(* * * Copyright (c) 2001-2002, * John Kodumal * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. The names of the contributors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *) (***********************************************************************) (* *) (* Exceptions *) (* *) (***********************************************************************) exception Inconsistent (* raised if constraint system is inconsistent *) exception WellFormed (* raised if types are not well-formed *) exception NoContents exception APFound (* raised if an alias pair is found, a control flow exception *) module U = Uref module S = Setp module H = Hashtbl module Q = Queue (** Subtyping kinds *) type polarity = Pos | Neg | Sub (** Path kinds, for CFL reachability *) type pkind = Positive | Negative | Match | Seed (** Context kinds -- open or closed *) type context = Open | Closed (* A configuration is a context (open or closed) coupled with a pair of stamps representing a state in the cartesian product DFA. *) type configuration = context * int * int module ConfigHash = struct type t = configuration let equal t t' = t = t' let hash t = Hashtbl.hash t end module CH = H.Make (ConfigHash) type config_map = unit CH.t (** Generic bounds *) type 'a bound = {index : int; info : 'a U.uref} (** For label paths. *) type 'a path = { kind : pkind; reached_global : bool; head : 'a U.uref; tail : 'a U.uref } module Bound = struct type 'a t = 'a bound let compare (x : 'a t) (y : 'a t) = if U.equal (x.info, y.info) then x.index - y.index else Pervasives.compare (U.deref x.info) (U.deref y.info) end module Path = struct type 'a t = 'a path let compare (x : 'a t) (y : 'a t) = if U.equal (x.head, y.head) then begin if U.equal (x.tail, y.tail) then begin if x.reached_global = y.reached_global then Pervasives.compare x.kind y.kind else Pervasives.compare x.reached_global y.reached_global end else Pervasives.compare (U.deref x.tail) (U.deref y.tail) end else Pervasives.compare (U.deref x.head) (U.deref y.head) end module B = S.Make (Bound) module P = S.Make (Path) type 'a boundset = 'a B.t type 'a pathset = 'a P.t (** Constants, which identify elements in points-to sets *) (** jk : I'd prefer to make this an 'a constant and specialize it to varinfo for use with the Cil frontend, but for now, this will do *) type constant = int * string * Cil.varinfo module Constant = struct type t = constant let compare (xid, _, _) (yid, _, _) = xid - yid end module C = Set.Make (Constant) (** Sets of constants. Set union is used when two labels containing constant sets are unified *) type constantset = C.t type lblinfo = { mutable l_name: string; (** either empty or a singleton, the initial location for this label *) loc : constantset; (** Name of this label *) l_stamp : int; (** Unique integer for this label *) mutable l_global : bool; (** True if this location is globally accessible *) mutable aliases: constantset; (** Set of constants (tags) for checking aliases *) mutable p_lbounds: lblinfo boundset; (** Set of umatched (p) lower bounds *) mutable n_lbounds: lblinfo boundset; (** Set of unmatched (n) lower bounds *) mutable p_ubounds: lblinfo boundset; (** Set of umatched (p) upper bounds *) mutable n_ubounds: lblinfo boundset; (** Set of unmatched (n) upper bounds *) mutable m_lbounds: lblinfo boundset; (** Set of matched (m) lower bounds *) mutable m_ubounds: lblinfo boundset; (** Set of matched (m) upper bounds *) mutable m_upath: lblinfo pathset; mutable m_lpath: lblinfo pathset; mutable n_upath: lblinfo pathset; mutable n_lpath: lblinfo pathset; mutable p_upath: lblinfo pathset; mutable p_lpath: lblinfo pathset; mutable l_seeded : bool; mutable l_ret : bool; mutable l_param : bool; } (** Constructor labels *) and label = lblinfo U.uref (** The type of lvalues. *) type lvalue = { l: label; contents: tau } and vinfo = { v_stamp : int; v_name : string; mutable v_hole : (int,unit) H.t; mutable v_global : bool; mutable v_mlbs : tinfo boundset; mutable v_mubs : tinfo boundset; mutable v_plbs : tinfo boundset; mutable v_pubs : tinfo boundset; mutable v_nlbs : tinfo boundset; mutable v_nubs : tinfo boundset } and rinfo = { r_stamp : int; rl : label; points_to : tau; mutable r_global: bool; } and finfo = { f_stamp : int; fl : label; ret : tau; mutable args : tau list; mutable f_global : bool; } and pinfo = { p_stamp : int; ptr : tau; lam : tau; mutable p_global : bool; } and tinfo = Var of vinfo | Ref of rinfo | Fun of finfo | Pair of pinfo and tau = tinfo U.uref type tconstraint = Unification of tau * tau | Leq of tau * (int * polarity) * tau (** Association lists, used for printing recursive types. The first element is a type that has been visited. The second element is the string representation of that type (so far). If the string option is set, then this type occurs within itself, and is associated with the recursive var name stored in the option. When walking a type, add it to an association list. Example : suppose we have the constraint 'a = ref('a). The type is unified via cyclic unification, and would loop infinitely if we attempted to print it. What we want to do is print the type u rv. ref(rv). This is accomplished in the following manner: -- ref('a) is visited. It is not in the association list, so it is added and the string "ref(" is stored in the second element. We recurse to print the first argument of the constructor. -- In the recursive call, we see that 'a (or ref('a)) is already in the association list, so the type is recursive. We check the string option, which is None, meaning that this is the first recurrence of the type. We create a new recursive variable, rv and set the string option to 'rv. Next, we prepend u rv. to the string representation we have seen before, "ref(", and return "rv" as the string representation of this type. -- The string so far is "u rv.ref(". The recursive call returns, and we complete the type by printing the result of the call, "rv", and ")" In a type where the recursive variable appears twice, e.g. 