_Op_Lt (Loc, - Left_Opnd => Duplicate_Subexpr (Choices_Lo), - Right_Opnd => Duplicate_Subexpr (Aggr_Lo)), - - Right_Opnd => - Make_Op_Gt (Loc, - Left_Opnd => Duplicate_Subexpr (Choices_Hi), - Right_Opnd => Duplicate_Subexpr (Aggr_Hi))); - end if; - - if Present (Cond) then - Insert_Action (N, - Make_Raise_Constraint_Error (Loc, Condition => Cond)); - end if; - - -- Now look inside the sub-aggregate to see if there is more work - - if Dim < Aggr_Dimension then - - -- Process positional components - - if Present (Expressions (Sub_Aggr)) then - Expr := First (Expressions (Sub_Aggr)); - while Present (Expr) loop - Others_Check (Expr, Dim + 1); - Next (Expr); - end loop; - end if; - - -- Process component associations - - if Present (Component_Associations (Sub_Aggr)) then - Assoc := First (Component_Associations (Sub_Aggr)); - while Present (Assoc) loop - Expr := Expression (Assoc); - Others_Check (Expr, Dim + 1); - Next (Assoc); - end loop; - end if; - end if; - end Others_Check; - - -- Remaining Expand_Array_Aggregate variables - - Tmp : Entity_Id; - -- Holds the temporary aggregate value. - - Tmp_Decl : Node_Id; - -- Holds the declaration of Tmp. - - Aggr_Code : List_Id; - Parent_Node : Node_Id; - Parent_Kind : Node_Kind; - - -- Start of processing for Expand_Array_Aggregate - - begin - -- Do not touch the special aggregates of attributes used for Asm calls - - if Is_RTE (Ctyp, RE_Asm_Input_Operand) - or else Is_RTE (Ctyp, RE_Asm_Output_Operand) - then - return; - end if; - - -- If during semantic analysis it has been determined that aggregate N - -- will raise Constraint_Error at run-time, then the aggregate node - -- has been replaced with an N_Raise_Constraint_Error node and we - -- should never get here. - - pragma Assert (not Raises_Constraint_Error (N)); - - -- STEP 1: Check (a) - - Index_Compatibility_Check : declare - Aggr_Index_Range : Node_Id := First_Index (Typ); - -- The current aggregate index range - - Index_Constraint : Node_Id := First_Index (Etype (Typ)); - -- The corresponding index constraint against which we have to - -- check the above aggregate index range. - - begin - Compute_Others_Present (N, 1); - - for J in 1 .. Aggr_Dimension loop - -- There is no need to emit a check if an others choice is - -- present for this array aggregate dimension since in this - -- case one of N's sub-aggregates has taken its bounds from the - -- context and these bounds must have been checked already. In - -- addition all sub-aggregates corresponding to the same - -- dimension must all have the same bounds (checked in (c) below). - - if not Range_Checks_Suppressed (Etype (Index_Constraint)) - and then not Others_Present (J) - then - -- We don't use Checks.Apply_Range_Check here because it - -- emits a spurious check. Namely it checks that the range - -- defined by the aggregate bounds is non empty. But we know - -- this already if we get here. - - Check_Bounds (Aggr_Index_Range, Index_Constraint); - end if; - - -- Save the low and high bounds of the aggregate index as well - -- as the index type for later use in checks (b) and (c) below. - - Aggr_Low (J) := Low_Bound (Aggr_Index_Range); - Aggr_High (J) := High_Bound (Aggr_Index_Range); - - Aggr_Index_Typ (J) := Etype (Index_Constraint); - - Next_Index (Aggr_Index_Range); - Next_Index (Index_Constraint); - end loop; - end Index_Compatibility_Check; - - -- STEP 1: Check (b) - - Others_Check (N, 1); - - -- STEP 1: Check (c) - - if Aggr_Dimension > 1 then - Check_Same_Aggr_Bounds (N, 1); - end if; - - -- STEP 2. - - -- First try to convert to positional form. If the result is not - -- an aggregate any more, then we are done with the analysis (it - -- it could be a string literal or an identifier for a temporary - -- variable following this call). If result is an analyzed aggregate - -- the transformation was also successful and we are done as well. - - Convert_To_Positional (N); - - if