(* Calculate reaching definitions for each instruction. * Determine when it is okay to replace some variables with * expressions. * * After calling computeRDs on a fundec, * ReachingDef.stmtStartData will contain a mapping from * statement ids to data about which definitions reach each * statement. ReachingDef.defIdStmtHash will contain a * mapping from definition ids to the statement in which * that definition takes place. * * instrRDs takes a list of instructions, and the * definitions that reach the first instruction, and * for each instruction figures out which definitions * reach into or out of each instruction. * *) open Cil open Pretty module E = Errormsg module DF = Dataflow module UD = Usedef module L = Liveness module IH = Inthash module U = Util module S = Stats let debug_fn = ref "" let doTime = ref false let time s f a = if !doTime then S.time s f a else f a module IOS = Set.Make(struct type t = int option let compare io1 io2 = match io1, io2 with Some i1, Some i2 -> Pervasives.compare i1 i2 | Some i1, None -> 1 | None, Some i2 -> -1 | None, None -> 0 end) let debug = ref false (* return the intersection of Inthashes ih1 and ih2 *) let ih_inter ih1 ih2 = let ih' = IH.copy ih1 in IH.iter (fun id vi -> if not(IH.mem ih2 id) then IH.remove ih' id else ()) ih1; ih' let ih_union ih1 ih2 = let ih' = IH.copy ih1 in IH.iter (fun id vi -> if not(IH.mem ih' id) then IH.add ih' id vi else ()) ih2; ih' (* Lookup varinfo in iosh. If the set contains None or is not a singleton, return None, otherwise return Some of the singleton *) (* IOS.t IH.t -> varinfo -> int option *) let iosh_singleton_lookup iosh vi = if IH.mem iosh vi.vid then let ios = IH.find iosh vi.vid in if not (IOS.cardinal ios = 1) then None else IOS.choose ios else None (* IOS.t IH.t -> varinfo -> IOS.t *) let iosh_lookup iosh vi = if IH.mem iosh vi.vid then Some(IH.find iosh vi.vid) else None (* return Some(vid) if iosh contains defId. return None otherwise *) (* IOS.t IH.t -> int -> int option *) let iosh_defId_find iosh defId = (* int -> IOS.t -> int option -> int option*) let get_vid vid ios io = match io with Some(i) -> Some(i) | None -> let there = IOS.exists (function None -> false | Some(i') -> defId = i') ios in if there then Some(vid) else None in IH.fold get_vid iosh None (* The resulting iosh will contain the union of the same entries from iosh1 and iosh2. If iosh1 has an entry that iosh2 does not, then the result will contain None in addition to the things from the entry in iosh1. *) (* XXX this function is a performance bottleneck *) let iosh_combine iosh1 iosh2 = let iosh' = IH.copy iosh1 in IH.iter (fun id ios1 -> try let ios2 = IH.find iosh2 id in let newset = IOS.union ios1 ios2 in IH.replace iosh' id newset; with Not_found -> let newset = IOS.add None ios1 in IH.replace iosh' id newset) iosh1; IH.iter (fun id ios2 -> try ignore(IH.find iosh1 id) with Not_found -> begin (*if not(IH.mem iosh1 id) then*) let newset = IOS.add None ios2 in IH.add iosh' id newset end) iosh2; iosh' (* determine if two IOS.t IH.t s are the same *) let iosh_equals iosh1 iosh2 = (* if IH.length iosh1 = 0 && not(IH.length iosh2 = 0) || IH.length iosh2 = 0 && not(IH.length iosh1 = 0)*) if not(IH.length iosh1 = IH.length iosh2) then (if !debug then ignore(E.log "iosh_equals: length not same: %d %d\n" (IH.length iosh1) (IH.length iosh2)); false) else IH.fold (fun vid ios b -> if not b then b else try let ios2 = IH.find iosh2 vid in if not(IOS.compare ios ios2 = 0) then (if !debug then ignore(E.log "iosh_equals: sets for vid %d not equal\n" vid); false) else true with Not_found -> (if !debug then ignore(E.log "iosh_equals: vid %d not in iosh2\n" vid); false)) iosh1 true (* replace an entire set with a singleton. if nothing was there just add the singleton *) (* IOS.t IH.t -> int -> varinfo -> unit *) let iosh_replace iosh i vi = if IH.mem iosh vi.vid then let newset = IOS.singleton (Some i) in