(* * * Copyright (c) 2001-2002, * John Kodumal * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. The names of the contributors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *) (***********************************************************************) (* *) (* Exceptions *) (* *) (***********************************************************************) exception Inconsistent (* raised if constraint system is inconsistent *) exception WellFormed (* raised if types are not well-formed *) exception NoContents exception APFound (* raised if an alias pair is found, a control flow exception *) exception ReachedTop (* raised if top (from an undefined function) flows to a c_absloc during the flow step *) exception UnknownLocation let solve_constraints () = () (* only for compatability with Golf *) open Cil module U = Uref module S = Setp module H = Hashtbl module Q = Queue (** Generic bounds *) type 'a bound = {info : 'a U.uref} module Bound = struct type 'a t = 'a bound let compare (x : 'a t) (y : 'a t) = Pervasives.compare (U.deref x.info) (U.deref y.info) end module B = S.Make (Bound) type 'a boundset = 'a B.t (** Abslocs, which identify elements in points-to sets *) (** jk : I'd prefer to make this an 'a absloc and specialize it to varinfo for use with the Cil frontend, but for now, this will do *) type absloc = int * string * Cil.varinfo option module Absloc = struct type t = absloc let compare (xid, _, _) (yid, _, _) = xid - yid end module C = Set.Make (Absloc) (** Sets of abslocs. Set union is used when two c_abslocs containing absloc sets are unified *) type abslocset = C.t let d_absloc () (a: absloc) : Pretty.doc = let i,s,_ = a in Pretty.dprintf "<%d, %s>" i s type c_abslocinfo = { mutable l_name: string; (** name of the location *) loc : absloc; l_stamp : int; mutable l_top : bool; mutable aliases : abslocset; mutable lbounds : c_abslocinfo boundset; mutable ubounds : c_abslocinfo boundset; mutable flow_computed : bool } and c_absloc = c_abslocinfo U.uref (** The type of lvalues. *) type lvalue = { l: c_absloc; contents: tau } and vinfo = { v_stamp : int; v_name : string; mutable v_top : bool; mutable v_lbounds : tinfo boundset; mutable v_ubounds : tinfo boundset } and rinfo = { r_stamp : int; rl : c_absloc; points_to : tau } and finfo = { f_stamp : int; fl : c_absloc; ret : tau; mutable args : tau list } and pinfo = { p_stamp : int; ptr : tau; lam : tau } and tinfo = Var of vinfo | Ref of rinfo | Fun of finfo | Pair of pinfo and tau = tinfo U.uref type tconstraint = Unification of tau * tau | Leq of tau * tau (** Association lists, used for printing recursive types. The first element is a type that has been visited. The second element is the string representation of that type (so far). If the string option is set, then this type occurs within itself, and is associated with the recursive var name stored in the option. When walking a type, add it to an association list. Example: suppose we have the constraint 'a = ref('a). The type is unified via cyclic unification, and would loop infinitely if we attempted to print it. What we want to do is print the type u rv. ref(rv). This is accomplished in the following manner: -- ref('a) is visited. It is not in the association list, so it is added and the string "ref(" is stored in the second element. We recurse to print the first argument of the constructor. -- In the recursive call, we see that 'a (or ref('a)) is already in the association list, so the type is recursive. We check the string option, which is None, meaning that this is the first recurrence of the type. We create a new recursive variable, rv and set the string option to 'rv. Next, we prepend u rv. to the string representation we have seen before, "ref(", and return "rv" as the string representation of this type. -- The string so far is "u rv.ref(". The recursive call returns, and we complete the type by printing the result of the call, "rv", and ")" In a type where the recursive variable appears twice, e.g. 