(* * * Copyright (c) 2001-2002, * John Kodumal * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. The names of the contributors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *) (***********************************************************************) (* *) (* *) (* This file is currently unused by CIL. It is included in the *) (* distribution for reference only. *) (* *) (* *) (***********************************************************************) (***********************************************************************) (* *) (* Type Declarations *) (* *) (***********************************************************************) exception Inconsistent of string exception Bad_cache exception No_contents exception Bad_proj exception Bad_type_copy exception Instantiation_cycle module U = Uref module S = Setp module H = Hashtbl module Q = Queue (** Polarity kinds-- positive, negative, or nonpolar. *) type polarity = Pos | Neg | Non (** Label bounds. The polymorphic type is a hack for recursive modules *) type 'a bound = {index : int; info : 'a} (** The 'a type may in general contain urefs, which makes Pervasives.compare incorrect. However, the bounds will always be correct because if two tau's get unified, their cached instantiations will be re-entered into the worklist, ensuring that any labels find the new bounds *) module Bound = struct type 'a t = 'a bound let compare (x : 'a t) (y : 'a t) = Pervasives.compare x y end module B = S.Make(Bound) type 'a boundset = 'a B.t (** Constants, which identify elements in points-to sets *) type constant = int * string module Constant = struct type t = constant let compare ((xid,_) : t) ((yid,_) : t) = Pervasives.compare xid yid end module C = Set.Make(Constant) (** Sets of constants. Set union is used when two labels containing constant sets are unified *) type constantset = C.t type lblinfo = { mutable l_name: string; (** Name of this label *) mutable aliases: constantset; (** Set of constants (tags) for checking aliases *) p_bounds: label boundset U.uref; (** Set of umatched (p) lower bounds *) n_bounds: label boundset U.uref; (** Set of unmatched (n) lower bounds *) mutable p_cached: bool; (** Flag indicating whether all reachable p edges have been locally cached *) mutable n_cached: bool; (** Flag indicating whether all reachable n edges have been locally cached *) mutable on_path: bool; (** For cycle detection during reachability queries *) } (** Constructor labels *) and label = lblinfo U.uref (** The type of lvalues. *) type lvalue = { l: label; contents: tau } (** Data for variables. *) and vinfo = { v_name: string; mutable v_global: bool; v_cache: cache } (** Data for ref constructors. *) and rinfo = { rl: label; mutable r_global: bool; points_to: tau; r_cache: cache } (** Data for fun constructors. *) and finfo = { fl: label; mutable f_global: bool; args: tau list ref; ret: tau; f_cache: cache } (* Data for pairs. Note there is no label. *) and pinfo = { mutable p_global: bool; ptr: tau; lam: tau; p_cache: cache } (** Type constructors discovered by type inference *) and tinfo = Wild | Var of vinfo | Ref of rinfo | Fun of finfo | Pair of pinfo (** The top-level points-to type. *) and tau = tinfo U.uref (** The instantiation constraint cache. The index is used as a key. *) and cache = (int,polarity * tau) H.t (* Type of semi-unification constraints *) type su_constraint = Instantiation of tau * (int * polarity) * tau | Unification of tau * tau (** Association lists, used for printing recursive types. The first element is a type that has been visited. The second element is the string representation of that type (so far). If the string option is set, then this type occurs within itself, and is associated with the recursive var name stored in the option. When walking a type, add it to an association list. Example : suppose we have the constraint 'a = ref('a). The type is unified via cyclic unification, and would loop infinitely if we attempted to print it. What we want to do is print the type u rv. ref(rv). This is accomplished in the following manner: -- ref('a) is visited. It is not in the association list, so it is added and the string "ref(" is stored in the second element. We recurse to print the first argument of the constructor. -- In the recursive call, we see that 'a (or ref('a)) is already in the association list, so the type is recursive. We check the string option, which is None, meaning that this is the first recurrence of the type. We create a new recursive variable, rv and set the string option to 'rv. Next, we prepend u rv. to the string representation we have seen before, "ref(", and return "rv" as the string representation of this type. -- The string so far is "u rv.ref(". The recursive call returns, and we complete the type by printing the result of the call, "rv", and ")" In a type where the recursive variable appears twice, e.g. 