IH.replace iosh vi.vid newset else let newset = IOS.singleton (Some i) in IH.add iosh vi.vid newset let iosh_filter_dead iosh vs = iosh (* IH.iter (fun vid _ -> if not(UD.VS.exists (fun vi -> vid = vi.vid) vs) then IH.remove iosh vid) iosh; iosh*) (* remove definitions that are killed. add definitions that are gend *) (* Takes the defs, the data, and a function for obtaining the next def id *) (* VS.t -> IOS.t IH.t -> (unit->int) -> unit *) let proc_defs vs iosh f = let pd vi = let newi = f() in if !debug then ignore (E.log "proc_defs: genning %d\n" newi); iosh_replace iosh newi vi in UD.VS.iter pd vs let idMaker () start = let counter = ref start in fun () -> let ret = !counter in counter := !counter + 1; ret (* given reaching definitions into a list of instructions, figure out the definitions that reach in/out of each instruction *) (* if out is true then calculate the definitions that go out of each instruction, if it is false then calculate the definitions reaching into each instruction *) (* instr list -> int -> (varinfo IH.t * int) -> bool -> (varinfo IH.t * int) list *) let iRDsHtbl = Hashtbl.create 128 let instrRDs il sid (ivih, s, iosh) out = if Hashtbl.mem iRDsHtbl (sid,out) then Hashtbl.find iRDsHtbl (sid,out) else (* let print_instr i (_,s', iosh') = *) (* let d = d_instr () i ++ line in *) (* fprint stdout 80 d; *) (* flush stdout *) (* in *) let proc_one hil i = match hil with | [] -> let _, defd = UD.computeUseDefInstr i in if UD.VS.is_empty defd then ((*if !debug then print_instr i ((), s, iosh);*) [((), s, iosh)]) else let iosh' = IH.copy iosh in proc_defs defd iosh' (idMaker () s); (*if !debug then print_instr i ((), s + UD.VS.cardinal defd, iosh');*) ((), s + UD.VS.cardinal defd, iosh')::hil | (_, s', iosh')::hrst as l -> let _, defd = UD.computeUseDefInstr i in if UD.VS.is_empty defd then ((*if !debug then print_instr i ((),s', iosh');*) ((), s', iosh')::l) else let iosh'' = IH.copy iosh' in proc_defs defd iosh'' (idMaker () s'); (*if !debug then print_instr i ((), s' + UD.VS.cardinal defd, iosh'');*) ((),s' + UD.VS.cardinal defd, iosh'')::l in let folded = List.fold_left proc_one [((),s,iosh)] il in let foldedout = List.tl (List.rev folded) in let foldednotout = List.rev (List.tl folded) in Hashtbl.add iRDsHtbl (sid,true) foldedout; Hashtbl.add iRDsHtbl (sid,false) foldednotout; if out then foldedout else foldednotout (* The right hand side of an assignment is either a function call or an expression *) type rhs = RDExp of exp | RDCall of instr (* take the id number of a definition and return the rhs of the definition if there is one. Returns None if, for example, the definition is caused by an assembly instruction *) (* stmt IH.t -> (()*int*IOS.t IH.t) IH.t -> int -> (rhs * int * IOS.t IH.t) option *) let rhsHtbl = IH.create 64 (* to avoid recomputation *) let getDefRhs didstmh stmdat defId = if IH.mem rhsHtbl defId then IH.find rhsHtbl defId else let stm = try IH.find didstmh defId with Not_found -> E.s (E.error "getDefRhs: defId %d not found\n" defId) in let (_,s,iosh) = try IH.find stmdat stm.sid with Not_found -> E.s (E.error "getDefRhs: sid %d not found \n" stm.sid) in match stm.skind with Instr il -> let ivihl = instrRDs il stm.sid ((),s,iosh) true in (* defs that reach out of each instr *) let ivihl_in = instrRDs il stm.sid ((),s,iosh) false in (* defs that reach into each instr *) begin try let iihl = List.combine (List.combine il ivihl) ivihl_in in (try let ((i,(_,_,diosh)),(_,_,iosh_in)) = List.find (fun ((i,(_,_,iosh')),_) -> match time "iosh_defId_find" (iosh_defId_find iosh') defId with Some vid -> (match i with Set((Var vi',NoOffset),_,_) -> vi'.vid = vid (* _ -> NoOffset *) | Call(Some(Var vi',NoOffset),_,_,_) -> vi'.vid = vid (* _ -> NoOffset *) | Call(None,_,_,_) -> false | Asm(_,_,sll,_,_,_) -> List.exists (function (_,_,(Var vi',NoOffset)) -> vi'.vid = vid | _ -> false) sll | _ -> false) | None -> false) iihl in (match i with Set((lh,_),e,_) -> (match lh with Var(vi') -> (IH.add rhsHtbl defId (Some(RDExp(e),stm.sid,iosh_in)); Some(RDExp(e), stm.sid, iosh_in)) | _ -> E.s (E.error "Reaching Defs getDefRhs: right vi not first\n")) | Call(lvo,e,el,_) -> (IH.add rhsHtbl defId (Some(RDCall(i),stm.sid,iosh_in)); Some(RDCall(i), stm.sid, iosh_in)) | Asm(a,sl,slvl,sel,sl',_) -> None) (* ? *) with Not_found -> (if !debug then ignore (E.log "getDefRhs: No instruction defines %d\n" defId); IH.add rhsHtbl defId None; None)) with Invalid_argument _ -> None end | _ -> E.s (E.error "getDefRhs: defining statement not an instruction list %d\n" defId) (*None*) let prettyprint didstmh stmdat () (_,s,iosh) = (*text ""*) seq line (fun (vid,ios) -> num vid ++ text ": " ++ IOS.fold (fun io d -> match io with None -> d ++ text "None " | Some i -> (*let stm = IH.find didstmh i in*) match getDefRhs didstmh stmdat i with None -> d ++ num i | Some(RDExp(e),_,_) -> d ++ num i ++ text " " ++ (d_exp () e) | Some(RDCall(c),_,_) -> d ++ num i ++ text " " ++ (d_instr () c)) ios nil) (IH.tolist iosh) module ReachingDef = struct let name = "Reaching Definitions" let debug = debug (* Should the analysis calculate may-reach or must-reach *) let mayReach = ref false (* An integer that tells the id number of the first definition *) (* Also a hash from variable ids to a set of definition ids that reach this statement. None means there is a path to this point on which there is no definition of the variable *) type t = (unit * int * IOS.t IH.t) let copy (_, i, iosh) = ((), i, IH.copy iosh) (* entries for starting statements must be added before calling compute *) let stmtStartData = IH.create 32 (* a mapping from definition ids to the statement corresponding to that id *) let defIdStmtHash = IH.create 32 (* mapping from statement ids to statements for better performance of ok_to_replace *) let sidStmtHash = IH.create 64 (* pretty printer *) let pretty = prettyprint defIdStmtHash stmtStartData (* The first id to use when computeFirstPredecessor is next called *) let nextDefId = ref 0 (* Count the number of variable definitions in a statement *) let num_defs stm = match stm.skind with Instr(il) -> List.fold_left (fun s i -> let _, d = UD.computeUseDefInstr i in s + UD.VS.cardinal d) 0 il | _ -> let _, d = UD.computeUseDefStmtKind stm.skind in UD.VS.cardinal d (* the first predecessor is just the data in along with the id of the first definition of the statement, which we get from nextDefId *) let computeFirstPredecessor stm (_, s, iosh) = let startDefId = max !nextDefId s in let numds = num_defs stm in let rec loop n = if n < 0 then () else (if !debug then ignore (E.log "RD: defId %d -> stm %d\n" (startDefId + n) stm.sid); IH.add defIdStmtHash (startDefId + n) stm; loop (n-1)) in loop (numds - 1); nextDefId := startDefId + numds; match L.getLiveSet stm.sid with | None -> ((), startDefId, IH.copy iosh) | Some vs -> ((), startDefId, iosh_filter_dead (IH.copy iosh) vs) let combinePredecessors (stm:stmt) ~(old:t) ((_, s, iosh):t) = match old with (_, os, oiosh) -> begin if time "iosh_equals" (iosh_equals oiosh) iosh then None else begin Some((), os, time "iosh_combine" (iosh_combine oiosh) iosh) end end (* return an action that removes things that are redefinied and adds the generated defs *) let doInstr inst (_, s, iosh) = if !debug then E.log "RD: looking at %a\n" d_instr inst; let transform (_, s', iosh') = let _, defd = UD.computeUseDefInstr inst in proc_defs defd iosh' (idMaker () s'); ((), s' + UD.VS.cardinal defd, iosh') in DF.Post transform (* all the work gets done at the instruction level *) let doStmt stm (_, s, iosh) = if not(IH.mem sidStmtHash stm.sid) then IH.add sidStmtHash stm.sid stm; if !debug then ignore(E.log "RD: looking at %a\n" d_stmt stm); match L.getLiveSet stm.sid with | None -> DF.SDefault | Some vs -> begin DF.SUse((),s,iosh_filter_dead iosh vs) (*DF.SDefault*) end