X-Git-Url: https://oss.titaniummirror.com/gitweb/?a=blobdiff_plain;f=gcc%2Fmode-switching.c;fp=gcc%2Fmode-switching.c;h=5df61c890a266a6692f6bbd3b89e89674473dc77;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/mode-switching.c b/gcc/mode-switching.c new file mode 100644 index 00000000..5df61c89 --- /dev/null +++ b/gcc/mode-switching.c @@ -0,0 +1,777 @@ +/* CPU mode switching + Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, + 2009 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "flags.h" +#include "real.h" +#include "insn-config.h" +#include "recog.h" +#include "basic-block.h" +#include "output.h" +#include "tm_p.h" +#include "function.h" +#include "tree-pass.h" +#include "timevar.h" +#include "df.h" + +/* We want target macros for the mode switching code to be able to refer + to instruction attribute values. */ +#include "insn-attr.h" + +#ifdef OPTIMIZE_MODE_SWITCHING + +/* The algorithm for setting the modes consists of scanning the insn list + and finding all the insns which require a specific mode. Each insn gets + a unique struct seginfo element. These structures are inserted into a list + for each basic block. For each entity, there is an array of bb_info over + the flow graph basic blocks (local var 'bb_info'), and contains a list + of all insns within that basic block, in the order they are encountered. + + For each entity, any basic block WITHOUT any insns requiring a specific + mode are given a single entry, without a mode. (Each basic block + in the flow graph must have at least one entry in the segment table.) + + The LCM algorithm is then run over the flow graph to determine where to + place the sets to the highest-priority value in respect of first the first + insn in any one block. Any adjustments required to the transparency + vectors are made, then the next iteration starts for the next-lower + priority mode, till for each entity all modes are exhausted. + + More details are located in the code for optimize_mode_switching(). */ + +/* This structure contains the information for each insn which requires + either single or double mode to be set. + MODE is the mode this insn must be executed in. + INSN_PTR is the insn to be executed (may be the note that marks the + beginning of a basic block). + BBNUM is the flow graph basic block this insn occurs in. + NEXT is the next insn in the same basic block. */ +struct seginfo +{ + int mode; + rtx insn_ptr; + int bbnum; + struct seginfo *next; + HARD_REG_SET regs_live; +}; + +struct bb_info +{ + struct seginfo *seginfo; + int computing; +}; + +/* These bitmaps are used for the LCM algorithm. */ + +static sbitmap *antic; +static sbitmap *transp; +static sbitmap *comp; + +static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET); +static void add_seginfo (struct bb_info *, struct seginfo *); +static void reg_dies (rtx, HARD_REG_SET *); +static void reg_becomes_live (rtx, const_rtx, void *); +static void make_preds_opaque (basic_block, int); + + +/* This function will allocate a new BBINFO structure, initialized + with the MODE, INSN, and basic block BB parameters. */ + +static struct seginfo * +new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live) +{ + struct seginfo *ptr; + ptr = XNEW (struct seginfo); + ptr->mode = mode; + ptr->insn_ptr = insn; + ptr->bbnum = bb; + ptr->next = NULL; + COPY_HARD_REG_SET (ptr->regs_live, regs_live); + return ptr; +} + +/* Add a seginfo element to the end of a list. + HEAD is a pointer to the list beginning. + INFO is the structure to be linked in. */ + +static void +add_seginfo (struct bb_info *head, struct seginfo *info) +{ + struct seginfo *ptr; + + if (head->seginfo == NULL) + head->seginfo = info; + else + { + ptr = head->seginfo; + while (ptr->next != NULL) + ptr = ptr->next; + ptr->next = info; + } +} + +/* Make all predecessors of basic block B opaque, recursively, till we hit + some that are already non-transparent, or an edge where aux is set; that + denotes that a mode set is to be done on that edge. + J is the bit number in the bitmaps that corresponds to the entity that + we are