'a = pair('a,'a), the second time we hit 'a, the string option will be set, so we know to reuse the same recursive variable name. *) type association = tau * string ref * string option ref module PathHash = struct type t = int list let equal t t' = t = t' let hash t = Hashtbl.hash t end module PH = H.Make (PathHash) (***********************************************************************) (* *) (* Global Variables *) (* *) (***********************************************************************) (** Print the instantiations constraints. *) let print_constraints : bool ref = ref false (** If true, print all constraints (including induced) and show additional debug output. *) let debug = ref false (** Just debug all the constraints (including induced) *) let debug_constraints = ref false (** Debug smart alias queries *) let debug_aliases = ref false let smart_aliases = ref false (** If true, make the flow step a no-op *) let no_flow = ref false (** If true, disable subtyping (unification at all levels) *) let no_sub = ref false (** If true, treat indexed edges as regular subtyping *) let analyze_mono = ref true (** A list of equality constraints. *) let eq_worklist : tconstraint Q.t = Q.create () (** A list of leq constraints. *) let leq_worklist : tconstraint Q.t = Q.create () let path_worklist : (lblinfo path) Q.t = Q.create () let path_hash : (lblinfo path) PH.t = PH.create 32 (** A count of the constraints introduced from the AST. Used for debugging. *) let toplev_count = ref 0 (** A hashtable containing stamp pairs of labels that must be aliased. *) let cached_aliases : (int * int,unit) H.t = H.create 64 (** A hashtable mapping pairs of tau's to their join node. *) let join_cache : (int * int, tau) H.t = H.create 64 (***********************************************************************) (* *) (* Utility Functions *) (* *) (***********************************************************************) let find = U.deref let die s = Printf.printf "*******\nAssertion failed: %s\n*******\n" s; assert false let fresh_appsite : (unit -> int) = let appsite_index = ref 0 in fun () -> incr appsite_index; !appsite_index (** Generate a unique integer. *) let fresh_index : (unit -> int) = let counter = ref 0 in fun () -> incr counter; !counter let fresh_stamp : (unit -> int) = let stamp = ref 0 in fun () -> incr stamp; !stamp (** Return a unique integer representation of a tau *) let get_stamp (t : tau) : int = match find t with Var v -> v.v_stamp | Ref r -> r.r_stamp | Pair p -> p.p_stamp | Fun f -> f.f_stamp (** Negate a polarity. *) let negate (p : polarity) : polarity = match p with Pos -> Neg | Neg -> Pos | Sub -> die "negate" (** Consistency checks for inferred types *) let pair_or_var (t : tau) = match find t with Pair _ -> true | Var _ -> true | _ -> false let ref_or_var (t : tau) = match find t with Ref _ -> true | Var _ -> true | _ -> false let fun_or_var (t : tau) = match find t with Fun _ -> true | Var _ -> true | _ -> false (** Apply [f] structurally down [t]. Guaranteed to terminate, even if [t] is recursive *) let iter_tau f t = let visited : (int,tau) H.t = H.create 4 in let rec iter_tau' t = if H.mem visited (get_stamp t) then () else begin f t; H.add visited (get_stamp t) t; match U.deref t with Pair p -> iter_tau' p.ptr; iter_tau' p.lam | Fun f -> List.iter iter_tau' (f.args); iter_tau' f.ret | Ref r -> iter_tau' r.points_to | _ -> () end in iter_tau' t (* Extract a label's bounds according to [positive] and [upper]. *) let get_bounds (p :polarity ) (upper : bool) (l : label) : lblinfo boundset = let li = find l in match p with Pos -> if upper then li.p_ubounds else li.p_lbounds | Neg -> if upper then li.n_ubounds else li.n_lbounds | Sub -> if upper then li.m_ubounds else li.m_lbounds let equal_tau (t : tau) (t' : tau) = get_stamp t = get_stamp t' let get_label_stamp (l : label) : int = (find l).l_stamp (** Return true if [t] is global (treated monomorphically) *) let get_global (t : tau) : bool = match find t with Var v -> v.v_global | Ref r -> r.r_global | Pair p -> p.p_global | Fun f -> f.f_global let is_ret_label l = (find l).l_ret || (find l).l_global (* todo - check *) let is_param_label l = (find l).l_param || (find l).l_global let is_global_label l = (find l).l_global let is_seeded_label l = (find l).l_seeded let set_global_label (l : label) (b : bool) : unit = assert ((not (is_global_label l)) || b); (U.deref l).l_global <- b (** Aliases for set_global *) let global_tau = get_global (** Get_global for lvalues *) let global_lvalue