'a = pair('a,'a), the second time we hit 'a, the string option will be set, so we know to reuse the same recursive variable name. *) type association = tau * string ref * string option ref (** The current state of the solver engine either adding more constraints, or finished adding constraints and querying graph *) type state = AddingConstraints | FinishedConstraints (***********************************************************************) (* *) (* Global Variables *) (* *) (***********************************************************************) (** A count of the constraints introduced from the AST. Used for debugging. *) let toplev_count = ref 0 let solver_state : state ref = ref AddingConstraints (** Print the instantiations constraints. *) let print_constraints : bool ref = ref false (** If true, print all constraints (including induced) and show additional debug output. *) let debug = ref false (** Just debug all the constraints (including induced) *) let debug_constraints = ref false (** Debug the flow step *) let debug_flow_step = ref false (** Compatibility with GOLF *) let debug_aliases = ref false let smart_aliases = ref false let no_flow = ref false let analyze_mono = ref false (** If true, disable subtyping (unification at all levels) *) let no_sub = ref false (** A list of equality constraints. *) let eq_worklist : tconstraint Q.t = Q.create () (** A list of leq constraints. *) let leq_worklist : tconstraint Q.t = Q.create () (** A hashtable containing stamp pairs of c_abslocs that must be aliased. *) let cached_aliases : (int * int, unit) H.t = H.create 64 (** A hashtable mapping pairs of tau's to their join node. *) let join_cache : (int * int, tau) H.t = H.create 64 (** *) let label_prefix = "l_" (***********************************************************************) (* *) (* Utility Functions *) (* *) (***********************************************************************) let starts_with s p = let n = String.length p in if String.length s < n then false else String.sub s 0 n = p let die s = Printf.printf "*******\nAssertion failed: %s\n*******\n" s; assert false let insist b s = if not b then die s else () let can_add_constraints () = !solver_state = AddingConstraints let can_query_graph () = !solver_state = FinishedConstraints let finished_constraints () = insist (!solver_state = AddingConstraints) "inconsistent states"; solver_state := FinishedConstraints let find = U.deref (** return the prefix of the list up to and including the first element satisfying p. if no element satisfies p, return the empty list *) let rec keep_until p l = match l with [] -> [] | x :: xs -> if p x then [x] else x :: keep_until p xs (** Generate a unique integer. *) let fresh_index : (unit -> int) = let counter = ref 0 in fun () -> incr counter; !counter let fresh_stamp : (unit -> int) = let stamp = ref 0 in fun () -> incr stamp; !stamp (** Return a unique integer representation of a tau *) let get_stamp (t : tau) : int = match find t with Var v -> v.v_stamp | Ref r -> r.r_stamp | Pair p -> p.p_stamp | Fun f -> f.f_stamp (** Consistency checks for inferred types *) let pair_or_var (t : tau) = match find t with Pair _ -> true | Var _ -> true | _ -> false let ref_or_var (t : tau) = match find t with Ref _ -> true | Var _ -> true | _ -> false let fun_or_var (t : tau) = match find t with Fun _ -> true | Var _ -> true | _ -> false (** Apply [f] structurally down [t]. Guaranteed to terminate, even if [t] is recursive *) let iter_tau f t = let visited : (int, tau) H.t = H.create 4 in let rec iter_tau' t = if H.mem visited (get_stamp t) then () else begin f t; H.add visited (get_stamp t) t; match find t with Pair p -> iter_tau' p.ptr; iter_tau' p.lam | Fun f -> List.iter iter_tau' f.args; iter_tau' f.ret; | Ref r -> iter_tau' r.points_to | _ -> () end in iter_tau' t let equal_absloc = function (i, _, _), (i', _, _) -> i = i' let equal_c_absloc l l' = (find l).l_stamp = (find l').l_stamp let equal_tau (t : tau) (t' : tau) = get_stamp t = get_stamp t' let top_c_absloc l = (find l).l_top let get_flow_computed l = (find l).flow_computed let set_flow_computed l = (find l).flow_computed <- true let rec top_tau (t : tau) = match find t with Pair p -> top_tau p.ptr || top_tau p.lam | Ref r -> top_c_absloc r.rl | Fun f -> top_c_absloc f.fl | Var v -> v.v_top let get_c_absloc_stamp (l : c_absloc) : int = (find l).l_stamp let set_top_c_absloc (l : c_absloc) (b: bool) : unit = (find l).l_top <- b let get_aliases (l : c_absloc) = if top_c_absloc l then raise ReachedTop else (find l).aliases (***********************************************************************) (* *) (* Printing Functions *) (* *) (***********************************************************************) (** Convert a c_absloc to a string, short representation *) let string_of_c_absloc (l : c_absloc) : string = "\"" ^ (find l).l_name ^ if top_c_absloc l then "(top)" else "" ^ "\"" (** Return true if the element [e] is present in the association list, according to uref equality *) let rec assoc_list_mem (e : tau) (l : association list) = match l with [] -> None | (h, s, so) :: t -> if U.equal (h, e) then Some (s, so) else assoc_list_mem e t (** Given a tau, create a unique recursive variable name. This should always return the same name for a given tau *) let fresh_recvar_name (t : tau) : string = match find t with Pair p -> "rvp" ^ string_of_int p.p_stamp | Ref r -> "rvr" ^ string_of_int r.r_stamp | Fun f -> "rvf" ^ string_of_int f.f_stamp | _ -> die "fresh_recvar_name" (** Return a string representation of a tau, using association lists. *) let string_of_tau (t : tau) : string = let tau_map : association list ref = ref [] in let rec string_of_tau' t = match assoc_list_mem t !tau_map with Some (s, so) -> (* recursive type. see if a var name has been set *) begin match !so with None -> let rv = fresh_recvar_name t in s := "u " ^ rv ^ "." ^ !s; so := Some rv; rv | Some rv -> rv end | None -> (* type's not recursive. Add it to the assoc list and cont. *) let s = ref "" and so : string option ref = ref None in tau_map := (t, s, so) :: !tau_map; begin match find t with Var v -> s := v.v_name | Pair p -> insist (ref_or_var p.ptr) "wellformed"; insist (fun_or_var p.lam) "wellformed"; s := "{"; s := !s ^ string_of_tau' p.ptr; s := !s ^ ","; s := !s ^ string_of_tau' p.lam; s := !s ^ "}" | Ref r -> insist (pair_or_var r.points_to) "wellformed"; s := "ref(|"; s := !s ^ string_of_c_absloc r.rl; s := !s ^ "|,"; s := !s ^ string_of_tau' r.points_to; s := !s ^ ")" | Fun f -> let rec string_of_args = function [] -> () | h :: [] -> insist (pair_or_var h) "wellformed"; s := !s ^ string_of_tau' h | h :: t -> insist (pair_or_var h) "wellformed"; s := !s ^ string_of_tau' h ^ ","; string_of_args t in insist (pair_or_var f.ret) "wellformed"; s := "fun(|"; s := !s ^ string_of_c_absloc f.fl; s := !s ^ "|,"; s := !s ^ "<"; if List.length f.args > 0 then string_of_args f.args else s := !s ^ "void"; s := !s ^ ">,"; s := !s ^ string_of_tau' f.ret; s := !s ^ ")" end; tau_map := List.tl !tau_map; !s in string_of_tau' t (** Convert an lvalue to a string *) let rec string_of_lvalue (lv : lvalue) : string = let contents = string_of_tau lv.contents and l = string_of_c_absloc lv.l in insist (pair_or_var lv.contents) "inconsistency at string_of_lvalue"; (* do a consistency check *) Printf.sprintf "[%s]^(%s)" contents l (** Print a list of tau elements, comma separated *) let rec print_tau_list (l : tau list) : unit = let rec print_t_strings = function [] -> () | h :: [] -> print_endline h | h :: t -> print_string h; print_string ", "; print_t_strings t in print_t_strings (List.map string_of_tau l) let print_constraint (c : tconstraint) = match c with Unification (t, t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in Printf.printf "%s == %s\n" lhs rhs | Leq (t, t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in Printf.printf "%s <= %s\n" lhs rhs (***********************************************************************) (* *) (* Type Operations -- these do not create any constraints *) (* *) (***********************************************************************) (** Create an lvalue with c_absloc [lbl] and tau contents [t]. *) let make_lval (loc, t : c_absloc * tau) : lvalue = {l = loc; contents = t} let make_c_absloc_int (is_top : bool) (name : string) (vio : Cil.varinfo option) : c_absloc = let