'a = pair('a,'a), the second time we hit 'a, the string option will be set, so we know to reuse the same recursive variable name. *) type association = tau * string ref * string option ref (***********************************************************************) (* *) (* Global Variables *) (* *) (***********************************************************************) (** Print the instantiations constraints (loops with cyclic structures). *) let print_constraints : bool ref = ref false (** Solve constraints as they are introduced. If this is false, constraints are solved in batch fashion at calls to solveConstraints. *) let solve_online : bool ref = ref true (** If true, print all constraints (including induced) and show additional debug output. *) let debug = ref false let debug_constraints = debug (** If true, print out extra verbose debug information (including contents of label sets *) let verbose_debug = ref false (** If true, make the flow step a no-op *) let no_flow = ref false let no_sub = ref false (** If true, do not add instantiation constraints *) let analyze_mono = ref false (** A counter for generating unique integers. *) let counter : int ref = ref 0 (** A list of equality constraints. *) let eq_worklist : su_constraint Q.t = Q.create() (** A list of instantiation constraints. *) let inst_worklist : su_constraint Q.t = Q.create() (***********************************************************************) (* *) (* Utility Functions *) (* *) (***********************************************************************) (** Consistency check for inferred types *) let pair_or_var (t : tau) = match (U.deref t) with | Pair _ -> true | Var _ -> true | _ -> false let ref_or_var (t : tau) = match (U.deref t) with | Ref _ -> true | Var _ -> true | _ -> false let fun_or_var (t : tau) = match (U.deref t) with | Fun _ -> true | Var _ -> true | _ -> false (** Generate a unique integer. *) let fresh_index () : int = incr counter; !counter (** Negate a polarity. *) let negate (p : polarity) : polarity = match p with | Pos -> Neg | Neg -> Pos | Non -> Non (** Compute the least-upper-bounds of two polarities. *) let lub (p,p' : polarity * polarity) : polarity = match p with | Pos -> begin match p' with | Pos -> Pos | _ -> Non end | Neg -> begin match p' with | Neg -> Neg | _ -> Non end | Non -> Non (** Extract the cache from a type *) let get_cache (t : tau) : cache = match U.deref t with | Wild -> raise Bad_cache | Var v -> v.v_cache | Ref r -> r.r_cache | Pair p -> p.p_cache | Fun f -> f.f_cache (** Determine whether or not a type is global *) let get_global (t : tau) : bool = match U.deref t with | Wild -> false | Var v -> v.v_global | Ref r -> r.r_global | Pair p -> p.p_global | Fun f -> f.f_global (** Return true if a type is monomorphic (global). *) let global_tau = get_global let global_lvalue lv = get_global lv.contents (** Return true if e is a member of l (according to uref equality) *) let rec ulist_mem e l = match l with | [] -> false | h :: t -> if (U.equal(h,e)) then true else ulist_mem e t (** Convert a polarity to a string *) let string_of_polarity p = match p with | Pos -> "+" | Neg -> "-" | Non -> "T" (** Convert a label to a string, short representation *) let string_of_label2 (l : label) : string = "\"" ^ (U.deref l).l_name ^ "\"" (** Convert a label to a string, long representation *) let string_of_label (l : label ) : string = let rec constset_to_string = function | (_,s) :: [] -> s | (_,s) :: t -> s ^ "," ^ (constset_to_string t) | [] -> "" in let aliases = constset_to_string (C.elements ((U.deref l).aliases)) in if ( (aliases = "") || (not !verbose_debug)) then string_of_label2 l else aliases (** Return true if the element [e] is present in the association list *) let rec assoc_list_mem (e : tau) (l : association list) = match l with | [] -> None | (h,s,so) :: t -> if (U.equal(h,e)) then (Some (s,so)) else assoc_list_mem e t (** Given a tau, create a unique recursive variable name. This should always return the same name for a given tau *) let fresh_recvar_name (t : tau) : string = match U.deref t with | Pair p -> "rvp" ^ string_of_int((Hashtbl.hash p)) | Ref r -> "rvr" ^ string_of_int((Hashtbl.hash r)) | Fun f -> "rvf" ^ string_of_int((Hashtbl.hash f)) | _ -> raise (Inconsistent ("recvar_name")) (** Return a string representation of a tau, using association lists. *) let string_of_tau (t : tau ) : string = let tau_map : association list ref = ref [] in let rec string_of_tau' t = match (assoc_list_mem t (!tau_map)) with | Some (s,so) -> (* recursive type. see if a var name has been set *) begin match (!so) with | None -> begin let rv = fresh_recvar_name(t) in s := "u " ^ rv ^ "." ^ (!s); so := Some (rv); rv end | Some rv -> rv end | None -> (* type's not recursive. Add it to the assoc list and cont. *) let s = ref "" in let so : string option ref = ref None in begin tau_map := (t,s,so) :: (!tau_map); (match (U.deref t) with | Wild -> s := "_"; | Var v -> s := v.v_name; | Pair p -> begin assert (ref_or_var(p.ptr)); assert (fun_or_var(p.lam)); s := "{"; s := (!s) ^ (string_of_tau' p.ptr); s := (!s) ^ ","; s := (!s) ^ (string_of_tau' p.lam); s := (!s) ^"}" end | Ref r -> begin assert(pair_or_var(r.points_to)); s := "ref(|"; s := (!s) ^ (string_of_label r.rl); s := (!s) ^ "|,"; s := (!s) ^ (string_of_tau' r.points_to); s := (!s) ^ ")" end | Fun f -> begin assert(pair_or_var(f.ret)); let rec string_of_args = function | h :: [] -> begin assert(pair_or_var(h)); s := (!s) ^ (string_of_tau' h) end | h :: t -> begin assert(pair_or_var(h)); s := (!s) ^ (string_of_tau' h) ^ ","; string_of_args t end | [] -> () in s := "fun(|"; s := (!s) ^ (string_of_label f.fl); s := (!s) ^ "|,"; s := (!s) ^ "<"; if (List.length !(f.args) > 0) then string_of_args !(f.args) else s := (!s) ^ "void"; s := (!s) ^">,"; s := (!s) ^ (string_of_tau' f.ret); s := (!s) ^ ")" end); tau_map := List.tl (!tau_map); !s end in string_of_tau' t (** Convert an lvalue to a string *) let rec string_of_lvalue (lv : lvalue) : string = let contents = (string_of_tau(lv.contents)) in let l = (string_of_label lv.l) in assert(pair_or_var(lv.contents)); Printf.sprintf "[%s]^(%s)" contents l (** Print a list of tau elements, comma separated *) let rec print_tau_list (l : tau list) : unit = let t_strings = List.map string_of_tau l in let rec print_t_strings = function | h :: [] -> print_string h; print_newline(); | h :: t -> print_string h; print_string ", "; print_t_strings t | [] -> () in print_t_strings t_strings (** Print a constraint. *) let print_constraint (c : su_constraint) = match c with | Unification (t,t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in Printf.printf "%s == %s\n" lhs rhs | Instantiation (t,(i,p),t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in let index = string_of_int i in let pol = string_of_polarity p in Printf.printf "%s <={%s,%s} %s\n" lhs index pol rhs (* If [positive] is true, return the p-edge bounds, otherwise, return the n-edge bounds. *) let get_bounds (positive : bool) (l : label) : label boundset U.uref = if (positive) then (U.deref l).p_bounds else (U.deref l).n_bounds (** Used for cycle detection during the flow step. Returns true if the label [l] is found on the current path. *) let on_path (l : label) : bool = (U.deref l).on_path (** Used for cycle detection during the flow step. Identifies [l] as being on/off the current path. *) let set_on_path (l : label) (b : bool) : unit = (U.deref l).on_path <- b (** Make the type a global type *) let set_global (t : tau) (b : bool) : bool = if (!debug && b) then Printf.printf "Setting a new global : %s\n" (string_of_tau t); begin assert ( (not (get_global(t)) ) || b ); (match U.deref t with | Wild -> () | Var v -> v.v_global <- b | Ref r -> r.r_global <- b | Pair p -> p.p_global <- b | Fun f -> f.f_global <- b); b end (** Return a label's bounds as a string *) let string_of_bounds (is_pos : bool) (l : label) : string = let bounds = if (is_pos) then U.deref ((U.deref l).p_bounds) else U.deref ((U.deref l).n_bounds) in B.fold (fun b -> fun res -> res ^ (string_of_label2 b.info) ^ " " ) bounds "" (***********************************************************************) (* *) (* Type Operations -- these do not create any constraints *) (* *) (***********************************************************************) let wild_val = U.uref Wild (** The wild (don't care) value. *) let wild () : tau = wild_val (** Create an lvalue with label [lbl] and tau contents [t]. *) let make_lval (lbl,t : label * tau) : lvalue = {l = lbl; contents = t} (** Create a new label with name [name]. Also adds a fresh constant with name [name] to this label's aliases set. *) let make_label (name : string) : label = U.uref { l_name = name; aliases = (C.add (fresh_index(),name) C.empty); p_bounds = U.uref (B.empty); n_bounds = U.uref (B.empty); p_cached = false; n_cached = false; on_path = false } (** Create a new label with an unspecified name and an empty alias set. *) let fresh_label () : label = U.uref { l_name = "l_" ^ (string_of_int (fresh_index())); aliases = (C.empty); p_bounds = U.uref (B.empty); n_bounds = U.uref (B.empty); p_cached = false; n_cached = false; on_path = false } (** Create a fresh bound. *) let make_bound (i,a : int * 'a) : 'a bound = {index = i; info = a } (** Create a fresh named variable with name '[name]. *) let make_var (b: bool) (name : string) : tau = U.uref (Var {v_name = ("'" ^name); v_global = b; v_cache = H.create 4}) (** Create a fresh unnamed variable (name will be 'fv). *) let fresh_var () : tau = make_var false ("fv" ^ (string_of_int (fresh_index())) ) (** Create a fresh unnamed variable (name will be 'fi). *) let fresh_var_i () : tau = make_var false ("fi" ^ (string_of_int (fresh_index())) ) (** Create a Fun constructor. *) let make_fun (lbl,a,r : label * (tau list) * tau) : tau = U.uref (Fun {fl = lbl ; f_global = false; args = ref a; ret = r; f_cache = H.create 4}) (** Create a Ref constructor. *) let make_ref (lbl,pt : label * tau) : tau = U.uref (Ref {rl = lbl ; r_global = false; points_to = pt; r_cache = H.create 4}) (** Create a Pair constructor. *) let make_pair (p,f : tau * tau) : tau = U.uref (Pair {ptr = p; p_global = false; lam = f; p_cache = H.create 4}) (** Copy the toplevel constructor of [t], putting fresh variables in each argement of the constructor. *) let copy_toplevel (t : tau) : tau = match U.deref t with | Pair _ -> make_pair (fresh_var_i(), fresh_var_i()) | Ref _ -> make_ref (fresh_label(),fresh_var_i()) | Fun f -> let fresh_fn = fun _ -> fresh_var_i() in make_fun (fresh_label(), List.map fresh_fn !(f.args) , fresh_var_i()) | _ -> raise Bad_type_copy let pad_args (l,l' : (tau list ref) * (tau list ref)) : unit = let padding = ref ((List.length (!l)) - (List.length (!l'))) in if (!padding == 0) then () else let to_pad = if (!padding > 0) then l' else (padding := -(!padding);l) in for i = 1 to (!padding) do to_pad := (!to_pad) @ [fresh_var()] done (***********************************************************************) (* *) (* Constraint Generation/ Resolution *) (* *) (***********************************************************************) (** Returns true if the constraint has no effect, i.e. either the left-hand side or the right-hand side is wild. *) let wild_constraint (t,t' : tau * tau) : bool = let ti,ti' = U.deref t, U.deref t' in match ti,ti' with | Wild, _ -> true | _, Wild -> true | _ -> false exception Cycle_found (** Cycle detection between instantiations. Returns true if there is a cycle from t to t' *) let exists_cycle (t,t' : tau * tau) : bool = let visited : tau list ref = ref [] in let rec exists_cycle' t = if (ulist_mem t (!visited)) then begin (* print_string "Instantiation cycle found :"; print_tau_list (!visited); print_newline(); print_string (string_of_tau t); print_newline(); *) (* raise Instantiation_cycle *) (* visited := List.tl (!visited) *) (* check *) end else begin visited := t :: (!visited); if (U.equal(t,t')) then raise Cycle_found else H.iter (fun _ -> fun (_,t'') -> if (U.equal (t,t'')) then () else ignore (exists_cycle' t'') ) (get_cache t) ; visited := List.tl (!visited) end in try exists_cycle' t; false with | Cycle_found -> true exception Subterm (** Returns true if [t'] is a proper subterm of [t] *) let proper_subterm (t,t') = let visited : tau list ref = ref [] in let rec proper_subterm' t = if (ulist_mem t (!visited)) then () (* recursive type *) else if (U.equal (t,t')) then raise Subterm else begin visited := t :: (!visited); ( match (U.deref t) with | Wild -> () | Var _ -> () | Ref r -> proper_subterm' r.points_to | Pair p -> proper_subterm' p.ptr; proper_subterm' p.lam | Fun f -> proper_subterm' f.ret; List.iter (proper_subterm') !(f.args) ); visited := List.tl (!visited) end in try if (U.equal(t,t')) then false else begin proper_subterm' t; false end with | Subterm -> true (** The extended occurs check. Search for a cycle of instantiations from [t] to [t']. If such a cycle exists, check to see that [t'] is a proper subterm of [t]. If it is, then return true *) let eoc (t,t') : bool = if (exists_cycle(t,t') && proper_subterm(t,t')) then begin if (!debug) then Printf.printf "Occurs check : %s occurs within %s\n" (string_of_tau t') (string_of_tau t) else (); true end else false (** Resolve an instantiation constraint *) let rec instantiate_int (t,(i,p),t' : tau * (int * polarity) * tau) = if ( wild_constraint(t,t') || (not (store(t,(i,p),t'))) || U.equal(t,t') ) then () else let ti,ti' = U.deref t, U.deref t' in match ti,ti' with | Ref r, Ref r' -> instantiate_ref(r,(i,p),r') | Fun f, Fun f' -> instantiate_fun(f,(i,p),f') | Pair pr, Pair pr' -> begin add_constraint_int (Instantiation (pr.ptr,(i,p),pr'.ptr)); add_constraint_int (Instantiation (pr.lam,(i,p),pr'.lam)) end | Var v, _ -> () | _,Var v' -> if eoc(t,t') then add_constraint_int (Unification (t,t')) else begin unstore(t,i); add_constraint_int (Unification ((copy_toplevel t),t')); add_constraint_int (Instantiation (t,(i,p),t')) end | _ -> raise (Inconsistent("instantiate")) (** Apply instantiations to the ref's label, and structurally down the type. Contents of ref constructors are instantiated with polarity Non. *) and instantiate_ref (ri,(i,p),ri') : unit = add_constraint_int (Instantiation(ri.points_to,(i,Non),ri'.points_to)); instantiate_label (ri.rl,(i,p),ri'.rl) (** Apply instantiations to the fun's label, and structurally down the type. Flip the polarity for the function's args. If the lengths of the argument lists don't match, extend the shorter list as necessary. *) and instantiate_fun (fi,(i,p),fi') : unit = pad_args (fi.args, fi'.args); assert(List.length !(fi.args) == List.length !(fi'.args)); add_constraint_int (Instantiation (fi.ret,(i,p),fi'.ret)); List.iter2 (fun t ->fun t' -> add_constraint_int (Instantiation(t,(i,negate p),t'))) !(fi.args) !(fi'.args); instantiate_label (fi.fl,(i,p),fi'.fl) (** Instantiate a label. Update the label's bounds with new flow edges. *) and instantiate_label (l,(i,p),l' : label * (int * polarity) * label) : unit = if (!debug) then Printf.printf "%s <= {%d,%s} %s\n" (string_of_label l) i (string_of_polarity p) (string_of_label l'); let li,li' = U.deref l, U.deref l' in match p with | Pos -> U.update (li'.p_bounds, B.add(make_bound (i,l)) (U.deref li'.p_bounds) ) | Neg -> U.update (li.n_bounds, B.add(make_bound (i,l')) (U.deref li.n_bounds) ) | Non -> begin U.update (li'.p_bounds, B.add(make_bound (i,l)) (U.deref li'.p_bounds) ); U.update (li.n_bounds, B.add(make_bound (i,l')) (U.deref li.n_bounds) ) end (** Resolve a unification constraint. Does the uref unification after grabbing a copy of the information before the two infos are unified. The other interesting feature of this function is the way 'globalness' is propagated. If a non-global is unified with a global, the non-global becomes global. If the ecr became global, there is a problem because none of its cached instantiations know that the type became monomorphic. In this case, they must be re-inserted via merge-cache. Merge-cache always reinserts cached instantiations from the non-ecr type, i.e. the type that was 'killed' by the unification. *) and unify_int (t,t' : tau * tau) : unit = if (wild_constraint(t,t') || U.equal(t,t')) then () else let ti, ti' = U.deref t, U.deref t' in begin U.unify combine (t,t'); match ti,ti' with | Var v, _ -> begin if (set_global t' (v.v_global || (get_global t'))) then (H.iter (merge_cache t') (get_cache t')) else (); H.iter (merge_cache t') v.v_cache end | _, Var v -> begin if (set_global t (v.v_global || (get_global t))) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) v.v_cache end | Ref r, Ref r' -> begin if (set_global t (r.r_global || r'.r_global)) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) r'.r_cache; unify_ref(r,r') end | Fun f, Fun f' -> begin if (set_global t (f.f_global || f'.f_global)) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) f'.f_cache; unify_fun (f,f'); end | Pair p, Pair p' -> begin if (set_global t (p.p_global || p'.p_global)) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) p'.p_cache; add_constraint_int (Unification (p.ptr,p'.ptr)); add_constraint_int (Unification (p.lam,p'.lam)) end | _ -> raise (Inconsistent("unify")) end (** Unify the ref's label, and apply unification structurally down the type. *) and unify_ref (ri,ri' : rinfo * rinfo) : unit = add_constraint_int (Unification (ri.points_to,ri'.points_to)); unify_label(ri.rl,ri'.rl) (** Unify the fun's label, and apply unification structurally down the type, at arguments and return value. When combining two lists of different lengths, always choose the longer list for the representative. *) and unify_fun (li,li' : finfo * finfo) : unit = let rec union_args = function | _, [] -> false | [], _ -> true | h :: t, h' :: t' -> add_constraint_int (Unification (h,h')); union_args(t,t') in begin unify_label(li.fl,li'.fl); add_constraint_int (Unification (li.ret,li'.ret)); if (union_args(!(li.args),!(li'.args))) then li.args := !