Nkind (N) /= N_Aggregate then - return; - - elsif Analyzed (N) - and then N /= Original_Node (N) - then - return; - end if; - - if Backend_Processing_Possible (N) then - - -- If the aggregate is static but the constraints are not, build - -- a static subtype for the aggregate, so that Gigi can place it - -- in static memory. Perform an unchecked_conversion to the non- - -- static type imposed by the context. - - declare - Itype : constant Entity_Id := Etype (N); - Index : Node_Id; - Needs_Type : Boolean := False; - - begin - Index := First_Index (Itype); - - while Present (Index) loop - if not Is_Static_Subtype (Etype (Index)) then - Needs_Type := True; - exit; - else - Next_Index (Index); - end if; - end loop; - - if Needs_Type then - Build_Constrained_Type (Positional => True); - Rewrite (N, Unchecked_Convert_To (Itype, N)); - Analyze (N); - end if; - end; - - return; - end if; - - -- Delay expansion for nested aggregates it will be taken care of - -- when the parent aggregate is expanded - - Parent_Node := Parent (N); - Parent_Kind := Nkind (Parent_Node); - - if Parent_Kind = N_Qualified_Expression then - Parent_Node := Parent (Parent_Node); - Parent_Kind := Nkind (Parent_Node); - end if; - - if Parent_Kind = N_Aggregate - or else Parent_Kind = N_Extension_Aggregate - or else Parent_Kind = N_Component_Association - or else (Parent_Kind = N_Object_Declaration - and then Controlled_Type (Typ)) - or else (Parent_Kind = N_Assignment_Statement - and then Inside_Init_Proc) - then - Set_Expansion_Delayed (N); - return; - end if; - - -- STEP 3. - - -- Look if in place aggregate expansion is possible - - -- For object declarations we build the aggregate in place, unless - -- the array is bit-packed or the component is controlled. - - -- For assignments we do the assignment in place if all the component - -- associations have compile-time known values. For other cases we - -- create a temporary. The analysis for safety of on-line assignment - -- is delicate, i.e. we don't know how to do it fully yet ??? - - if Requires_Transient_Scope (Typ) then - Establish_Transient_Scope - (N, Sec_Stack => Has_Controlled_Component (Typ)); - end if; - - Maybe_In_Place_OK := - Comes_From_Source (N) - and then Nkind (Parent (N)) = N_Assignment_Statement - and then not Is_Bit_Packed_Array (Typ) - and then not Has_Controlled_Component (Typ) - and then In_Place_Assign_OK; - - if Comes_From_Source (Parent (N)) - and then Nkind (Parent (N)) = N_Object_Declaration - and then N = Expression (Parent (N)) - and then not Is_Bit_Packed_Array (Typ) - and then not Has_Controlled_Component (Typ) - and then not Has_Address_Clause (Parent (N)) - then - - Tmp := Defining_Identifier (Parent (N)); - Set_No_Initialization (Parent (N)); - Set_Expression (Parent (N), Empty); - - -- Set the type of the entity, for use in the analysis of the - -- subsequent indexed assignments. If the nominal type is not - -- constrained, build a subtype from the known bounds of the - -- aggregate. If the declaration has a subtype mark, use it, - -- otherwise use the itype of the aggregate. - - if not Is_Constrained (Typ) then - Build_Constrained_Type (Positional => False); - elsif Is_Entity_Name (Object_Definition (Parent (N))) - and then Is_Constrained (Entity (Object_Definition (Parent (N)))) - then - Set_Etype (Tmp, Entity (Object_Definition (Parent (N)))); - else - Set_Size_Known_At_Compile_Time (Typ, False); - Set_Etype (Tmp, Typ); - end if; - - elsif Maybe_In_Place_OK - and then Is_Entity_Name (Name (Parent (N))) - then - Tmp := Entity (Name (Parent (N))); - - if Etype (Tmp) /= Etype (N) then - Apply_Length_Check (N, Etype (Tmp)); - end if; - - elsif Maybe_In_Place_OK - and then Nkind (Name (Parent (N))) = N_Slice - and then Safe_Slice_Assignment (N, Typ) - then - -- Safe_Slice_Assignment rewrites assignment as a loop. - - return; - - else - Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('A')); - Tmp_Decl := - Make_Object_Declaration - (Loc, - Defining_Identifier => Tmp, - Object_Definition => New_Occurrence_Of (Typ, Loc)); - Set_No_Initialization (Tmp_Decl, True); - - -- If we are within a loop, the temporary will be pushed on the - -- stack at each iteration. If the aggregate is the expression for - -- an allocator, it will be immediately copied to the heap and can - -- be reclaimed at once. We create a transient scope around the - -- aggregate for this purpose. - - if Ekind (Current_Scope) = E_Loop - and then Nkind (Parent (Parent (N))) = N_Allocator - then - Establish_Transient_Scope (N, False); - end if; - - Insert_Action (N, Tmp_Decl); - end if; - - -- Construct and insert the aggregate code. We can safely suppress - -- index checks because this code is guaranteed not to raise CE - -- on index checks. However we should *not* suppress all checks. - - Aggr_Code := - Build_Array_Aggr_Code (N, - Index => First_Index (Typ), - Into => New_Reference_To (Tmp, Loc), - Scalar_Comp => Is_Scalar_Type (Ctyp)); - - if Comes_From_Source (Tmp) then - Insert_Actions_After (Parent (N), Aggr_Code); - - else - Insert_Actions (N, Aggr_Code); - end if; - - if Nkind (Parent (N)) = N_Assignment_Statement - and then Is_Entity_Name (Name (Parent (N))) - and then Tmp = Entity (Name (Parent (N))) - then - Rewrite (Parent (N), Make_Null_Statement (Loc)); - Analyze (N); - - elsif Nkind (Parent (N)) /= N_Object_Declaration - or else Tmp /= Defining_Identifier (Parent (N)) - then - Rewrite (N, New_Occurrence_Of (Tmp, Loc)); - Analyze_And_Resolve (N, Typ); - end if; - end Expand_Array_Aggregate; - - ------------------------ - -- Expand_N_Aggregate -- - ------------------------ - - procedure Expand_N_Aggregate (N : Node_Id) is - begin - if Is_Record_Type (Etype (N)) then - Expand_Record_Aggregate (N); - else - Expand_Array_Aggregate (N); - end if; - end Expand_N_Aggregate; - - ---------------------------------- - -- Expand_N_Extension_Aggregate -- - ---------------------------------- - - -- If the ancestor part is an expression, add a component association for - -- the parent field. If the type of the ancestor part is not the direct - -- parent of the expected type, build recursively the needed ancestors. - -- If the ancestor part is a subtype_mark, replace aggregate with a decla- - -- ration for a temporary of the expected type, followed by individual - -- assignments to the given components. - - procedure Expand_N_Extension_Aggregate (N : Node_Id) is - Loc : constant Source_Ptr := Sloc (N); - A : constant Node_Id := Ancestor_Part (N); - Typ : constant Entity_Id := Etype (N); - - begin - -- If the ancestor is a subtype mark, an init_proc must be called - -- on the resulting object which thus has to be materialized in - -- the front-end - - if Is_Entity_Name (A) and then Is_Type (Entity (A)) then - Convert_To_Assignments (N, Typ); - - -- The extension aggregate is transformed into a record aggregate - -- of the following form (c1 and c2 are inherited components) - - -- (Exp with c3 => a, c4 => b) - -- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b) - - else - Set_Etype (N, Typ); - - -- No tag is needed in the case of Java_VM - - if Java_VM then - Expand_Record_Aggregate (N, - Parent_Expr => A); - else - Expand_Record_Aggregate (N, - Orig_Tag => New_Occurrence_Of (Access_Disp_Table (Typ), Loc), - Parent_Expr => A); - end if; - end if; - end Expand_N_Extension_Aggregate; - - ----------------------------- - -- Expand_Record_Aggregate -- - ----------------------------- - - procedure Expand_Record_Aggregate - (N : Node_Id; - Orig_Tag : Node_Id := Empty; - Parent_Expr : Node_Id := Empty) - is - Loc : constant Source_Ptr := Sloc (N); - Comps : constant List_Id := Component_Associations (N); - Typ : constant Entity_Id := Etype (N); - Base_Typ : constant Entity_Id := Base_Type (Typ); - - function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean; - -- Checks