my_absloc = (fresh_index (), name, vio) in let locc = C.add my_absloc C.empty in U.uref { l_name = name; l_top = is_top; l_stamp = fresh_stamp (); loc = my_absloc; aliases = locc; ubounds = B.empty; lbounds = B.empty; flow_computed = false } (** Create a new c_absloc with name [name]. Also adds a fresh absloc with name [name] to this c_absloc's aliases set. *) let make_c_absloc (is_top : bool) (name : string) (vio : Cil.varinfo option) = make_c_absloc_int is_top name vio let fresh_c_absloc (is_top : bool) : c_absloc = let index = fresh_index () in make_c_absloc_int is_top (label_prefix ^ string_of_int index) None (** Create a fresh bound (edge in the constraint graph). *) let make_bound (a : c_absloc) : c_abslocinfo bound = {info = a} let make_tau_bound (t : tau) : tinfo bound = {info = t} (** Create a fresh named variable with name '[name]. *) let make_var (is_top : bool) (name : string) : tau = U.uref (Var {v_name = ("'" ^ name); v_top = is_top; v_stamp = fresh_index (); v_lbounds = B.empty; v_ubounds = B.empty}) let fresh_var (is_top : bool) : tau = make_var is_top ("fi" ^ string_of_int (fresh_index ())) (** Create a fresh unnamed variable (name will be 'fi). *) let fresh_var_i (is_top : bool) : tau = make_var is_top ("fi" ^ string_of_int (fresh_index ())) (** Create a Fun constructor. *) let make_fun (lbl, a, r : c_absloc * (tau list) * tau) : tau = U.uref (Fun {fl = lbl; f_stamp = fresh_index (); args = a; ret = r}) (** Create a Ref constructor. *) let make_ref (lbl, pt : c_absloc * tau) : tau = U.uref (Ref {rl = lbl; r_stamp = fresh_index (); points_to = pt}) (** Create a Pair constructor. *) let make_pair (p, f : tau * tau) : tau = U.uref (Pair {ptr = p; p_stamp = fresh_index (); lam = f}) (** Copy the toplevel constructor of [t], putting fresh variables in each argement of the constructor. *) let copy_toplevel (t : tau) : tau = match find t with Pair _ -> make_pair (fresh_var_i false, fresh_var_i false) | Ref _ -> make_ref (fresh_c_absloc false, fresh_var_i false) | Fun f -> make_fun (fresh_c_absloc false, List.map (fun _ -> fresh_var_i false) f.args, fresh_var_i false) | _ -> die "copy_toplevel" let has_same_structure (t : tau) (t' : tau) = match find t, find t' with Pair _, Pair _ -> true | Ref _, Ref _ -> true | Fun _, Fun _ -> true | Var _, Var _ -> true | _ -> false let pad_args (fi, tlr : finfo * tau list ref) : unit = let padding = List.length fi.args - List.length !tlr in if padding == 0 then () else if padding > 0 then for i = 1 to padding do tlr := !tlr @ [fresh_var false] done else for i = 1 to -padding do fi.args <- fi.args @ [fresh_var false] done (***********************************************************************) (* *) (* Constraint Generation/ Resolution *) (* *) (***********************************************************************) let set_top (b : bool) (t : tau) : unit = let set_top_down t = match find t with Var v -> v.v_top <- b | Ref r -> set_top_c_absloc r.rl b | Fun f -> set_top_c_absloc f.fl b | Pair p -> () in iter_tau set_top_down t let rec unify_int (t, t' : tau * tau) : unit = if equal_tau t t' then () else let ti, ti' = find t, find t' in U.unify combine (t, t'); match ti, ti' with Var v, Var v' -> set_top (v.v_top || v'.v_top) t'; merge_v_lbounds (v, v'); merge_v_ubounds (v, v') | Var v, _ -> set_top (v.v_top || top_tau t') t'; notify_vlbounds t v; notify_vubounds t v | _, Var v -> set_top (v.v_top || top_tau t) t; notify_vlbounds t' v; notify_vubounds t' v | Ref r, Ref r' -> unify_ref (r, r') | Fun f, Fun f' -> unify_fun (f, f') | Pair p, Pair p' -> unify_pair (p, p') | _ -> raise Inconsistent and notify_vlbounds (t : tau) (vi : vinfo) : unit = let notify bounds = List.iter (fun b -> add_constraint (Unification (b.info, copy_toplevel t)); add_constraint (Leq (b.info, t))) bounds in notify (B.elements vi.v_lbounds) and notify_vubounds (t : tau) (vi : vinfo) : unit = let notify bounds = List.iter (fun b -> add_constraint (Unification (b.info, copy_toplevel t)); add_constraint (Leq (t, b.info))) bounds in notify (B.elements vi.v_ubounds) and unify_ref (ri, ri' : rinfo * rinfo) : unit = unify_c_abslocs (ri.rl, ri'.rl); add_constraint (Unification (ri.points_to, ri'.points_to)) and unify_fun (fi, fi' : finfo * finfo) : unit = let rec union_args = function _, [] -> false | [], _ -> true | h :: t, h' :: t' -> add_constraint (Unification (h, h')); union_args(t, t') in unify_c_abslocs (fi.fl, fi'.fl); add_constraint (Unification (fi.ret, fi'.ret)); if union_args (fi.args, fi'.args) then fi.args <- fi'.args and unify_pair (pi, pi' : pinfo * pinfo) : unit = add_constraint (Unification (pi.ptr, pi'.ptr)); add_constraint (Unification (pi.lam, pi'.lam)) and unify_c_abslocs (l, l' : c_absloc * c_absloc) : unit = let pick_name (li, li' : c_abslocinfo * c_abslocinfo) = if starts_with li.l_name label_prefix then li.l_name <- li'.l_name else () in let combine_c_absloc (li, li' : c_abslocinfo * c_abslocinfo) : c_abslocinfo = pick_name (li, li'); li.l_top <- li.l_top || li'.l_top; li.aliases <- C.union li.aliases li'.aliases; li.ubounds <- B.union li.ubounds li'.ubounds; li.lbounds <- B.union li.lbounds li'.lbounds; li in if !debug_constraints then Printf.printf "%s == %s\n" (string_of_c_absloc l) (string_of_c_absloc l'); U.unify combine_c_absloc (l, l') and merge_v_lbounds (vi, vi' : vinfo * vinfo) : unit = vi'.v_lbounds <- B.union vi.v_lbounds vi'.v_lbounds; and merge_v_ubounds (vi, vi' : vinfo * vinfo) : unit = vi'.v_ubounds <- B.union vi.v_ubounds vi'.v_ubounds; (** Pick the representative info for two tinfo's. This function prefers the first argument when both arguments are the same structure, but when one type is a structure and the other is a var, it picks the structure. All other actions (e.g., updating the info) is done in unify_int *) and combine (ti, ti' : tinfo * tinfo) : tinfo = match ti, ti' with Var _, _ -> ti' | _, _ -> ti and leq_int (t, t') : unit = if equal_tau t t' then () else let ti, ti' = find t, find t' in match ti, ti' with Var v, Var v' -> v.v_ubounds <- B.add (make_tau_bound t') v.v_ubounds; v'.v_lbounds <- B.add (make_tau_bound t) v'.v_lbounds | Var v, _ -> add_constraint (Unification (t, copy_toplevel t')); add_constraint (Leq (t, t')) | _, Var v -> add_constraint (Unification (t', copy_toplevel t)); add_constraint (Leq (t, t')) | Ref r, Ref r' -> leq_ref (r, r') | Fun f, Fun f' -> (* TODO: check, why not do subtyping here? *) add_constraint (Unification (t, t')) | Pair pr, Pair pr' -> add_constraint (Leq (pr.ptr, pr'.ptr)); add_constraint (Leq (pr.lam, pr'.lam)) | _ -> raise Inconsistent and leq_ref (ri, ri') : unit = leq_c_absloc (ri.rl, ri'.rl); add_constraint (Unification (ri.points_to, ri'.points_to)) and leq_c_absloc (l, l') : unit = let li, li' = find l, find l' in if !debug_constraints then Printf.printf "%s <= %s\n" (string_of_c_absloc l) (string_of_c_absloc l'); if U.equal (l, l') then () else begin li.ubounds <- B.add (make_bound l') li.ubounds; li'.lbounds <- B.add (make_bound l) li'.lbounds end and add_constraint_int (c : tconstraint) (toplev : bool) = if !debug_constraints && toplev then begin Printf.printf "%d:>" !toplev_count; print_constraint c; incr toplev_count end else if !debug_constraints then print_constraint c else (); insist (can_add_constraints ()) "can't add constraints after compute_results is called"; begin match c with Unification _ -> Q.add c eq_worklist | Leq _ -> Q.add c leq_worklist end; solve_constraints () (* solve online *) and add_constraint (c : tconstraint) = add_constraint_int c false and add_toplev_constraint (c : tconstraint) = if !print_constraints && not !debug_constraints then begin Printf.printf "%d:>" !toplev_count; incr toplev_count; print_constraint c end else (); add_constraint_int c true and fetch_constraint () : tconstraint option = try Some (Q.take eq_worklist) with Q.Empty -> begin try Some (Q.take leq_worklist) with Q.Empty -> None end (** The main solver loop. *) and solve_constraints () : unit = match fetch_constraint () with None -> () | Some c -> begin match c with Unification (t, t') -> unify_int (t, t') | Leq (t, t') -> if !no_sub then unify_int (t, t') else leq_int (t, t') end; solve_constraints () (***********************************************************************) (* *) (* Interface