(li'.args); end (** Unify two labels, combining the set of constants denoting aliases. *) and unify_label (l,l' : label * label) : unit = let pick_name (li,li' : lblinfo * lblinfo) = if ( (String.length li.l_name) > 1 && (String.sub (li.l_name) 0 2) = "l_") then li.l_name <- li'.l_name else () in let combine_label (li,li' : lblinfo *lblinfo) : lblinfo = let p_bounds = U.deref (li.p_bounds) in let p_bounds' = U.deref (li'.p_bounds) in let n_bounds = U.deref (li.n_bounds) in let n_bounds' = U.deref (li'.n_bounds) in begin pick_name(li,li'); li.aliases <- C.union (li.aliases) (li'.aliases); U.update (li.p_bounds, (B.union p_bounds p_bounds')); U.update (li.n_bounds, (B.union n_bounds n_bounds')); li end in(* if (!debug) then begin Printf.printf "Unifying %s with %s...\n" (string_of_label l) (string_of_label l'); Printf.printf "pbounds : %s\n" (string_of_bounds true l); Printf.printf "nbounds : %s\n" (string_of_bounds false l); Printf.printf "pbounds : %s\n" (string_of_bounds true l'); Printf.printf "nbounds : %s\n\n" (string_of_bounds false l') end; *) U.unify combine_label (l,l') (* if (!debug) then begin Printf.printf "pbounds : %s\n" (string_of_bounds true l); Printf.printf "nbounds : %s\n" (string_of_bounds false l) end *) (** Re-assert a cached instantiation constraint, since the old type was killed by a unification *) and merge_cache (rep : tau) (i : int) (p,t' : polarity * tau) : unit = add_constraint_int (Instantiation (rep,(i,p),t')) (** Pick the representative info for two tinfo's. This function prefers the first argument when both arguments are the same structure, but when one type is a structure and the other is a var, it picks the structure. *) and combine (ti,ti' : tinfo * tinfo) : tinfo = match ti,ti' with | Var _, _ -> ti' | _,_ -> ti (** Add a new constraint induced by other constraints. *) and add_constraint_int (c : su_constraint) = if (!print_constraints && !debug) then print_constraint c else (); begin match c with | Instantiation _ -> Q.add c inst_worklist | Unification _ -> Q.add c eq_worklist end; if (!debug) then solve_constraints() else () (** Add a new constraint introduced through this module's interface (a top-level constraint). *) and add_constraint (c : su_constraint) = begin add_constraint_int (c); if (!print_constraints && not (!debug)) then print_constraint c else (); if (!solve_online) then solve_constraints() else () end (* Fetch constraints, preferring equalities. *) and fetch_constraint () : su_constraint option = if (Q.length eq_worklist > 0) then Some (Q.take eq_worklist) else if (Q.length inst_worklist > 0) then Some (Q.take inst_worklist) else None (** Returns the target of a cached instantiation, if it exists. *) and target (t,i,p : tau * int * polarity) : (polarity * tau) option = let cache = get_cache t in if (global_tau t) then Some (Non,t) else try Some (H.find cache i) with | Not_found -> None (** Caches a new instantiation, or applies well-formedness. *) and store ( t,(i,p),t' : tau * (int * polarity) * tau) : bool = let cache = get_cache t in match target(t,i,p) with | Some (p'',t'') -> if (U.equal (t',t'') && (lub(p,p'') = p'')) then false else begin add_constraint_int (Unification (t',t'')); H.replace cache i (lub(p,p''),t''); (* add a new forced instantiation as well *) if (lub(p,p'') = p'') then () else begin unstore(t,i); add_constraint_int (Instantiation (t,(i,lub(p,p'')),t'')) end; false end | None -> begin H.add cache i (p,t'); true end (** Remove a cached instantiation. Used when type structure changes *) and unstore (t,i : tau * int) = let cache = get_cache t in H.remove cache i (** The main solver loop. *) and solve_constraints () : unit = match fetch_constraint () with | Some c -> begin (match c with | Instantiation (t,(i,p),t') -> instantiate_int (t,(i,p),t') | Unification (t,t') -> unify_int (t,t') ); solve_constraints() end | None -> () (***********************************************************************) (* *) (* Interface Functions *) (* *) (***********************************************************************) (** Return the contents of the lvalue. *) let rvalue (lv : lvalue) : tau = lv.contents (** Dereference the rvalue. If it does not have enough structure to support the operation, then the correct structure is added via new unification constraints. *) let rec deref (t : tau) : lvalue = match U.deref t with | Pair p -> ( match U.deref (p.ptr) with | Var _ -> begin (* let points_to = make_pair(fresh_var(),fresh_var()) in *) let points_to = fresh_var() in let l = fresh_label() in let r = make_ref(l,points_to) in add_constraint (Unification (p.ptr,r)); make_lval(l, points_to) end | Ref r -> make_lval(r.rl, r.points_to) | _ -> raise (Inconsistent("deref")) ) | Var v -> begin add_constraint (Unification (t,make_pair(fresh_var(),fresh_var()))); deref t end | _ -> raise (Inconsistent("deref -- no top level pair")) (** Form the union of [t] and [t']. *) let join (t : tau) (t' : tau) : tau = let t'' = fresh_var() in add_constraint (Unification (t,t'')); add_constraint (Unification (t',t'')); t'' (** Form the union of a list [tl], expected to be the initializers of some structure or array type. *) let join_inits (tl : tau list) : tau = let t' = fresh_var() in begin List.iter (function t'' -> add_constraint (Unification(t',t''))) tl; t' end (** Take the address of an lvalue. Does not add constraints. *) let address (lv : lvalue) : tau = make_pair (make_ref (lv.l, lv.contents), fresh_var() ) (** Instantiate a type with index i. By default, uses positive polarity. Adds an instantiation constraint. *) let instantiate (lv : lvalue) (i : int) : lvalue = if (!analyze_mono) then lv else begin let l' = fresh_label () in let t' = fresh_var_i () in instantiate_label(lv.l,(i,Pos),l'); add_constraint (Instantiation (lv.contents,(i,Pos),t')); make_lval(l',t') (* check -- fresh label ?? *) end (** Constraint generated from assigning [t] to [lv]. *) let assign (lv : lvalue) (t : tau) : unit = add_constraint (Unification (lv.contents,t)) (** Project out the first (ref) component or a pair. If the argument [t] has no discovered structure, raise No_contents. *) let proj_ref (t : tau) : tau = match U.deref t with | Pair p -> p.ptr | Var v -> raise No_contents | _ -> raise Bad_proj (* Project out the second (fun) component of a pair. If the argument [t] has no discovered structure, create it on the fly by adding constraints. *) let proj_fun (t : tau) : tau = match U.deref t with | Pair p -> p.lam | Var v -> let p,f = fresh_var(), fresh_var() in add_constraint (Unification (t,make_pair(p,f))); f | _ -> raise Bad_proj let get_args (t : tau) : tau list ref = match U.deref t with | Fun f -> f.args | _ -> raise (Inconsistent("get_args")) (** Function type [t] is applied to the arguments [actuals]. Unifies the actuals with the formals of [t]. If no functions have been discovered for [t] yet, create a fresh one and unify it with t. The result is the return value of the function. *) let apply (t : tau) (al : tau list) : tau = let f = proj_fun(t) in let actuals = ref al in let formals,ret = match U.deref f with | Fun fi -> (fi.args),fi.ret | Var v -> let new_l,new_ret,new_args = fresh_label(), fresh_var (), List.map (function _ -> fresh_var()) (!actuals) in let new_fun = make_fun(new_l,new_args,new_ret) in add_constraint (Unification(new_fun,f)); (get_args new_fun,new_ret) | Ref _ -> raise (Inconsistent ("apply_ref")) | Pair _ -> raise (Inconsistent ("apply_pair")) | Wild -> raise (Inconsistent("apply_wild")) in pad_args(formals,actuals); List.iter2 (fun actual -> fun formal -> add_constraint (Unification (actual,formal)) ) !actuals !formals; ret (** Create a new function type with name [name], list of formal arguments [formals], and return value [ret]. Adds no constraints. *) let make_function (name : string) (formals : lvalue list) (ret : tau) : tau = let f = make_fun(make_label(name),List.map (fun x -> rvalue x) formals, ret) in make_pair(fresh_var(),f) (** Create an lvalue. If [is_global] is true, the lvalue will be treated monomorphically. *) let make_lvalue (is_global : bool) (name : string) : lvalue = if (!debug && is_global) then Printf.printf "Making global lvalue : %s\n" name else (); make_lval(make_label(name), make_var is_global name) (** Create a fresh non-global named variable. *) let make_fresh (name : string) : tau = make_var false (name) (** The default type for constants. *) let bottom () : tau = make_var false ("bottom") (** Unify the result of a function with its return value. *) let return (t : tau) (t' : tau) = add_constraint (Unification (t,t')) (***********************************************************************) (* *) (* Query/Extract Solutions *) (* *) (***********************************************************************) (** Unify the data stored in two label bounds. *) let combine_lbounds (s,s' : label boundset * label boundset) = B.union s s' (** Truncates a list of urefs [l] to those elements up to and including the first occurence of the specified element [elt]. *) let truncate l elt = let keep = ref true in List.filter (fun x -> if (not (!keep)) then false else begin if (U.equal(x,elt)) then keep := false else (); true end ) l let debug_cycle_bounds is_pos c = let rec