X-Git-Url: https://oss.titaniummirror.com/gitweb/?a=blobdiff_plain;f=libstdc%2B%2B-v3%2Fdoc%2Fxml%2Fmanual%2Finternals.xml;fp=libstdc%2B%2B-v3%2Fdoc%2Fxml%2Fmanual%2Finternals.xml;h=ccde22791bd9bb5a277eece849582bca4aab79b7;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/libstdc++-v3/doc/xml/manual/internals.xml b/libstdc++-v3/doc/xml/manual/internals.xml new file mode 100644 index 00000000..ccde2279 --- /dev/null +++ b/libstdc++-v3/doc/xml/manual/internals.xml @@ -0,0 +1,548 @@ + + + + + + + ISO C++ + + + internals + + + + +Porting to New Hardware or Operating Systems + + + + + +This document explains how to port libstdc++ (the GNU C++ library) to +a new target. + + + In order to make the GNU C++ library (libstdc++) work with a new +target, you must edit some configuration files and provide some new +header files. Unless this is done, libstdc++ will use generic +settings which may not be correct for your target; even if they are +correct, they will likely be inefficient. + + + Before you get started, make sure that you have a working C library on +your target. The C library need not precisely comply with any +particular standard, but should generally conform to the requirements +imposed by the ANSI/ISO standard. + + + In addition, you should try to verify that the C++ compiler generally +works. It is difficult to test the C++ compiler without a working +library, but you should at least try some minimal test cases. + + + (Note that what we think of as a "target," the library refers to as +a "host." The comment at the top of configure.ac explains why.) + + + + +Operating System + +If you are porting to a new operating system (as opposed to a new chip +using an existing operating system), you will need to create a new +directory in the config/os hierarchy. For example, the IRIX +configuration files are all in config/os/irix. There is no set +way to organize the OS configuration directory. For example, +config/os/solaris/solaris-2.6 and +config/os/solaris/solaris-2.7 are used as configuration +directories for these two versions of Solaris. On the other hand, both +Solaris 2.7 and Solaris 2.8 use the config/os/solaris/solaris-2.7 +directory. The important information is that there needs to be a +directory under config/os to store the files for your operating +system. + + + You might have to change the configure.host file to ensure that +your new directory is activated. Look for the switch statement that sets +os_include_dir, and add a pattern to handle your operating system +if the default will not suffice. The switch statement switches on only +the OS portion of the standard target triplet; e.g., the solaris2.8 +in sparc-sun-solaris2.8. If the new directory is named after the +OS portion of the triplet (the default), then nothing needs to be changed. + + + The first file to create in this directory, should be called +os_defines.h. This file contains basic macro definitions +that are required to allow the C++ library to work with your C library. + + + Several libstdc++ source files unconditionally define the macro +_POSIX_SOURCE. On many systems, defining this macro causes +large portions of the C library header files to be eliminated +at preprocessing time. Therefore, you may have to #undef this +macro, or define other macros (like _LARGEFILE_SOURCE or +__EXTENSIONS__). You won't know what macros to define or +undefine at this point; you'll have to try compiling the library and +seeing what goes wrong. If you see errors about calling functions +that have not been declared, look in your C library headers to see if +the functions are declared there, and then figure out what macros you +need to define. You will need to add them to the +CPLUSPLUS_CPP_SPEC macro in the GCC configuration file for your +target. It will not work to simply define these macros in +os_defines.h. + + + At this time, there are a few libstdc++-specific macros which may be +defined: + + + _GLIBCXX_USE_C99_CHECK may be defined to 1 to check C99 +function declarations (which are not covered by specialization below) +found in system headers against versions found in the library headers +derived from the standard. + + + _GLIBCXX_USE_C99_DYNAMIC may be defined to an expression that +yields 0 if and only if the system headers are exposing proper support +for C99 functions (which are not covered by specialization below). If +defined, it must be 0 while bootstrapping the compiler/rebuilding the +library. + + + _GLIBCXX_USE_C99_LONG_LONG_CHECK may be defined to 1 