currently handling mode-switching for. */ + +static void +make_preds_opaque (basic_block b, int j) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, b->preds) + { + basic_block pb = e->src; + + if (e->aux || ! TEST_BIT (transp[pb->index], j)) + continue; + + RESET_BIT (transp[pb->index], j); + make_preds_opaque (pb, j); + } +} + +/* Record in LIVE that register REG died. */ + +static void +reg_dies (rtx reg, HARD_REG_SET *live) +{ + int regno; + + if (!REG_P (reg)) + return; + + regno = REGNO (reg); + if (regno < FIRST_PSEUDO_REGISTER) + remove_from_hard_reg_set (live, GET_MODE (reg), regno); +} + +/* Record in LIVE that register REG became live. + This is called via note_stores. */ + +static void +reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live) +{ + int regno; + + if (GET_CODE (reg) == SUBREG) + reg = SUBREG_REG (reg); + + if (!REG_P (reg)) + return; + + regno = REGNO (reg); + if (regno < FIRST_PSEUDO_REGISTER) + add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno); +} + +/* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined + and vice versa. */ +#if defined (MODE_ENTRY) != defined (MODE_EXIT) + #error "Both MODE_ENTRY and MODE_EXIT must be defined" +#endif + +#if defined (MODE_ENTRY) && defined (MODE_EXIT) +/* Split the fallthrough edge to the exit block, so that we can note + that there NORMAL_MODE is required. Return the new block if it's + inserted before the exit block. Otherwise return null. */ + +static basic_block +create_pre_exit (int n_entities, int *entity_map, const int *num_modes) +{ + edge eg; + edge_iterator ei; + basic_block pre_exit; + + /* The only non-call predecessor at this stage is a block with a + fallthrough edge; there can be at most one, but there could be + none at all, e.g. when exit is called. */ + pre_exit = 0; + FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds) + if (eg->flags & EDGE_FALLTHRU) + { + basic_block src_bb = eg->src; + rtx last_insn, ret_reg; + + gcc_assert (!pre_exit); + /* If this function returns a value at the end, we have to + insert the final mode switch before the return value copy + to its hard register. */ + if (EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 1 + && NONJUMP_INSN_P ((last_insn = BB_END (src_bb))) + && GET_CODE (PATTERN (last_insn)) == USE + && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG) + { + int ret_start = REGNO (ret_reg); + int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)]; + int ret_end = ret_start + nregs; + int short_block = 0; + int maybe_builtin_apply = 0; + int forced_late_switch = 0; + rtx before_return_copy; + + do + { + rtx return_copy = PREV_INSN (last_insn); + rtx return_copy_pat, copy_reg; + int copy_start, copy_num; + int j; + + if (INSN_P (return_copy)) + { + /* When using SJLJ exceptions, the call to the + unregister function is inserted between the + clobber of the return value and the copy. + We do not want to split the block before this + or any other call; if we have not found the + copy yet, the copy must have been deleted. */ + if (CALL_P (return_copy)) + { + short_block = 1; + break; + } + return_copy_pat = PATTERN (return_copy); + switch (GET_CODE (return_copy_pat)) + { + case USE: + /* Skip __builtin_apply pattern. */ + if (GET_CODE (XEXP (return_copy_pat, 0)) == REG + && (FUNCTION_VALUE_REGNO_P + (REGNO (XEXP (return_copy_pat, 0))))) + { + maybe_builtin_apply = 1; + last_insn = return_copy; + continue; + } + break; + + case ASM_OPERANDS: + /* Skip barrier insns. */ + if (!MEM_VOLATILE_P (return_copy_pat)) + break; + + /* Fall through. */ + + case ASM_INPUT: + case UNSPEC_VOLATILE: + last_insn = return_copy; + continue; + + default: + break; + } + + /* If the return register is not (in its entirety) + likely spilled, the return copy might be + partially or completely optimized away. */ + return_copy_pat = single_set (return_copy); + if (!return_copy_pat) + { + return_copy_pat = PATTERN (return_copy); + if (GET_CODE (return_copy_pat) != CLOBBER) + break; + else if (!optimize) + { + /* This might be (clobber (reg [])) + when not optimizing. Then check if + the previous insn is the clobber for + the return register. */ + copy_reg = SET_DEST (return_copy_pat); + if (GET_CODE (copy_reg) == REG + && !HARD_REGISTER_NUM_P (REGNO (copy_reg))) + { + if (INSN_P (PREV_INSN (return_copy))) + { + return_copy = PREV_INSN (return_copy); + return_copy_pat = PATTERN (return_copy); + if (GET_CODE (return_copy_pat) != CLOBBER) + break; + } + } + } + } + copy_reg = SET_DEST (return_copy_pat); + if (GET_CODE (copy_reg) == REG) + copy_start = REGNO (copy_reg); + else if (GET_CODE (copy_reg) == SUBREG + && GET_CODE (SUBREG_REG (copy_reg)) == REG) + copy_start = REGNO (SUBREG_REG (copy_reg)); + else + break; + if (copy_start >= FIRST_PSEUDO_REGISTER) + break; + copy_num + = hard_regno_nregs[copy_start][GET_MODE (copy_reg)]; + + /* If the return register is not likely spilled, - as is + the case for floating point on SH4 - then it might + be set by an arithmetic operation that needs a + different mode than the exit block. */ + for (j = n_entities - 1; j >= 0; j--) + { + int e = entity_map[j]; + int mode = MODE_NEEDED (e, return_copy); + + if (mode != num_modes[e] && mode != MODE_EXIT (e)) + break; + } + if (j >= 0) + { + /* For the SH4, floating point loads depend on fpscr, + thus we might need to put the final mode switch + after the return value copy. That is still OK, + because a floating point return value does not + conflict with address reloads. */ + if (copy_start >= ret_start + && copy_start + copy_num <= ret_end + && OBJECT_P (SET_SRC (return_copy_pat))) + forced_late_switch = 1; + break; + } + + if (copy_start >= ret_start + && copy_start + copy_num <= ret_end) + nregs -= copy_num; + else if (!maybe_builtin_apply + || !FUNCTION_VALUE_REGNO_P (copy_start)) + break; + last_insn = return_copy; + } + /* ??? Exception handling can lead to the return value + copy being already separated from the return value use, + as in unwind-dw2.c . + Similarly, conditionally returning without a value, + and conditionally using builtin_return can lead to an + isolated use. */ + if (return_copy == BB_HEAD (src_bb)) + { + short_block = 1; + break; + } + last_insn = return_copy; + } + while (nregs); + + /* If we didn't see a full return value copy, verify that there + is a plausible reason for this. If some, but not all of the + return register is likely spilled, we can expect that there + is a copy for the likely spilled part. */ + gcc_assert (!nregs + || forced_late_switch + || short_block + || !(CLASS_LIKELY_SPILLED_P + (REGNO_REG_CLASS (ret_start))) + || (nregs + != hard_regno_nregs[ret_start][GET_MODE (ret_reg)]) + /* For multi-hard-register floating point + values, sometimes the likely-spilled part + is ordinarily copied first, then the other + part is set with an arithmetic operation. + This doesn't actually cause reload + failures, so let it pass. */ + || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT + && nregs != 1)); + + if (INSN_P (last_insn)) + { + before_return_copy + = emit_note_before (NOTE_INSN_DELETED, last_insn); + /* Instructions preceding LAST_INSN in the same block might + require a different mode than MODE_EXIT, so if we might + have such instructions, keep them in a separate block + from pre_exit. */ + if (last_insn != BB_HEAD (src_bb)) + src_bb = split_block (src_bb, + PREV_INSN (before_return_copy))->dest; + } + else + before_return_copy = last_insn; + pre_exit = split_block (src_bb, before_return_copy)->src; + } + else + { + pre_exit = split_edge (eg); + } + } + + return pre_exit; +} +#endif + +/* Find all insns that need a particular mode setting, and insert the + necessary mode switches. Return true if we did work. */ + +static int +optimize_mode_switching (void) +{ + rtx insn; + int e; + basic_block bb; + int need_commit = 0; + sbitmap *kill; + struct edge_list *edge_list; + static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING; +#define N_ENTITIES ARRAY_SIZE (num_modes) + int entity_map[N_ENTITIES]; + struct bb_info *bb_info[N_ENTITIES]; + int i, j; + int n_entities; + int max_num_modes = 0; + bool emited = false; + basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED; + + for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--) + if (OPTIMIZE_MODE_SWITCHING (e)) + { + int entry_exit_extra = 0; + + /* Create the list of segments within each basic block. + If NORMAL_MODE is defined, allow for two extra + blocks split from the entry and exit block. */ +#if defined (MODE_ENTRY) && defined (MODE_EXIT) + entry_exit_extra = 3; +#endif + bb_info[n_entities] + = XCNEWVEC (struct bb_info, last_basic_block + entry_exit_extra); + entity_map[n_entities++] = e; + if (num_modes[e] > max_num_modes) + max_num_modes = num_modes[e]; + } + + if (! n_entities) + return 0; + +#if defined (MODE_ENTRY) && defined (MODE_EXIT) + /* Split the edge from the entry block, so that we can note that + there NORMAL_MODE is supplied. */ + post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR)); + pre_exit = create_pre_exit (n_entities, entity_map, num_modes); +#endif + + df_analyze (); + + /* Create the bitmap vectors. */ + + antic = sbitmap_vector_alloc (last_basic_block, n_entities); + transp = sbitmap_vector_alloc (last_basic_block, n_entities); + comp = sbitmap_vector_alloc (last_basic_block, n_entities); + + sbitmap_vector_ones (transp, last_basic_block); + + for (j = n_entities - 1; j >= 0; j--) + { + int e = entity_map[j]; + int no_mode = num_modes[e]; + struct bb_info *info = bb_info[j]; + + /* Determine what the first use (if any) need for a mode of entity E is. + This will be the mode that is anticipatable for this block. + Also compute the initial transparency settings. */ + FOR_EACH_BB (bb) + { + struct seginfo *ptr; + int last_mode = no_mode; + HARD_REG_SET live_now; + + REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb)); + + /* Pretend the mode is clobbered across abnormal edges. */ + { + edge_iterator ei; + edge e; + FOR_EACH_EDGE (e, ei, bb->preds) + if (e->flags & EDGE_COMPLEX) + break; + if (e) + { + ptr = new_seginfo (no_mode, BB_HEAD (bb), bb->index, live_now); + add_seginfo (info + bb->index, ptr); + RESET_BIT (transp[bb->index], j); + } + } + + for (insn = BB_HEAD (bb); + insn != NULL && insn != NEXT_INSN (BB_END (bb)); + insn = NEXT_INSN (insn)) + { + if (INSN_P (insn)) + { + int mode = MODE_NEEDED (e, insn); + rtx link; + + if (mode != no_mode && mode != last_mode) + { + last_mode = mode; + ptr = new_seginfo (mode, insn, bb->index, live_now); + add_seginfo (info + bb->index, ptr); + RESET_BIT (transp[bb->index], j); + } +#ifdef MODE_AFTER + last_mode = MODE_AFTER (last_mode, insn); +#endif + /* Update LIVE_NOW. */ + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_DEAD) + reg_dies (XEXP (link, 0), &live_now); + + note_stores (PATTERN (insn), reg_becomes_live, &live_now); + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_UNUSED) + reg_dies (XEXP (link, 0), &live_now); + } + } + + info[bb->index].computing = last_mode; + /* Check for blocks without ANY mode requirements. */ + if (last_mode == no_mode) + { + ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now); + add_seginfo (info + bb->index, ptr); + } + } +#if defined (MODE_ENTRY) && defined (MODE_EXIT) + { + int mode = MODE_ENTRY (e); + + if (mode != no_mode) + { + bb = post_entry; + + /* By always making this nontransparent, we save + an extra check in make_preds_opaque. We also + need this to avoid confusing pre_edge_lcm when + antic is cleared but transp and comp are set. */ + RESET_BIT (transp[bb->index], j); + + /* Insert a fake computing definition of MODE into entry + blocks which compute no mode. This represents the mode on + entry. */ + info[bb->index].computing = mode; + + if (pre_exit) + info[pre_exit->index].seginfo->mode = MODE_EXIT (e); + } + } +#endif /* NORMAL_MODE */ + } + + kill = sbitmap_vector_alloc (last_basic_block, n_entities); + for (i = 0; i < max_num_modes; i++) + { + int current_mode[N_ENTITIES]; + sbitmap *del; + sbitmap *insert; + + /* Set the anticipatable and computing arrays. */ + sbitmap_vector_zero (antic, last_basic_block); + sbitmap_vector_zero (comp, last_basic_block); + for (j = n_entities - 1; j >= 0; j--) + { + int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i); + struct