debug_cycle_bounds' = function | h :: [] -> Printf.printf "%s --> %s\n" (string_of_bounds is_pos h) (string_of_label2 h) | h :: t -> begin Printf.printf "%s --> %s\n" (string_of_bounds is_pos h) (string_of_label2 h); debug_cycle_bounds' t end | [] -> () in debug_cycle_bounds' c (** For debugging, print a cycle of instantiations *) let debug_cycle (is_pos,c,l,p) = let kind = if is_pos then "P" else "N" in let rec string_of_cycle = function | h :: [] -> string_of_label2 h | [] -> "" | h :: t -> Printf.sprintf "%s,%s" (string_of_label2 h) (string_of_cycle t) in Printf.printf "Collapsing %s cycle around %s:\n" kind (string_of_label2 l); Printf.printf "Elements are: %s\n" (string_of_cycle c); Printf.printf "Per-element bounds:\n"; debug_cycle_bounds is_pos c; Printf.printf "Full path is: %s" (string_of_cycle p); print_newline() (** Compute pos or neg flow, depending on [is_pos]. Searches for cycles in the instantiations (can these even occur?) and unifies either the positive or negative edge sets for the labels on the cycle. Note that this does not ever unify the labels themselves. The return is the new bounds of the argument label *) let rec flow (is_pos : bool) (path : label list) (l : label) : label boundset = let collapse_cycle () = let cycle = truncate path l in debug_cycle (is_pos,cycle,l,path); List.iter (fun x -> U.unify combine_lbounds ((get_bounds is_pos x),get_bounds is_pos l) ) cycle in if (on_path l) then begin collapse_cycle (); (* set_on_path l false; *) B.empty end else if ( (is_pos && (U.deref l).p_cached) || ( (not is_pos) && (U.deref l).n_cached) ) then begin U.deref (get_bounds is_pos l) end else begin let newbounds = ref B.empty in let base = get_bounds is_pos l in set_on_path l true; if (is_pos) then (U.deref l).p_cached <- true else (U.deref l).n_cached <- true; B.iter (fun x -> if (U.equal(x.info,l)) then () else (newbounds := (B.union (!newbounds) (flow is_pos (l :: path) x.info))) ) (U.deref base); set_on_path l false; U.update (base,(B.union (U.deref base) !newbounds)); U.deref base end (** Compute and cache any positive flow. *) let pos_flow l : constantset = let result = ref C.empty in begin ignore (flow true [] l); B.iter (fun x -> result := C.union (!result) (U.deref(x.info)).aliases ) (U.deref (get_bounds true l)); !result end (** Compute and cache any negative flow. *) let neg_flow l : constantset = let result = ref C.empty in begin ignore (flow false [] l); B.iter (fun x -> result := C.union (!result) (U.deref(x.info)).aliases ) (U.deref (get_bounds false l)); !result end (** Compute and cache any pos-neg flow. Assumes that both pos_flow and neg_flow have been computed for the label [l]. *) let pos_neg_flow(l : label) : constantset = let result = ref C.empty in begin B.iter (fun x -> result := C.union (!result) (pos_flow x.info)) (U.deref (get_bounds false l)); !result end (** Compute a points-to set by computing positive, then negative, then positive-negative flow for a label. *) let points_to_int (lv : lvalue) : constantset = let visited_caches : cache list ref = ref [] in let rec points_to_tau (t : tau) : constantset = try begin match U.deref (proj_ref t) with | Var v -> C.empty | Ref r -> begin let pos = pos_flow r.rl in let neg = neg_flow r.rl in let interproc = C.union (pos_neg_flow r.rl) (C.union pos neg) in C.union ((U.deref(r.rl)).aliases) interproc end | _ -> raise (Inconsistent ("points_to")) end with | No_contents -> begin match (U.deref t) with | Var v -> rebuild_flow v.v_cache | _ -> raise (Inconsistent ("points_to")) end and rebuild_flow (c : cache) : constantset = if (List.mem c (!visited_caches) ) (* cyclic instantiations *) then begin (* visited_caches := List.tl (!visited_caches); *) (* check *) C.empty end else begin visited_caches := c :: (!visited_caches); let result = ref (C.empty) in H.iter (fun _ -> fun(p,t) -> match p with | Pos -> () | _ -> result := C.union (!result) (points_to_tau t) ) c; visited_caches := List.tl (!visited_caches); !result end in if (!no_flow) then (U.deref lv.l).aliases else points_to_tau (lv.contents) let points_to (lv : lvalue) : string list = List.map snd (C.elements (points_to_int lv)) let alias_query (a_progress : bool) (lv : lvalue list) : int * int = (0,0) (* todo *) (* let a_count = ref 0 in let ptsets = List.map points_to_int lv in let total_sets = List.length ptsets in let counted_sets = ref 0 in let record_alias s s' = if (C.is_empty (C.inter s s')) then () else (incr a_count) in let rec check_alias = function | h :: t -> begin List.iter (record_alias h) ptsets; check_alias t end | [] -> () in check_alias ptsets; !a_count *)