Functions *) (* *) (***********************************************************************) (** Return the contents of the lvalue. *) let rvalue (lv : lvalue) : tau = lv.contents (** Dereference the rvalue. If it does not have enough structure to support the operation, then the correct structure is added via new unification constraints. *) let rec deref (t : tau) : lvalue = match find t with Pair p -> begin match find p.ptr with | Var _ -> let is_top = top_tau p.ptr in let points_to = fresh_var is_top in let l = fresh_c_absloc is_top in let r = make_ref (l, points_to) in add_toplev_constraint (Unification (p.ptr, r)); make_lval (l, points_to) | Ref r -> make_lval (r.rl, r.points_to) | _ -> raise WellFormed end | Var v -> let is_top = top_tau t in add_toplev_constraint (Unification (t, make_pair (fresh_var is_top, fresh_var is_top))); deref t | _ -> raise WellFormed (** Form the union of [t] and [t'], if it doesn't exist already. *) let join (t : tau) (t' : tau) : tau = let s, s' = get_stamp t, get_stamp t' in try H.find join_cache (s, s') with Not_found -> let t'' = fresh_var false in add_toplev_constraint (Leq (t, t'')); add_toplev_constraint (Leq (t', t'')); H.add join_cache (s, s') t''; t'' (** Form the union of a list [tl], expected to be the initializers of some structure or array type. *) let join_inits (tl : tau list) : tau = let t' = fresh_var false in List.iter (function t -> add_toplev_constraint (Leq (t, t'))) tl; t' (** Take the address of an lvalue. Does not add constraints. *) let address (lv : lvalue) : tau = make_pair (make_ref (lv.l, lv.contents), fresh_var false ) (** No instantiation in this analysis *) let instantiate (lv : lvalue) (i : int) : lvalue = lv (** Constraint generated from assigning [t] to [lv]. *) let assign (lv : lvalue) (t : tau) : unit = add_toplev_constraint (Leq (t, lv.contents)) let assign_ret (i : int) (lv : lvalue) (t : tau) : unit = add_toplev_constraint (Leq (t, lv.contents)) (** Project out the first (ref) component or a pair. If the argument [t] has no discovered structure, raise NoContents. *) let proj_ref (t : tau) : tau = match find t with Pair p -> p.ptr | Var v -> raise NoContents | _ -> raise WellFormed (* Project out the second (fun) component of a pair. If the argument [t] has no discovered structure, create it on the fly by adding constraints. *) let proj_fun (t : tau) : tau = match find t with Pair p -> p.lam | Var v -> let p, f = fresh_var false, fresh_var false in add_toplev_constraint (Unification (t, make_pair (p, f))); f | _ -> raise WellFormed let get_args (t : tau) : tau list = match find t with Fun f -> f.args | _ -> raise WellFormed let get_finfo (t : tau) : finfo = match find t with Fun f -> f | _ -> raise WellFormed (** Function type [t] is applied to the arguments [actuals]. Unifies the actuals with the formals of [t]. If no functions have been discovered for [t] yet, create a fresh one and unify it with t. The result is the return value of the function plus the index of this application site. For this analysis, the application site is always 0 *) let apply (t : tau) (al : tau list) : (tau * int) = let f = proj_fun t in let actuals = ref al in let fi, ret = match find f with Fun fi -> fi, fi.ret | Var v -> let new_l, new_ret, new_args = fresh_c_absloc false, fresh_var false, List.map (function _ -> fresh_var false) !actuals in let new_fun = make_fun (new_l, new_args, new_ret) in add_toplev_constraint (Unification (new_fun, f)); (get_finfo new_fun, new_ret) | _ -> raise WellFormed in pad_args (fi, actuals); List.iter2 (fun actual -> fun formal -> add_toplev_constraint (Leq (actual, formal))) !actuals fi.args; (ret, 0) let make_undefined_lvalue () = make_lval (make_c_absloc false "undefined" None, make_var true "undefined") let make_undefined_rvalue () = make_var true "undefined" let assign_undefined (lv : lvalue) : unit = assign lv (make_undefined_rvalue ()) let apply_undefined (al : tau list) : (tau * int) = List.iter (fun actual -> assign (make_undefined_lvalue ()) actual) al; (fresh_var true, 0) (** Create a new function type with name [name], list of formal arguments [formals], and