to check +the set of C99 long long function declarations found in system headers +against versions found in the library headers derived from the +standard. + + + _GLIBCXX_USE_C99_LONG_LONG_DYNAMIC may be defined to an +expression that yields 0 if and only if the system headers are +exposing proper support for the set of C99 long long functions. If +defined, it must be 0 while bootstrapping the compiler/rebuilding the +library. + + _GLIBCXX_USE_C99_FP_MACROS_DYNAMIC may be defined to an +expression that yields 0 if and only if the system headers +are exposing proper support for the related set of macros. If defined, +it must be 0 while bootstrapping the compiler/rebuilding the library. + + _GLIBCXX_USE_C99_FLOAT_TRANSCENDENTALS_CHECK may be defined +to 1 to check the related set of function declarations found in system +headers against versions found in the library headers derived from +the standard. + + _GLIBCXX_USE_C99_FLOAT_TRANSCENDENTALS_DYNAMIC may be defined +to an expression that yields 0 if and only if the system headers +are exposing proper support for the related set of functions. If defined, +it must be 0 while bootstrapping the compiler/rebuilding the library. + + Finally, you should bracket the entire file in an include-guard, like +this: + + + + +#ifndef _GLIBCXX_OS_DEFINES +#define _GLIBCXX_OS_DEFINES +... +#endif + + + We recommend copying an existing os_defines.h to use as a +starting point. + + + + + +CPU + +If you are porting to a new chip (as opposed to a new operating system +running on an existing chip), you will need to create a new directory in the +config/cpu hierarchy. Much like the Operating system setup, +there are no strict rules on how to organize the CPU configuration +directory, but careful naming choices will allow the configury to find your +setup files without explicit help. + + + We recommend that for a target triplet <CPU>-<vendor>-<OS>, you +name your configuration directory config/cpu/<CPU>. If you do this, +the configury will find the directory by itself. Otherwise you will need to +edit the configure.host file and, in the switch statement that sets +cpu_include_dir, add a pattern to handle your chip. + + + Note that some chip families share a single configuration directory, for +example, alpha, alphaev5, and alphaev6 all use the +config/cpu/alpha directory, and there is an entry in the +configure.host switch statement to handle this. + + + The cpu_include_dir sets default locations for the files controlling +Thread safety and Numeric limits, if the defaults are not +appropriate for your chip. + + + + + + +Character Types + +The library requires that you provide three header files to implement +character classification, analogous to that provided by the C libraries +<ctype.h> header. You can model these on the files provided in +config/os/generic. However, these files will almost +certainly need some modification. + + + The first file to write is ctype_base.h. This file provides +some very basic information about character classification. The libstdc++ +library assumes that your C library implements <ctype.h> by using +a table (indexed by character code) containing integers, where each of +these integers is a bit-mask indicating whether the character is +upper-case, lower-case, alphabetic, etc. The ctype_base.h +file gives the type of the integer, and the values of the various bit +masks. You will have to peer at your own <ctype.h> to figure out +how to define the values required by this file. + + + The ctype_base.h header file does not need include guards. +It should contain a single struct definition called +ctype_base. This struct should contain two type +declarations, and one enumeration declaration, like this example, taken +from the IRIX configuration: + + + + struct ctype_base + { + typedef unsigned int mask; + typedef int* __to_type; + + enum + { + space = _ISspace, + print = _ISprint, + cntrl = _IScntrl, + upper = _ISupper, + lower = _ISlower, + alpha = _ISalpha, + digit = _ISdigit, + punct = _ISpunct, + xdigit = _ISxdigit, + alnum = _ISalnum, + graph = _ISgraph + }; + }; + + +The mask type is the type of the elements in the table. If your +C library uses a table to map lower-case numbers to upper-case numbers, +and vice versa, you should define __to_type to be the type of the +elements in that table. If you don't mind taking a minor performance +penalty, or if your library doesn't implement toupper and +tolower in this way, you can pick any pointer-to-integer type, +but you