lv = get_global lv.contents (***********************************************************************) (* *) (* Printing Functions *) (* *) (***********************************************************************) let string_of_configuration (c, i, i') = let context = match c with Open -> "O" | Closed -> "C" in Printf.sprintf "(%s,%d,%d)" context i i' let string_of_polarity p = match p with Pos -> "+" | Neg -> "-" | Sub -> "M" (** Convert a label to a string, short representation *) let string_of_label (l : label) : string = "\"" ^ (find l).l_name ^ "\"" (** Return true if the element [e] is present in the association list, according to uref equality *) let rec assoc_list_mem (e : tau) (l : association list) = match l with | [] -> None | (h, s, so) :: t -> if U.equal (h,e) then Some (s, so) else assoc_list_mem e t (** Given a tau, create a unique recursive variable name. This should always return the same name for a given tau *) let fresh_recvar_name (t : tau) : string = match find t with Pair p -> "rvp" ^ string_of_int p.p_stamp | Ref r -> "rvr" ^ string_of_int r.r_stamp | Fun f -> "rvf" ^ string_of_int f.f_stamp | _ -> die "fresh_recvar_name" (** Return a string representation of a tau, using association lists. *) let string_of_tau (t : tau) : string = let tau_map : association list ref = ref [] in let rec string_of_tau' t = match assoc_list_mem t !tau_map with Some (s, so) -> (* recursive type. see if a var name has been set *) begin match !so with None -> let rv = fresh_recvar_name t in s := "u " ^ rv ^ "." ^ !s; so := Some rv; rv | Some rv -> rv end | None -> (* type's not recursive. Add it to the assoc list and cont. *) let s = ref "" and so : string option ref = ref None in tau_map := (t, s, so) :: !tau_map; begin match find t with Var v -> s := v.v_name; | Pair p -> assert (ref_or_var p.ptr); assert (fun_or_var p.lam); s := "{"; s := !s ^ string_of_tau' p.ptr; s := !s ^ ","; s := !s ^ string_of_tau' p.lam; s := !s ^"}" | Ref r -> assert (pair_or_var r.points_to); s := "ref(|"; s := !s ^ string_of_label r.rl; s := !s ^ "|,"; s := !s ^ string_of_tau' r.points_to; s := !s ^ ")" | Fun f -> assert (pair_or_var f.ret); let rec string_of_args = function h :: [] -> assert (pair_or_var h); s := !s ^ string_of_tau' h | h :: t -> assert (pair_or_var h); s := !s ^ string_of_tau' h ^ ","; string_of_args t | [] -> () in s := "fun(|"; s := !s ^ string_of_label f.fl; s := !s ^ "|,"; s := !s ^ "<"; if List.length f.args > 0 then string_of_args f.args else s := !s ^ "void"; s := !s ^">,"; s := !s ^ string_of_tau' f.ret; s := !s ^ ")" end; tau_map := List.tl !tau_map; !s in string_of_tau' t (** Convert an lvalue to a string *) let rec string_of_lvalue (lv : lvalue) : string = let contents = string_of_tau lv.contents and l = string_of_label lv.l in assert (pair_or_var lv.contents); (* do a consistency check *) Printf.sprintf "[%s]^(%s)" contents l let print_path (p : lblinfo path) : unit = let string_of_pkind = function Positive -> "p" | Negative -> "n" | Match -> "m" | Seed -> "s" in Printf.printf "%s --%s--> %s (%d) : " (string_of_label p.head) (string_of_pkind p.kind) (string_of_label p.tail) (PathHash.hash p) (** Print a list of tau elements, comma separated *) let rec print_tau_list (l : tau list) : unit = let rec print_t_strings = function h :: [] -> print_endline h | h :: t -> print_string h; print_string ", "; print_t_strings t | [] -> () in print_t_strings (List.map string_of_tau l) let print_constraint (c : tconstraint) = match c with Unification (t, t') -> let lhs = string_of_tau t and rhs = string_of_tau t' in Printf.printf "%s == %s\n" lhs rhs | Leq (t, (i, p), t') -> let lhs = string_of_tau t and rhs = string_of_tau t' in Printf.printf "%s <={%d,%s} %s\n" lhs i (string_of_polarity p) rhs (***********************************************************************) (* *) (* Type Operations -- these do not create any constraints *) (* *) (***********************************************************************) (** Create an lvalue with label [lbl] and tau contents [t]. *) let make_lval (lbl, t : label * tau) : lvalue = {l = lbl; contents = t} let make_label_int (is_global : bool) (name :string) (vio : Cil.varinfo option) : label = let locc = match vio with Some vi -> C.add (fresh_index (), name, vi) C.empty | None -> C.empty in U.uref { l_name = name; l_global = is_global; l_stamp = fresh_stamp (); loc = locc; aliases = locc; p_ubounds = B.empty; p_lbounds = B.empty; n_ubounds = B.empty; n_lbounds = B.empty; m_ubounds = B.empty; m_lbounds = B.empty; m_upath = P.empty; m_lpath = P.empty; n_upath = P.empty; n_lpath = P.empty; p_upath = P.empty; p_lpath = P.empty; l_seeded = false; l_ret = false; l_param = false } (** Create a new label with name [name]. Also adds a fresh constant with name [name] to this label's aliases set. *) let make_label (is_global : bool) (name : string) (vio : Cil.varinfo option) : label = make_label_int is_global name vio (** Create a new label with an unspecified name and an empty alias set. *) let fresh_label (is_global : bool) : label = let index = fresh_index () in make_label_int is_global ("l_" ^ string_of_int index) None (** Create a fresh bound (edge in the constraint graph). *) let make_bound (i, a : int * label) : lblinfo bound = {index = i; info = a} let make_tau_bound (i, a : int * tau) : tinfo bound = {index = i; info = a} (** Create a fresh named variable with name '[name]. *) let make_var (b: bool) (name : string) : tau = U.uref (Var {v_name = ("'" ^ name); v_hole = H.create 8; v_stamp = fresh_index (); v_global = b; v_mlbs = B.empty; v_mubs = B.empty; v_plbs = B.empty; v_pubs = B.empty; v_nlbs = B.empty; v_nubs = B.empty}) (** Create a fresh unnamed variable (name will be 'fv). *) let fresh_var (is_global : bool) : tau = make_var is_global ("fv" ^ string_of_int (fresh_index ())) (** Create a fresh unnamed variable (name will be 'fi). *) let fresh_var_i (is_global : bool) : tau = make_var is_global ("fi" ^ string_of_int (fresh_index())) (** Create a Fun constructor. *) let make_fun (lbl, a, r : label * (tau list) * tau) : tau = U.uref (Fun {fl = lbl; f_stamp = fresh_index (); f_global = false; args = a; ret = r }) (** Create a Ref constructor. *) let make_ref (lbl,pt : label * tau) : tau = U.uref (Ref {rl = lbl; r_stamp = fresh_index (); r_global = false; points_to = pt}) (** Create a Pair constructor. *) let make_pair (p,f : tau * tau) : tau = U.uref (Pair {ptr = p; p_stamp = fresh_index (); p_global = false; lam = f}) (** Copy the toplevel constructor of [t], putting fresh variables in each argement of the constructor. *) let copy_toplevel (t : tau) : tau = match find t with Pair _ -> make_pair (fresh_var_i false, fresh_var_i false) | Ref _ -> make_ref (fresh_label false, fresh_var_i false) | Fun f -> let fresh_fn = fun _ -> fresh_var_i false in make_fun (fresh_label false, List.map fresh_fn f.args, fresh_var_i false) | _ -> die "copy_toplevel" let has_same_structure (t : tau) (t' : tau) = match find t, find t' with Pair _, Pair _ -> true | Ref _, Ref _ -> true | Fun _, Fun _ -> true | Var _, Var _ -> true | _ -> false let pad_args (f, f' : finfo * finfo) : unit = let padding = ref ((List.length f.args) - (List.length f'.args)) in if !padding == 0 then () else let to_pad = if !padding > 0 then f' else (padding := -(!padding); f) in for i = 1 to !padding do to_pad.args <- to_pad.args @ [fresh_var false] done let pad_args2 (fi, tlr : finfo * tau list ref) : unit = let padding = ref (List.length fi.args - List.length !tlr) in if !padding == 0 then () else if !padding > 0 then for i = 1 to !padding do tlr := !tlr @ [fresh_var false] done else begin padding := -(!padding); for i = 1 to !padding do fi.args <- fi.args @ [fresh_var false] done end (***********************************************************************) (* *) (* Constraint Generation/ Resolution *) (* *) (***********************************************************************) (** Make the type a global type *) let set_global (t : tau) (b : bool) : unit = let set_global_down t = match find t with Var v -> v.v_global <- true | Ref r -> set_global_label r.rl true | Fun f -> set_global_label f.fl true | _ -> () in if !debug && b then Printf.printf "Set global: %s\n" (string_of_tau t); assert ((not (get_global t)) || b); if b then iter_tau set_global_down t; match find t with Var v -> v.v_global <- b | Ref r -> r.r_global <- b | Pair p -> p.p_global <- b | Fun f -> f.f_global <- b let rec unify_int (t, t' : tau * tau) : unit = if equal_tau t t' then () else let ti, ti' = find t, find t' in U.unify combine (t, t'); match ti, ti' with Var v, Var v' -> set_global t' (v.v_global || get_global t'); merge_vholes (v, v'); merge_vlbs (v, v'); merge_vubs (v, v') | Var v, _ -> set_global t' (v.v_global || get_global t'); trigger_vhole v t'; notify_vlbs t v; notify_vubs t v | _, Var v -> set_global t (v.v_global || get_global t); trigger_vhole v t; notify_vlbs t' v; notify_vubs t' v | Ref r, Ref r' -> set_global t (r.r_global || r'.r_global); unify_ref (r, r') | Fun f, Fun f' -> set_global t (f.f_global || f'.f_global); unify_fun (f, f') | Pair p, Pair p' -> () | _ -> raise Inconsistent and notify_vlbs (t : tau) (vi : vinfo) : unit = let notify p bounds = List.iter (fun b -> add_constraint (Unification (b.info,copy_toplevel t)); add_constraint (Leq (b.info, (b.index, p), t))) bounds in notify Sub (B.elements vi.v_mlbs); notify Pos (B.elements vi.v_plbs); notify Neg (B.elements vi.v_nlbs) and notify_vubs (t : tau) (vi : vinfo) : unit = let notify p bounds = List.iter (fun b -> add_constraint (Unification (b.info,copy_toplevel t)); add_constraint (Leq (t, (b.index, p), b.info))) bounds in notify Sub (B.elements vi.v_mubs); notify Pos (B.elements vi.v_pubs); notify Neg (B.elements vi.v_nubs) and unify_ref (ri,ri' : rinfo * rinfo) : unit = add_constraint (Unification (ri.points_to, ri'.points_to)) and unify_fun (fi, fi' : finfo * finfo) : unit = let rec union_args = function _, [] -> false | [], _ -> true | h :: t, h' :: t' -> add_constraint (Unification (h, h')); union_args(t, t') in unify_label(fi.fl, fi'.fl); add_constraint (Unification (fi.ret, fi'.ret)); if union_args (fi.args, fi'.args) then fi.args <- fi'.args; and unify_label (l, l' : label * label) : unit = let pick_name (li, li' : lblinfo * lblinfo) = if String.length li.l_name > 1 && String.sub (li.l_name) 0 2 = "l_" then li.l_name <- li'.l_name else () in let combine_label (li, li' : lblinfo *lblinfo) : lblinfo = let rm_self b = not (li.l_stamp = get_label_stamp b.info) in pick_name (li, li'); li.l_global <- li.l_global || li'.l_global; li.aliases <- C.union li.aliases li'.aliases; li.p_ubounds <- B.union li.p_ubounds li'.p_ubounds; li.p_lbounds <- B.union li.p_lbounds li'.p_lbounds; li.n_ubounds <- B.union li.n_ubounds li'.n_ubounds; li.n_lbounds <- B.union li.n_lbounds li'.n_lbounds; li.m_ubounds <- B.union li.m_ubounds (B.filter rm_self li'.m_ubounds); li.m_lbounds <- B.union li.m_lbounds (B.filter rm_self li'.m_lbounds); li.m_upath <- P.union li.m_upath li'.m_upath; li.m_lpath<- P.union li.m_lpath li'.m_lpath; li.n_upath <- P.union li.n_upath li'.n_upath; li.n_lpath <- P.union li.n_lpath li'.n_lpath; li.p_upath <- P.union li.p_upath li'.p_upath; li.p_lpath <- P.union li.p_lpath li'.p_lpath; li.l_seeded <- li.l_seeded || li'.l_seeded; li.l_ret <- li.l_ret || li'.l_ret; li.l_param <- li.l_param || li'.l_param; li in if !debug_constraints then Printf.printf "%s == %s\n" (string_of_label l) (string_of_label l'); U.unify combine_label (l, l') and merge_vholes (vi, vi' : vinfo * vinfo) : unit = H.iter (fun i -> fun _ -> H.replace vi'.v_hole i ()) vi.v_hole and merge_vlbs (vi, vi' : vinfo * vinfo) : unit = vi'.v_mlbs <- B.union vi.v_mlbs vi'.v_mlbs; vi'.v_plbs <- B.union vi.v_plbs vi'.v_plbs; vi'.v_nlbs <- B.union vi.v_nlbs vi'.v_nlbs and merge_vubs (vi, vi' : vinfo * vinfo) : unit = vi'.v_mubs <- B.union vi.v_mubs vi'.v_mubs; vi'.v_pubs <- B.union vi.v_pubs vi'.v_pubs; vi'.v_nubs <- B.union vi.v_nubs vi'.v_nubs and trigger_vhole (vi : vinfo) (t : tau) = let add_self_loops (t : tau) : unit = match find t with Var v -> H.iter (fun i -> fun _ -> H.replace v.v_hole i ()) vi.v_hole | Ref r -> H.iter (fun i -> fun _ -> leq_label (r.rl, (i, Pos), r.rl); leq_label (r.rl, (i, Neg), r.rl)) vi.v_hole | Fun f -> H.iter (fun i -> fun _ -> leq_label (f.fl, (i, Pos), f.fl); leq_label (f.fl, (i, Neg), f.fl)) vi.v_hole | _ -> () in iter_tau add_self_loops t (** Pick the representative info for two tinfo's. This function prefers the first argument when both arguments are the same structure, but when one type is a structure and the other is a var, it picks the structure. All other actions (e.g., updating the info) is done in unify_int *) and combine (ti, ti' : tinfo * tinfo) : tinfo = match ti, ti' with Var _, _ -> ti' | _, _ -> ti and leq_int (t, (i, p), t') : unit = if equal_tau t t' then () else let ti, ti' = find t, find t' in match ti, ti' with Var v, Var v' -> begin match p with Pos -> v.v_pubs <- B.add (make_tau_bound (i, t')) v.v_pubs; v'.v_plbs <- B.add (make_tau_bound (i, t)) v'.v_plbs | Neg -> v.v_nubs <- B.add (make_tau_bound (i, t')) v.v_nubs; v'.v_nlbs <- B.add (make_tau_bound (i, t)) v'.v_nlbs | Sub -> v.v_mubs <- B.add (make_tau_bound (i, t')) v.v_mubs; v'.v_mlbs <- B.add (make_tau_bound (i, t)) v'.v_mlbs end | Var v, _ -> add_constraint (Unification (t, copy_toplevel t')); add_constraint (Leq (t, (i, p), t')) | _, Var v -> add_constraint (Unification (t', copy_toplevel t)); add_constraint (Leq (t, (i, p), t')) | Ref r, Ref r' -> leq_ref (r, (i, p), r') | Fun f, Fun f' -> add_constraint (Unification (t, t')) | Pair pr, Pair pr' -> add_constraint (Leq (pr.ptr, (i, p), pr'.ptr)); add_constraint (Leq (pr.lam, (i, p), pr'.lam)) | _ -> raise Inconsistent and leq_ref (ri, (i, p), ri') : unit = let add_self_loops (t : tau) : unit = match find t with Var v -> H.replace v.v_hole i () | Ref r -> leq_label (r.rl, (i, Pos), r.rl); leq_label (r.rl, (i, Neg), r.rl) | Fun f -> leq_label (f.fl, (i, Pos), f.fl); leq_label (f.fl, (i, Neg), f.fl) | _ -> () in iter_tau add_self_loops ri.points_to; add_constraint (Unification (ri.points_to, ri'.points_to)); leq_label(ri.rl, (i, p), ri'.rl) and leq_label (l,(i, p), l') : unit = if !debug_constraints then Printf.printf "%s <={%d,%s} %s\n" (string_of_label l) i (string_of_polarity p) (string_of_label l'); let li, li' = find l, find l' in match p with Pos -> li.l_ret <- true; li.p_ubounds <- B.add (make_bound (i, l')) li.p_ubounds; li'.p_lbounds <- B.add (make_bound (i, l)) li'.p_lbounds | Neg -> li'.l_param <- true; li.n_ubounds <- B.add (make_bound (i, l')) li.n_ubounds; li'.n_lbounds <- B.add (make_bound (i, l)) li'.n_lbounds | Sub -> if U.equal (l, l') then () else begin li.m_ubounds <- B.add (make_bound(0, l')) li.m_ubounds; li'.m_lbounds <- B.add (make_bound(0, l)) li'.m_lbounds end and add_constraint_int (c : tconstraint) (toplev : bool) = if !debug_constraints && toplev then begin Printf.printf "%d:>" !toplev_count; print_constraint c; incr toplev_count end else if !debug_constraints then print_constraint c else (); begin match c with Unification _ -> Q.add c eq_worklist | Leq _ -> Q.add c leq_worklist end; solve_constraints () and add_constraint (c : tconstraint) = add_constraint_int c false and add_toplev_constraint (c : tconstraint) = if !print_constraints && not !debug_constraints then begin Printf.printf "%d:>" !toplev_count; incr toplev_count; print_constraint c end else (); add_constraint_int c true and fetch_constraint () : tconstraint option = try Some (Q.take eq_worklist) with Q.Empty -> (try Some (Q.take leq_worklist) with Q.Empty -> None) (** The main solver loop. *) and solve_constraints () : unit = match fetch_constraint () with Some c -> begin match c with Unification (t, t') -> unify_int (t, t') | Leq (t, (i, p), t') -> if !no_sub then unify_int (t, t') else if !analyze_mono then leq_int (t, (0, Sub), t') else leq_int (t, (i, p), t') end; solve_constraints () | None -> () (***********************************************************************) (* *) (* Interface Functions *) (* *) (***********************************************************************) (** Return the contents of the lvalue. *) let rvalue (lv : lvalue) : tau = lv.contents (** Dereference the rvalue. If it does not have enough structure to support the operation, then the correct structure is added via new unification constraints. *) let rec deref (t : tau) : lvalue = match U.deref t with Pair p -> begin match U.deref p.ptr with Var _ -> let is_global = global_tau p.ptr in let points_to = fresh_var is_global in let l = fresh_label is_global in let r = make_ref (l, points_to) in add_toplev_constraint (Unification (p.ptr, r)); make_lval (l, points_to) | Ref r -> make_lval (r.rl, r.points_to) | _ -> raise WellFormed end | Var v -> let is_global = global_tau t in add_toplev_constraint (Unification (t, make_pair (fresh_var is_global, fresh_var is_global))); deref t | _ -> raise WellFormed (** Form the union of [t] and [t'], if it doesn't exist already. *) let join (t : tau) (t' : tau) : tau = try H.find join_cache (get_stamp t, get_stamp t') with Not_found -> let t'' = fresh_var false in add_toplev_constraint (Leq (t, (0, Sub), t'')); add_toplev_constraint (Leq (t', (0, Sub), t'')); H.add join_cache (get_stamp t, get_stamp t') t''; t'' (** Form the union of a list [tl], expected to be the initializers of some structure or array type. *) let join_inits (tl : tau list) : tau = let t' = fresh_var false in List.iter (fun t -> add_toplev_constraint (Leq (t, (0, Sub), t'))) tl; t' (** Take the address of an lvalue. Does not add constraints. *) let address (lv : lvalue) : tau = make_pair (make_ref (lv.l, lv.contents), fresh_var false) (** For this version of golf, instantiation is handled at [apply] *) let instantiate (lv : lvalue) (i : int) : lvalue = lv (** Constraint generated from assigning [t] to [lv]. *) let assign (lv : lvalue) (t : tau) : unit = add_toplev_constraint (Leq (t, (0, Sub), lv.contents)) let assign_ret (i : int) (lv : lvalue) (t : tau) : unit = add_toplev_constraint (Leq (t, (i, Pos), lv.contents)) (** Project out the first (ref) component or a pair. If the argument [t] has no discovered structure, raise NoContents. *) let proj_ref (t : tau) : tau = match U.deref t with Pair p -> p.ptr | Var v -> raise NoContents | _ -> raise WellFormed (* Project out the second (fun) component of a pair. If the argument [t] has no discovered structure, create it on the fly by adding constraints. *) let proj_fun (t : tau) : tau = match U.deref t with Pair p -> p.lam | Var v -> let p, f = fresh_var false, fresh_var false in add_toplev_constraint (Unification (t, make_pair(p, f))); f | _ -> raise WellFormed let get_args (t : tau) : tau list = match U.deref t with Fun f -> f.args | _ -> raise WellFormed let get_finfo (t : tau) : finfo = match U.deref t with Fun f -> f | _ -> raise WellFormed (** Function type [t] is applied to the arguments [actuals]. Unifies the actuals with the formals of [t]. If no functions have been discovered for [t] yet, create a fresh one and unify it with t. The result is the return value of the function plus the index of this application site. *) let apply (t : tau) (al : tau list) : (tau * int) = let i = fresh_appsite () in let f = proj_fun t in let actuals = ref al in let fi,ret = match U.deref f with Fun fi -> fi, fi.ret | Var v -> let new_l, new_ret, new_args = fresh_label false, fresh_var false, List.map (function _ -> fresh_var false) !actuals in let new_fun = make_fun (new_l, new_args, new_ret) in add_toplev_constraint (Unification (new_fun, f)); (get_finfo new_fun, new_ret) | _ -> raise WellFormed in pad_args2 (fi, actuals); List.iter2 (fun actual -> fun formal -> add_toplev_constraint (Leq (actual,(i, Neg), formal))) !actuals fi.args; (ret, i) (** Create a new function type with name [name], list of formal arguments [formals], and return value [ret]. Adds no constraints. *) let make_function (name : string) (formals : lvalue list) (ret : tau) : tau = let f = make_fun (make_label false name None, List.map (fun x -> rvalue x) formals, ret) in make_pair (fresh_var false, f) (** Create an lvalue. If [is_global] is true, the lvalue will be treated monomorphically. *) let make_lvalue (is_global : bool) (name : string) (vio : Cil.varinfo option) : lvalue = if !debug && is_global then Printf.printf "Making global lvalue : %s\n" name else (); make_lval (make_label is_global name vio, make_var is_global name) (** Create a fresh non-global named variable. *) let make_fresh (name : string) : tau = make_var false name (** The default type for constants. *) let bottom () : tau = make_var false "bottom" (** Unify the result of a function with its return value. *) let return (t : tau) (t' : tau) = add_toplev_constraint (Leq (t', (0, Sub), t)) (***********************************************************************) (* *) (* Query/Extract Solutions *) (* *) (***********************************************************************) let make_summary = leq_label let path_signature k l l' b : int list = let ksig = match k with