return value [ret]. Adds no constraints. *) let make_function (name : string) (formals : lvalue list) (ret : tau) : tau = let f = make_fun (make_c_absloc false name None, List.map (fun x -> rvalue x) formals, ret) in make_pair (fresh_var false, f) (** Create an lvalue. *) let make_lvalue (b : bool ) (name : string) (vio : Cil.varinfo option) = make_lval (make_c_absloc false name vio, make_var false name) (** Create a fresh named variable. *) let make_fresh (name : string) : tau = make_var false name (** The default type for abslocs. *) let bottom () : tau = make_var false "bottom" (** Unify the result of a function with its return value. *) let return (t : tau) (t' : tau) = add_toplev_constraint (Leq (t', t)) (***********************************************************************) (* *) (* Query/Extract Solutions *) (* *) (***********************************************************************) module IntHash = Hashtbl.Make (struct type t = int let equal x y = x = y let hash x = x end) (** todo : reached_top !! *) let collect_ptset_fast (l : c_absloc) : abslocset = let onpath : unit IntHash.t = IntHash.create 101 in let path : c_absloc list ref = ref [] in let compute_path (i : int) = keep_until (fun l -> i = get_c_absloc_stamp l) !path in let collapse_cycle (cycle : c_absloc list) = match cycle with l :: ls -> List.iter (fun l' -> unify_c_abslocs (l, l')) ls; C.empty | [] -> die "collapse cycle" in let rec flow_step (l : c_absloc) : abslocset = let stamp = get_c_absloc_stamp l in if IntHash.mem onpath stamp then (* already seen *) collapse_cycle (compute_path stamp) else let li = find l in IntHash.add onpath stamp (); path := l :: !path; B.iter (fun lb -> li.aliases <- C.union li.aliases (flow_step lb.info)) li.lbounds; path := List.tl !path; IntHash.remove onpath stamp; li.aliases in insist (can_query_graph ()) "collect_ptset_fast can't query graph"; if get_flow_computed l then get_aliases l else begin set_flow_computed l; flow_step l end (** this is a quadratic flow step. keep it for debugging the fast version above. *) let collect_ptset_slow (l : c_absloc) : abslocset = let onpath : unit IntHash.t = IntHash.create 101 in let rec flow_step (l : c_absloc) : abslocset = if top_c_absloc l then raise ReachedTop else let stamp = get_c_absloc_stamp l in if IntHash.mem onpath stamp then C.empty else let li = find l in IntHash.add onpath stamp (); B.iter (fun lb -> li.aliases <- C.union li.aliases (flow_step lb.info)) li.lbounds; li.aliases in insist (can_query_graph ()) "collect_ptset_slow can't query graph"; if get_flow_computed l then get_aliases l else begin set_flow_computed l; flow_step l end let collect_ptset = collect_ptset_slow (* if !debug_flow_step then collect_ptset_slow else collect_ptset_fast *) let may_alias (t1 : tau) (t2 : tau) : bool = let get_l (t : tau) : c_absloc = match find (proj_ref t) with Ref r -> r.rl | Var v -> raise NoContents | _ -> raise WellFormed in try let l1 = get_l t1 and l2 = get_l t2 in equal_c_absloc l1 l2 || not (C.is_empty (C.inter (collect_ptset l1) (collect_ptset l2))) with NoContents -> false | ReachedTop -> raise UnknownLocation let points_to_aux (t : tau) : absloc list = try match find (proj_ref t) with Var v -> [] | Ref r -> C.elements (collect_ptset r.rl) | _ -> raise WellFormed with NoContents -> [] | ReachedTop -> raise UnknownLocation let points_to (lv : lvalue) : Cil.varinfo list = let rec get_vinfos l : Cil.varinfo list = match l with [] -> [] | (_, _, Some h) :: t -> h :: get_vinfos t | (_, _, None) :: t -> get_vinfos t in get_vinfos (points_to_aux lv.contents) let epoints_to (t : tau) : Cil.varinfo list = let rec get_vinfos l : Cil.varinfo list = match l with [] -> [] | (_, _, Some h) :: t -> h :: get_vinfos t | (_, _, None) :: t -> get_vinfos t in get_vinfos (points_to_aux t) let points_to_names (lv : lvalue) : string list = List.map (fun v -> v.vname) (points_to lv) let absloc_points_to (lv : lvalue) : absloc list = points_to_aux lv.contents let absloc_epoints_to (t : tau) : absloc list = points_to_aux t let absloc_of_lvalue (lv : lvalue) : absloc = (find lv.l).loc let absloc_eq = equal_absloc