bb_info *info = bb_info[j]; + + FOR_EACH_BB (bb) + { + if (info[bb->index].seginfo->mode == m) + SET_BIT (antic[bb->index], j); + + if (info[bb->index].computing == m) + SET_BIT (comp[bb->index], j); + } + } + + /* Calculate the optimal locations for the + placement mode switches to modes with priority I. */ + + FOR_EACH_BB (bb) + sbitmap_not (kill[bb->index], transp[bb->index]); + edge_list = pre_edge_lcm (n_entities, transp, comp, antic, + kill, &insert, &del); + + for (j = n_entities - 1; j >= 0; j--) + { + /* Insert all mode sets that have been inserted by lcm. */ + int no_mode = num_modes[entity_map[j]]; + + /* Wherever we have moved a mode setting upwards in the flow graph, + the blocks between the new setting site and the now redundant + computation ceases to be transparent for any lower-priority + mode of the same entity. First set the aux field of each + insertion site edge non-transparent, then propagate the new + non-transparency from the redundant computation upwards till + we hit an insertion site or an already non-transparent block. */ + for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--) + { + edge eg = INDEX_EDGE (edge_list, e); + int mode; + basic_block src_bb; + HARD_REG_SET live_at_edge; + rtx mode_set; + + eg->aux = 0; + + if (! TEST_BIT (insert[e], j)) + continue; + + eg->aux = (void *)1; + + mode = current_mode[j]; + src_bb = eg->src; + + REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb)); + + start_sequence (); + EMIT_MODE_SET (entity_map[j], mode, live_at_edge); + mode_set = get_insns (); + end_sequence (); + + /* Do not bother to insert empty sequence. */ + if (mode_set == NULL_RTX) + continue; + + /* We should not get an abnormal edge here. */ + gcc_assert (! (eg->flags & EDGE_ABNORMAL)); + + need_commit = 1; + insert_insn_on_edge (mode_set, eg); + } + + FOR_EACH_BB_REVERSE (bb) + if (TEST_BIT (del[bb->index], j)) + { + make_preds_opaque (bb, j); + /* Cancel the 'deleted' mode set. */ + bb_info[j][bb->index].seginfo->mode = no_mode; + } + } + + sbitmap_vector_free (del); + sbitmap_vector_free (insert); + clear_aux_for_edges (); + free_edge_list (edge_list); + } + + /* Now output the remaining mode sets in all the segments. */ + for (j = n_entities - 1; j >= 0; j--) + { + int no_mode = num_modes[entity_map[j]]; + + FOR_EACH_BB_REVERSE (bb) + { + struct seginfo *ptr, *next; + for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next) + { + next = ptr->next; + if (ptr->mode != no_mode) + { + rtx mode_set; + + start_sequence (); + EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live); + mode_set = get_insns (); + end_sequence (); + + /* Insert MODE_SET only if it is nonempty. */ + if (mode_set != NULL_RTX) + { + emited = true; + if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr)) + emit_insn_after (mode_set, ptr->insn_ptr); + else + emit_insn_before (mode_set, ptr->insn_ptr); + } + } + + free (ptr); + } + } + + free (bb_info[j]); + } + + /* Finished. Free up all the things we've allocated. */ + sbitmap_vector_free (kill); + sbitmap_vector_free (antic); + sbitmap_vector_free (transp); + sbitmap_vector_free (comp); + + if (need_commit) + commit_edge_insertions (); + +#if defined (MODE_ENTRY) && defined (MODE_EXIT) + cleanup_cfg (CLEANUP_NO_INSN_DEL); +#else + if (!need_commit && !emited) + return 0; +#endif + + return 1; +} + +#endif /* OPTIMIZE_MODE_SWITCHING */ + +static bool +gate_mode_switching (void) +{ +#ifdef OPTIMIZE_MODE_SWITCHING + return true; +#else + return false; +#endif +} + +static unsigned int +rest_of_handle_mode_switching (void) +{ +#ifdef OPTIMIZE_MODE_SWITCHING + optimize_mode_switching (); +#endif /* OPTIMIZE_MODE_SWITCHING */ + return 0; +} + + +struct rtl_opt_pass pass_mode_switching = +{ + { + RTL_PASS, + "mode_sw", /* name */ + gate_mode_switching, /* gate */ + rest_of_handle_mode_switching, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_MODE_SWITCH, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_df_finish | TODO_verify_rtl_sharing | + TODO_dump_func /* todo_flags_finish */ + } +};