Positive -> 1 | Negative -> 2 | _ -> 3 in [ksig; get_label_stamp l; get_label_stamp l'; if b then 1 else 0] let make_path (k, l, l', b) = let psig = path_signature k l l' b in if PH.mem path_hash psig then () else let new_path = {kind = k; head = l; tail = l'; reached_global = b} and li, li' = find l, find l' in PH.add path_hash psig new_path; Q.add new_path path_worklist; begin match k with Positive -> li.p_upath <- P.add new_path li.p_upath; li'.p_lpath <- P.add new_path li'.p_lpath | Negative -> li.n_upath <- P.add new_path li.n_upath; li'.n_lpath <- P.add new_path li'.n_lpath | _ -> li.m_upath <- P.add new_path li.m_upath; li'.m_lpath <- P.add new_path li'.m_lpath end; if !debug then begin print_string "Discovered path : "; print_path new_path; print_newline () end let backwards_tabulate (l : label) : unit = let rec loop () = let rule1 p = if !debug then print_endline "rule1"; B.iter (fun lb -> make_path (Match, lb.info, p.tail, p.reached_global || is_global_label p.head)) (find p.head).m_lbounds and rule2 p = if !debug then print_endline "rule2"; B.iter (fun lb -> make_path (Negative, lb.info, p.tail, p.reached_global || is_global_label p.head)) (find p.head).n_lbounds and rule2m p = if !debug then print_endline "rule2m"; B.iter (fun lb -> make_path (Match, lb.info, p.tail, p.reached_global || is_global_label p.head)) (find p.head).n_lbounds and rule3 p = if !debug then print_endline "rule3"; B.iter (fun lb -> make_path (Positive, lb.info, p.tail, p.reached_global || is_global_label p.head)) (find p.head).p_lbounds and rule4 p = if !debug then print_endline "rule4"; B.iter (fun lb -> make_path(Negative, lb.info, p.tail, p.reached_global || is_global_label p.head)) (find p.head).m_lbounds and rule5 p = if !debug then print_endline "rule5"; B.iter (fun lb -> make_path (Positive, lb.info, p.tail, p.reached_global || is_global_label p.head)) (find p.head).m_lbounds and rule6 p = if !debug then print_endline "rule6"; B.iter (fun lb -> if is_seeded_label lb.info then () else begin (find lb.info).l_seeded <- true; (* set seeded *) make_path (Seed, lb.info, lb.info, is_global_label lb.info) end) (find p.head).p_lbounds and rule7 p = if !debug then print_endline "rule7"; if not (is_ret_label p.tail && is_param_label p.head) then () else B.iter (fun lb -> B.iter (fun ub -> if lb.index = ub.index then begin if !debug then Printf.printf "New summary : %s %s\n" (string_of_label lb.info) (string_of_label ub.info); make_summary (lb.info, (0, Sub), ub.info); (* rules 1, 4, and 5 *) P.iter (fun ubp -> (* rule 1 *) make_path (Match, lb.info, ubp.tail, ubp.reached_global)) (find ub.info).m_upath; P.iter (fun ubp -> (* rule 4 *) make_path (Negative, lb.info, ubp.tail, ubp.reached_global)) (find ub.info).n_upath; P.iter (fun ubp -> (* rule 5 *) make_path (Positive, lb.info, ubp.tail, ubp.reached_global)) (find ub.info).p_upath end) (find p.tail).p_ubounds) (find p.head).n_lbounds in let matched_backward_rules p = rule1 p; if p.reached_global then rule2m p else rule2 p; rule3 p; rule6 p; rule7 p and negative_backward_rules p = rule2 p; rule3 p; rule4 p; rule6 p; rule7 p and positive_backward_rules p = rule3 p; rule5 p; rule6 p; rule7 p in (* loop *) if Q.is_empty path_worklist then () else let p = Q.take path_worklist in if !debug then begin print_string "Processing path: "; print_path p; print_newline () end; begin match p.kind with Positive -> if is_global_label p.tail then matched_backward_rules p else positive_backward_rules p | Negative -> negative_backward_rules p | _ -> matched_backward_rules p end; loop () in (* backwards_tabulate *) if !debug then begin Printf.printf "Tabulating for %s..." (string_of_label l); if is_global_label l then print_string "(global)"; print_newline () end; make_path (Seed, l, l, is_global_label l); loop () let collect_ptsets (l : label) : constantset = (* todo -- cache aliases *) let li = find l and collect init s = P.fold (fun x a -> C.union a (find x.head).aliases) s init in backwards_tabulate l; collect (collect (collect li.aliases li.m_lpath) li.n_lpath) li.p_lpath let extract_ptlabel (lv : lvalue) : label option = try match find (proj_ref lv.contents) with Var v -> None | Ref r -> Some r.rl; | _ -> raise WellFormed with NoContents -> None let points_to_aux (t : tau) : constant list = try match find (proj_ref t) with Var v -> [] | Ref r -> C.elements (collect_ptsets r.rl) | _ -> raise WellFormed with NoContents -> [] let points_to_names (lv : lvalue) : string list = List.map (fun (_, str, _) -> str) (points_to_aux lv.contents) let points_to (lv : lvalue) : Cil.varinfo list = let rec get_vinfos l : Cil.varinfo list = match l with | (_, _, h) :: t -> h :: get_vinfos t | [] -> [] in get_vinfos (points_to_aux lv.contents) let epoints_to (t : tau) : Cil.varinfo list = let rec get_vinfos l : Cil.varinfo list = match l with | (_, _, h) :: t -> h :: get_vinfos t | [] -> [] in get_vinfos (points_to_aux t) let smart_alias_query (l : label) (l' : label) : bool = (* Set of dead configurations *) let dead_configs : config_map = CH.create 16 in (* the set of discovered configurations *) let discovered : config_map = CH.create 16 in let rec filter_match (i : int) = B.filter (fun (b : lblinfo bound) -> i = b.index) in let rec simulate c l l' = let config = (c, get_label_stamp