the presence of a nested aggregate which needs Late_Expansion - -- or the presence of tagged components which may need tag adjustment. - - -------------------------------------------------- - -- Has_Delayed_Nested_Aggregate_Or_Tagged_Comps -- - -------------------------------------------------- - - function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean is - C : Node_Id; - Expr_Q : Node_Id; - - begin - if No (Comps) then - return False; - end if; - - C := First (Comps); - while Present (C) loop - - if Nkind (Expression (C)) = N_Qualified_Expression then - Expr_Q := Expression (Expression (C)); - else - Expr_Q := Expression (C); - end if; - - -- Return true if the aggregate has any associations for - -- tagged components that may require tag adjustment. - -- These are cases where the source expression may have - -- a tag that could differ from the component tag (e.g., - -- can occur for type conversions and formal parameters). - -- (Tag adjustment is not needed if Java_VM because object - -- tags are implicit in the JVM.) - - if Is_Tagged_Type (Etype (Expr_Q)) - and then (Nkind (Expr_Q) = N_Type_Conversion - or else (Is_Entity_Name (Expr_Q) - and then Ekind (Entity (Expr_Q)) in Formal_Kind)) - and then not Java_VM - then - return True; - end if; - - if Is_Delayed_Aggregate (Expr_Q) then - return True; - end if; - - Next (C); - end loop; - - return False; - end Has_Delayed_Nested_Aggregate_Or_Tagged_Comps; - - -- Remaining Expand_Record_Aggregate variables - - Tag_Value : Node_Id; - Comp : Entity_Id; - New_Comp : Node_Id; - - -- Start of processing for Expand_Record_Aggregate - - begin - -- Gigi doesn't handle properly temporaries of variable size - -- so we generate it in the front-end - - if not Size_Known_At_Compile_Time (Typ) then - Convert_To_Assignments (N, Typ); - - -- Temporaries for controlled aggregates need to be attached to a - -- final chain in order to be properly finalized, so it has to - -- be created in the front-end - - elsif Is_Controlled (Typ) - or else Has_Controlled_Component (Base_Type (Typ)) - then - Convert_To_Assignments (N, Typ); - - elsif Has_Delayed_Nested_Aggregate_Or_Tagged_Comps then - Convert_To_Assignments (N, Typ); - - -- If an ancestor is private, some components are not inherited and - -- we cannot expand into a record aggregate - - elsif Has_Private_Ancestor (Typ) then - Convert_To_Assignments (N, Typ); - - -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi - -- is not able to handle the aggregate for Late_Request. - - elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then - Convert_To_Assignments (N, Typ); - - -- In all other cases we generate a proper aggregate that - -- can be handled by gigi. - - else - if not Has_Discriminants (Typ) then - - -- This bizarre if/elsif is to avoid a compiler crash ??? - - null; - - elsif Is_Derived_Type (Typ) then - - -- Non-girder discriminants are replaced with girder discriminants - - declare - First_Comp : Node_Id; - Discriminant : Entity_Id; - - begin - -- Remove all the discriminants - - First_Comp := First (Component_Associations (N)); - - while Present (First_Comp) loop - Comp := First_Comp; - Next (First_Comp); - - if Ekind (Entity (First (Choices (Comp)))) = - E_Discriminant - then - Remove (Comp); - end if; - end loop; - - -- Insert girder discriminant associations - -- in the correct order - - First_Comp := Empty; - Discriminant := First_Girder_Discriminant (Typ); - while Present (Discriminant) loop - New_Comp := - Make_Component_Association (Loc, - Choices => - New_List (New_Occurrence_Of (Discriminant, Loc)), - - Expression => - New_Copy_Tree ( - Get_Discriminant_Value ( - Discriminant, - Typ, - Discriminant_Constraint (Typ)))); - - if No (First_Comp) then - Prepend_To (Component_Associations (N), New_Comp); - else - Insert_After (First_Comp, New_Comp); - end if; - - First_Comp := New_Comp; - Next_Girder_Discriminant (Discriminant); - end loop; - end; - end if; - - if Is_Tagged_Type (Typ) then - - -- The tagged case, _parent and _tag component must be created. - - -- Reset null_present unconditionally. tagged records always have - -- at least one field (the tag or the parent) - - Set_Null_Record_Present (N, False); - - -- When the current aggregate comes from the expansion of an - -- extension aggregate, the parent expr is replaced by an - -- aggregate formed by selected components of this expr - - if Present (Parent_Expr) - and then Is_Empty_List (Comps) - then - Comp := First_Entity (Typ); - while Present (Comp) loop - - -- Skip all entities that aren't discriminants or components - - if Ekind (Comp) /= E_Discriminant - and then Ekind (Comp) /= E_Component - then - null; - - -- Skip all expander-generated components - - elsif - not Comes_From_Source (Original_Record_Component (Comp)) - then - null; - - else - New_Comp := - Make_Selected_Component (Loc, - Prefix => - Unchecked_Convert_To (Typ, - Duplicate_Subexpr (Parent_Expr, True)), - - Selector_Name => New_Occurrence_Of (Comp, Loc)); - - Append_To (Comps, - Make_Component_Association (Loc, - Choices => - New_List (New_Occurrence_Of (Comp, Loc)), - Expression => - New_Comp)); - - Analyze_And_Resolve (New_Comp, Etype (Comp)); - end if; - - Next_Entity (Comp); - end loop; - end if; - - -- Compute the value for the Tag now, if the type is a root it - -- will be included in the aggregate right away, otherwise it will - -- be propagated to the parent aggregate - - if Present (Orig_Tag) then - Tag_Value := Orig_Tag; - elsif Java_VM then - Tag_Value := Empty; - else - Tag_Value := New_Occurrence_Of (Access_Disp_Table (Typ), Loc); - end if; - - -- For a derived type, an aggregate for the parent is formed with - -- all the inherited components. - - if Is_Derived_Type (Typ) then - - declare - First_Comp : Node_Id; - Parent_Comps : List_Id; - Parent_Aggr : Node_Id; - Parent_Name : Node_Id; - - begin - -- Remove the inherited component association from the - -- aggregate and store them in the parent aggregate - - First_Comp := First (Component_Associations (N)); - Parent_Comps := New_List; - - while Present (First_Comp) - and then Scope (Original_Record_Component ( - Entity (First (Choices (First_Comp))))) /= Base_Typ - loop - Comp := First_Comp; - Next (First_Comp); - Remove (Comp); - Append (Comp, Parent_Comps); - end loop; - - Parent_Aggr := Make_Aggregate (Loc, - Component_Associations => Parent_Comps); - Set_Etype (Parent_Aggr, Etype (Base_Type (Typ))); - - -- Find the _parent component - - Comp := First_Component (Typ); - while Chars (Comp) /= Name_uParent loop - Comp := Next_Component (Comp); - end loop; - - Parent_Name := New_Occurrence_Of (Comp, Loc); - - -- Insert the parent aggregate - - Prepend_To (Component_Associations (N), - Make_Component_Association (Loc, - Choices => New_List (Parent_Name), - Expression => Parent_Aggr)); - - -- Expand recursively the parent propagating the right Tag - - Expand_Record_Aggregate ( - Parent_Aggr, Tag_Value, Parent_Expr); - end; - - -- For a root type, the tag component is added (unless compiling - -- for the Java VM, where tags are implicit). - - elsif not Java_VM then - declare - Tag_Name : constant Node_Id := - New_Occurrence_Of (Tag_Component (Typ), Loc); - Typ_Tag : constant Entity_Id := RTE (RE_Tag); - Conv_Node : constant Node_Id := - Unchecked_Convert_To (Typ_Tag, Tag_Value); - - begin - Set_Etype (Conv_Node, Typ_Tag); - Prepend_To (Component_Associations (N), - Make_Component_Association (Loc, - Choices => New_List (Tag_Name), - Expression => Conv_Node)); - end; - end if; - end if; - end if; - end Expand_Record_Aggregate; - - -------------------------- - -- Is_Delayed_Aggregate -- - -------------------------- - - function Is_Delayed_Aggregate (N : Node_Id) return Boolean is - Node : Node_Id := N; - Kind : Node_Kind := Nkind (Node); - begin - if Kind = N_Qualified_Expression then - Node := Expression (Node); - Kind := Nkind (Node); - end if; - - if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then - return False; - else - return Expansion_Delayed (Node); - end if; - end Is_Delayed_Aggregate; - - -------------------- - -- Late_Expansion -- - -------------------- - - function Late_Expansion - (N : Node_Id; - Typ : Entity_Id; - Target : Node_Id; - Flist : Node_Id := Empty; - Obj : Entity_Id := Empty) - - return List_Id is - - begin - if Is_Record_Type (Etype (N)) then - return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj); - else - return - Build_Array_Aggr_Code - (N, - First_Index (Typ), - Target, - Is_Scalar_Type (Component_Type (Typ)), - No_List, - Flist); - end if; - end Late_Expansion; - - ---------------------------------- - -- Make_OK_Assignment_Statement -- - ---------------------------------- - - function Make_OK_Assignment_Statement - (Sloc : Source_Ptr; - Name : Node_Id; - Expression : Node_Id) - return Node_Id - is - begin - Set_Assignment_OK (Name); - return Make_Assignment_Statement (Sloc, Name, Expression); - end Make_OK_Assignment_Statement; - - ----------------------- - -- Number_Of_Choices -- - ----------------------- - - function Number_Of_Choices (N : Node_Id) return Nat is - Assoc : Node_Id; - Choice : Node_Id; - - Nb_Choices : Nat := 0; - - begin - if Present (Expressions (N)) then - return 0; - end if; - - Assoc := First (Component_Associations (N)); - while Present (Assoc) loop - - Choice := First (Choices (Assoc)); - while Present (Choice) loop - - if Nkind (Choice) /= N_Others_Choice then - Nb_Choices := Nb_Choices + 1; - end if; - - Next (Choice); - end loop; - - Next (Assoc); - end loop; - - return Nb_Choices; - end Number_Of_Choices; - - --------------------------- - -- Safe_Slice_Assignment -- - --------------------------- - - function Safe_Slice_Assignment - (N : Node_Id; - Typ : Entity_Id) - return Boolean - is - Loc : constant Source_Ptr := Sloc (Parent (N)); - Pref : constant Node_Id := Prefix (Name (Parent (N))); - Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N))); - Expr : Node_Id; - L_I : Entity_Id; - L_Iter : Node_Id; - L_Body : Node_Id; - Stat : Node_Id; - - begin - -- Generate: For J in Range loop Pref (I) := Expr; end loop; - - if Comes_From_Source (N) - and then No (Expressions (N)) - and then Nkind (First (Choices (First (Component_Associations (N))))) - = N_Others_Choice - then - Expr := - Expression (First (Component_Associations (N))); - L_I := Make_Defining_Identifier (Loc, New_Internal_Name ('I')); - - L_Iter := - Make_Iteration_Scheme (Loc, - Loop_Parameter_Specification => - Make_Loop_Parameter_Specification - (Loc, - Defining_Identifier => L_I, - Discrete_Subtype_Definition => Relocate_Node (Range_Node))); - - L_Body := - Make_Assignment_Statement (Loc, - Name => - Make_Indexed_Component (Loc, - Prefix => Relocate_Node (Pref), - Expressions => New_List (New_Occurrence_Of (L_I, Loc))), - Expression => Relocate_Node (Expr)); - - -- Construct the final loop - - Stat := - Make_Implicit_Loop_Statement - (Node => Parent (N), - Identifier => Empty, - Iteration_Scheme => L_Iter, - Statements => New_List (L_Body)); - - Rewrite (Parent (N), Stat); - Analyze (Parent (N)); - return True; - - else - return False; - end if; - end Safe_Slice_Assignment; - - --------------------- - -- Sort_Case_Table -- - --------------------- - - procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is - L : Int := Case_Table'First; - U : Int := Case_Table'Last; - K : Int; - J : Int; - T : Case_Bounds; - - begin - K := L; - - while K /= U loop - T := Case_Table (K + 1); - J := K + 1; - - while J /= L - and then Expr_Value (Case_Table (J - 1).Choice_Lo) > - Expr_Value (T.Choice_Lo) - loop - Case_Table (J) := Case_Table (J - 1); - J := J - 1; - end loop; - - Case_Table (J) := T; - K := K + 1; - end loop; - end Sort_Case_Table; - -end Exp_Aggr;