must still define the type. + + + The enumeration should give definitions for all the values in the above +example, using the values from your native <ctype.h>. They can +be given symbolically (as above), or numerically, if you prefer. You do +not have to include <ctype.h> in this header; it will always be +included before ctype_base.h is included. + + + The next file to write is ctype_noninline.h, which also does +not require include guards. This file defines a few member functions +that will be included in include/bits/locale_facets.h. The first +function that must be written is the ctype<char>::ctype +constructor. Here is the IRIX example: + + + +ctype<char>::ctype(const mask* __table = 0, bool __del = false, + size_t __refs = 0) + : _Ctype_nois<char>(__refs), _M_del(__table != 0 && __del), + _M_toupper(NULL), + _M_tolower(NULL), + _M_ctable(NULL), + _M_table(!__table + ? (const mask*) (__libc_attr._ctype_tbl->_class + 1) + : __table) + { } + + +There are two parts of this that you might choose to alter. The first, +and most important, is the line involving __libc_attr. That is +IRIX system-dependent code that gets the base of the table mapping +character codes to attributes. You need to substitute code that obtains +the address of this table on your system. If you want to use your +operating system's tables to map upper-case letters to lower-case, and +vice versa, you should initialize _M_toupper and +_M_tolower with those tables, in similar fashion. + + + Now, you have to write two functions to convert from upper-case to +lower-case, and vice versa. Here are the IRIX versions: + + + + char + ctype<char>::do_toupper(char __c) const + { return _toupper(__c); } + + char + ctype<char>::do_tolower(char __c) const + { return _tolower(__c); } + + +Your C library provides equivalents to IRIX's _toupper and +_tolower. If you initialized _M_toupper and +_M_tolower above, then you could use those tables instead. + + + Finally, you have to provide two utility functions that convert strings +of characters. The versions provided here will always work - but you +could use specialized routines for greater performance if you have +machinery to do that on your system: + + + + const char* + ctype<char>::do_toupper(char* __low, const char* __high) const + { + while (__low < __high) + { + *__low = do_toupper(*__low); + ++__low; + } + return __high; + } + + const char* + ctype<char>::do_tolower(char* __low, const char* __high) const + { + while (__low < __high) + { + *__low = do_tolower(*__low); + ++__low; + } + return __high; + } + + + You must also provide the ctype_inline.h file, which +contains a few more functions. On most systems, you can just copy +config/os/generic/ctype_inline.h and use it on your system. + + + In detail, the functions provided test characters for particular +properties; they are analogous to the functions like isalpha and +islower provided by the C library. + + + The first function is implemented like this on IRIX: + + + + bool + ctype<char>:: + is(mask __m, char __c) const throw() + { return (_M_table)[(unsigned char)(__c)] & __m; } + + +The _M_table is the table passed in above, in the constructor. +This is the table that contains the bitmasks for each character. The +implementation here should work on all systems. + + + The next function is: + + + + const char* + ctype<char>:: + is(const char* __low, const char* __high, mask* __vec) const throw() + { + while (__low < __high) + *__vec++ = (_M_table)[(unsigned char)(*__low++)]; + return __high; + } + + +This function is similar; it copies the masks for all the characters +from __low up until __high into the vector given by +__vec. + + + The last two functions again are entirely generic: + + + + const char* + ctype<char>:: + scan_is(mask __m, const char* __low, const char* __high) const throw() + { + while (__low < __high && !this->is(__m, *__low)) + ++__low; + return __low; + } + + const char* + ctype<char>:: + scan_not(mask __m, const char* __low, const char* __high) const throw() + { + while (__low < __high && this->is(__m, *__low)) + ++__low; + return __low; + } + + + + + + +Thread Safety + +The C++ library string functionality requires a couple of atomic +operations to provide thread-safety. If you don't take any special +action, the library will use stub versions of these functions that are +not thread-safe. They will work fine, unless your applications are +multi-threaded. + + + If you want to provide custom, safe, versions of these functions, there +are two