l, get_label_stamp l') in if U.equal (l, l') then begin if !debug then Printf.printf "%s and %s are aliased\n" (string_of_label l) (string_of_label l'); raise APFound end else if CH.mem discovered config then () else begin if !debug_aliases then Printf.printf "Exploring configuration %s\n" (string_of_configuration config); CH.add discovered config (); B.iter (fun lb -> simulate c lb.info l') (get_bounds Sub false l); (* epsilon closure of l *) B.iter (fun lb -> simulate c l lb.info) (get_bounds Sub false l'); (* epsilon closure of l' *) B.iter (fun lb -> let matching = filter_match lb.index (get_bounds Pos false l') in B.iter (fun b -> simulate Closed lb.info b.info) matching; if is_global_label l' then (* positive self-loops on l' *) simulate Closed lb.info l') (get_bounds Pos false l); (* positive transitions on l *) if is_global_label l then B.iter (fun lb -> simulate Closed l lb.info) (get_bounds Pos false l'); (* positive self-loops on l *) begin match c with (* negative transitions on l, only if Open *) Open -> B.iter (fun lb -> let matching = filter_match lb.index (get_bounds Neg false l') in B.iter (fun b -> simulate Open lb.info b.info) matching ; if is_global_label l' then (* neg self-loops on l' *) simulate Open lb.info l') (get_bounds Neg false l); if is_global_label l then B.iter (fun lb -> simulate Open l lb.info) (get_bounds Neg false l') (* negative self-loops on l *) | _ -> () end; (* if we got this far, then the configuration was not used *) CH.add dead_configs config (); end in try begin if H.mem cached_aliases (get_label_stamp l, get_label_stamp l') then true else begin simulate Open l l'; if !debug then Printf.printf "%s and %s are NOT aliased\n" (string_of_label l) (string_of_label l'); false end end with APFound -> CH.iter (fun config -> fun _ -> if not (CH.mem dead_configs config) then H.add cached_aliases (get_label_stamp l, get_label_stamp l') ()) discovered; true (** todo : uses naive alias query for now *) let may_alias (t1 : tau) (t2 : tau) : bool = try let l1 = match find (proj_ref t1) with Ref r -> r.rl | Var v -> raise NoContents | _ -> raise WellFormed and l2 = match find (proj_ref t2) with Ref r -> r.rl | Var v -> raise NoContents | _ -> raise WellFormed in not (C.is_empty (C.inter (collect_ptsets l1) (collect_ptsets l2))) with NoContents -> false let alias_query (b : bool) (lvl : lvalue list) : int * int = let naive_count = ref 0 in let smart_count = ref 0 in let lbls = List.map extract_ptlabel lvl in (* label option list *) let ptsets = List.map (function Some l -> collect_ptsets l | None -> C.empty) lbls in let record_alias s lo s' lo' = match lo, lo' with Some l, Some l' -> if !debug_aliases then Printf.printf "Checking whether %s and %s are aliased...\n" (string_of_label l) (string_of_label l'); if C.is_empty (C.inter s s') then () else begin incr naive_count; if !smart_aliases && smart_alias_query l l' then incr smart_count end | _ -> () in let rec check_alias sets labels = match sets,labels with s :: st, l :: lt -> List.iter2 (record_alias s l) ptsets lbls; check_alias st lt | [], [] -> () | _ -> die "check_alias" in check_alias ptsets lbls; (!naive_count, !smart_count) let alias_frequency (lvl : (lvalue * bool) list) : int * int = let extract_lbl (lv, b : lvalue * bool) = (lv.l, b) in let naive_count = ref 0 in let smart_count = ref 0 in let lbls = List.map extract_lbl lvl in let ptsets = List.map (fun (lbl, b) -> if b then (find lbl).loc (* symbol access *) else collect_ptsets lbl) lbls in let record_alias s (l, b) s' (l', b') = if !debug_aliases then Printf.printf "Checking whether %s and %s are aliased...\n" (string_of_label l) (string_of_label l'); if C.is_empty (C.inter s s') then () else begin if !debug_aliases then Printf.printf "%s and %s are aliased naively...\n" (string_of_label l) (string_of_label l'); incr naive_count; if !smart_aliases then if b || b' || smart_alias_query l l' then incr smart_count else Printf.printf "%s and %s are not aliased by smart queries...\n" (string_of_label l) (string_of_label l'); end in let rec check_alias sets labels = match sets, labels with s :: st, l :: lt -> List.iter2 (record_alias s l) ptsets lbls; check_alias st lt | [], [] -> () | _ -> die "check_alias" in check_alias ptsets lbls; (!naive_count, !smart_count) (** an interface for extracting abstract locations from this analysis *) type absloc = label let absloc_of_lvalue (l : lvalue) : absloc = l.l let absloc_eq (a1, a2) = smart_alias_query a1 a2 let absloc_print_name = ref true let d_absloc () (p : absloc) = let a = find p in if !absloc_print_name then Pretty.dprintf "%s" a.l_name else Pretty.dprintf "%d" a.l_stamp let phonyAddrOf (lv : lvalue) : lvalue = make_lval (fresh_label true, address lv) (* transitive closure of points to, starting from l *) let rec tauPointsTo (l : tau) : absloc list = match find l with Var _ -> [] | Ref r -> r.rl :: tauPointsTo r.points_to | _ -> [] let rec absloc_points_to (l : lvalue) : absloc list = tauPointsTo l.contents (** The following definitions are only introduced for the compatability with Olf. *) exception UnknownLocation let finished_constraints () = () let apply_undefined (_ : tau list) = (fresh_var true, 0) let assign_undefined (_ : lvalue) = () let absloc_epoints_to = tauPointsTo