let doGuard condition _ = DF.GDefault let filterStmt stm = true end module RD = DF.ForwardsDataFlow(ReachingDef) (* map all variables in vil to a set containing None in iosh *) (* IOS.t IH.t -> varinfo list -> () *) let iosh_none_fill iosh vil = List.iter (fun vi -> IH.add iosh vi.vid (IOS.singleton None)) vil let clearMemos () = IH.clear rhsHtbl; Hashtbl.clear iRDsHtbl (* Computes the reaching definitions for a function. *) (* Cil.fundec -> unit *) let computeRDs fdec = try if compare fdec.svar.vname (!debug_fn) = 0 then (debug := true; ignore (E.log "%s =\n%a\n" (!debug_fn) d_block fdec.sbody)); let bdy = fdec.sbody in let slst = bdy.bstmts in IH.clear ReachingDef.stmtStartData; IH.clear ReachingDef.defIdStmtHash; IH.clear rhsHtbl; Hashtbl.clear iRDsHtbl; ReachingDef.nextDefId := 0; let fst_stm = List.hd slst in let fst_iosh = IH.create 32 in UD.onlyNoOffsetsAreDefs := true; IH.add ReachingDef.stmtStartData fst_stm.sid ((), 0, fst_iosh); time "liveness" L.computeLiveness fdec; UD.onlyNoOffsetsAreDefs := true; ignore(ReachingDef.computeFirstPredecessor fst_stm ((), 0, fst_iosh)); (match L.getLiveSet fst_stm.sid with | None -> if !debug then ignore(E.log "Nothing live at fst_stm\n") | Some vs -> ignore(iosh_filter_dead fst_iosh vs)); if !debug then ignore (E.log "computeRDs: fst_stm.sid=%d\n" fst_stm.sid); RD.compute [fst_stm]; if compare fdec.svar.vname (!debug_fn) = 0 then debug := false (* now ReachingDef.stmtStartData has the reaching def data in it *) with Failure "hd" -> if compare fdec.svar.vname (!debug_fn) = 0 then debug := false (* return the definitions that reach the statement with statement id sid *) let getRDs sid = try Some (IH.find ReachingDef.stmtStartData sid) with Not_found -> None (* E.s (E.error "getRDs: sid %d not found\n" sid) *) let getDefIdStmt defid = try Some(IH.find ReachingDef.defIdStmtHash defid) with Not_found -> None let getStmt sid = try Some(IH.find ReachingDef.sidStmtHash sid) with Not_found -> None (* returns the rhs for the definition *) let getSimpRhs defId = let rhso = getDefRhs ReachingDef.defIdStmtHash ReachingDef.stmtStartData defId in match rhso with None -> None | Some(r,_,_) -> Some(r) (* check if i is responsible for defId *) (* instr -> int -> bool *) let isDefInstr i defId = match getSimpRhs defId with Some(RDCall i') -> Util.equals i i' | _ -> false (* Pretty print the reaching definition data for a function *) let ppFdec fdec = seq line (fun stm -> let ivih = IH.find ReachingDef.stmtStartData stm.sid in ReachingDef.pretty () ivih) fdec.sbody.bstmts (* If this class is extended with a visitor on expressions, then the current rd data is available at each expression *) class rdVisitorClass = object (self) inherit nopCilVisitor (* the statement being worked on *) val mutable sid = -1 (* if a list of instructions is being processed, then this is the corresponding list of reaching definitions *) val mutable rd_dat_lst = [] (* these are the reaching defs for the current instruction if there is one *) val mutable cur_rd_dat = None method vstmt stm = sid <- stm.sid; match getRDs sid with None -> if !debug then ignore(E.log "rdVis: stm %d had no data\n" sid); cur_rd_dat <- None; DoChildren | Some(_,s,iosh) -> match stm.skind with Instr il -> if !debug then ignore(E.log "rdVis: visit il\n"); rd_dat_lst <- instrRDs il stm.sid ((),s,iosh) false; DoChildren | _ -> if !debug then ignore(E.log "rdVis: visit non-il\n"); cur_rd_dat <- None; DoChildren method vinst i = if !debug then ignore(E.log "rdVis: before %a, rd_dat_lst is %d long\n" d_instr i (List.length rd_dat_lst)); try cur_rd_dat <- Some(List.hd rd_dat_lst); rd_dat_lst <- List.tl rd_dat_lst; DoChildren with Failure "hd" -> if !debug then ignore(E.log "rdVis: il rd_dat_lst mismatch\n"); DoChildren method get_cur_iosh () = match cur_rd_dat with None -> (match getRDs sid with None -> None | Some(_,_,iosh) -> Some iosh) | Some(_,_,iosh) -> Some iosh end