distinct approaches. One is to provide a version for your CPU, +using assembly language constructs. The other is to use the +thread-safety primitives in your operating system. In either case, you +make a file called atomicity.h, and the variable +ATOMICITYH must point to this file. + + + If you are using the assembly-language approach, put this code in +config/cpu/<chip>/atomicity.h, where chip is the name of +your processor (see CPU). No additional changes are necessary to +locate the file in this case; ATOMICITYH will be set by default. + + + If you are using the operating system thread-safety primitives approach, +you can also put this code in the same CPU directory, in which case no more +work is needed to locate the file. For examples of this approach, +see the atomicity.h file for IRIX or IA64. + + + Alternatively, if the primitives are more closely related to the OS +than they are to the CPU, you can put the atomicity.h file in +the Operating system directory instead. In this case, you must +edit configure.host, and in the switch statement that handles +operating systems, override the ATOMICITYH variable to point to +the appropriate os_include_dir. For examples of this approach, +see the atomicity.h file for AIX. + + + With those bits out of the way, you have to actually write +atomicity.h itself. This file should be wrapped in an +include guard named _GLIBCXX_ATOMICITY_H. It should define one +type, and two functions. + + + The type is _Atomic_word. Here is the version used on IRIX: + + + +typedef long _Atomic_word; + + +This type must be a signed integral type supporting atomic operations. +If you're using the OS approach, use the same type used by your system's +primitives. Otherwise, use the type for which your CPU provides atomic +primitives. + + + Then, you must provide two functions. The bodies of these functions +must be equivalent to those provided here, but using atomic operations: + + + + static inline _Atomic_word + __attribute__ ((__unused__)) + __exchange_and_add (_Atomic_word* __mem, int __val) + { + _Atomic_word __result = *__mem; + *__mem += __val; + return __result; + } + + static inline void + __attribute__ ((__unused__)) + __atomic_add (_Atomic_word* __mem, int __val) + { + *__mem += __val; + } + + + + + + +Numeric Limits + +The C++ library requires information about the fundamental data types, +such as the minimum and maximum representable values of each type. +You can define each of these values individually, but it is usually +easiest just to indicate how many bits are used in each of the data +types and let the library do the rest. For information about the +macros to define, see the top of include/bits/std_limits.h. + + + If you need to define any macros, you can do so in os_defines.h. +However, if all operating systems for your CPU are likely to use the +same values, you can provide a CPU-specific file instead so that you +do not have to provide the same definitions for each operating system. +To take that approach, create a new file called cpu_limits.h in +your CPU configuration directory (see CPU). + + + + + + +Libtool + +The C++ library is compiled, archived and linked with libtool. +Explaining the full workings of libtool is beyond the scope of this +document, but there are a few, particular bits that are necessary for +porting. + + + Some parts of the libstdc++ library are compiled with the libtool +--tags CXX option (the C++ definitions for libtool). Therefore, +ltcf-cxx.sh in the top-level directory needs to have the correct +logic to compile and archive objects equivalent to the C version of libtool, +ltcf-c.sh. Some libtool targets have definitions for C but not +for C++, or C++ definitions which have not been kept up to date. + + + The C++ run-time library contains initialization code that needs to be +run as the library is loaded. Often, that requires linking in special +object files when the C++ library is built as a shared library, or +taking other system-specific actions. + + + The libstdc++ library is linked with the C version of libtool, even +though it is a C++ library. Therefore, the C version of libtool needs to +ensure that the run-time library initializers are run. The usual way to +do this is to build the library using gcc -shared. + + + If you need to change how the library is linked, look at +ltcf-c.sh in the top-level directory. Find the switch statement +that sets archive_cmds. Here, adjust the setting for your +operating system. + + + + + + \ No newline at end of file