
Packet timestamping

TEP: TBA
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: > 2.1
Author: Miklos Maroti, Janos Sallai
Draft-Created: 15-May-2008
Draft-Version: 1.0
Draft-Modified: 2008-05-15
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This TEP describes a mechanism that provides access to the time of transmission and time of reception
of a packet. The local clocks of the sender and recipient are used to timestamp the transmission and
reception of the packet, respectively.

1. Introduction

Time of packet sending and reception is often of interest in sensor network applications. Typically,
neither the time of invocation of the send command, nor the time of signaling of the sendDone event
can be used to estimate, without significant jitter, the time when the packet was transmitted. Similarly,
the time of occurrence of the receive event cannot be used to reliably estimate the time of reception.

A straightforward way of message timestamping is to use the start-of-frame delimiter interrupt,
commonly exposed by packet-oriented radio transceivers. This approach was taken by the CC2420 radio
stack in TinyOS 1.x: the SFD interrupt handler was exposed by the radio stack as an asynchronous
event. This solution was problematic, because higher- level application components that wired the
interface containing this event could break the timing of radio stack due to excessive computation in
interrupt context.

This TEP overcomes this issue by providing a standardized, platform- independent interface to access
packet timestamps without exposing timing critical and/or hardware-specific events. Also, this TEP
does not prescribe how packet timestamping should be implemented: it only describes the interfaces
and the required functionality (semantics).

1



2. The PacketTimeStamp interface

This TEP specifies a standard interface (PacketTimeStamp) to access the packet transmission and packet
reception times. The sender and the receiver use unsynchronized clocks to timestamp packets. The
precision and width of timestamps is specified as interface parameters precision_tag and size_type:

interface PacketTimeStamp<precision_tag, size_type>
{

async command bool isValid(message_t* msg);
async command size_type timestamp(message_t* msg);
async command void clear(message_t* msg);
async command void set(message_t* msg, size_type value);

}

The timestamp command of the PacketTimeStamp interface is an accessor to the the timestamp.
The timestamp command returns the time of transmission after a sendDone event, and the time of
reception after a receive event.

In some cases, it is not possible to timestamp certain packets (e.g. under very heavy traffic multiple
interrupts can occur before they could be serviced, and even if capture registers are used, it is not
possible to get the time stamp for the first or last unserviced event). The PacketTimeStamp interface
contains the isValid command to query if the packet timestamp is valid.

The communications stack MUST guarantee that if the isValid command called from within the
sendDone or receive event handler returns TRUE, then the value returned by the timestamp command
can be trusted. However, it might be possible that the local clock overflowed more than once or that
is was stopped or reset since the packet was timestamped, which causes the value returned by the
timestamp command invalid. The isValid command MAY return TRUE in such situations, and it
is the responsibility of the user of the interface to ensure that the clock runs freely from the time of
message reception to the time when timestamp is called. To avoid this issue, it is recommended that
isValid and timestamp are called from the receive or sendDone event handler.

The clear command invalidates the timestamp: after clear is called, isValid will return FALSE. A
set command is also included to allow for changing the timestamp associated with the message. After
the set command is called, isValid will return TRUE.

The communications stack guarantees that the transmission timestamp and the reception timestamp
that belong to the same packet transmission always correspond to the same physical phenomenon, i.e.
to the same instance of physical time. This TEP does not prescribe what synchronization event the
communications stack should use. For example, the communications stack may chose to timestamps
hardware events that correspond to the start of transmission/reception of the packet, signaled a start-
of-frame delimiter (SFD) interrupt. The SFD interrupt occurs at the same time on the transmitter and
the receiver (assuming that the signal propagation delay is negligible). Alternatively, on a byte oriented
radio, the timestamp may correspond to the average of the transmission times of bytes, as described
in2.

3. HIL requirements

The signature of the platform’s ActiveMessageC3 MUST include:

provides interface PacketTimeStamp<TMilli,uint32_t>;

where timestamps are given in the node’s local time, which is available through HILTimerMil-
liC.LocalTime4.

The communications stack MAY support timestamp precisions and widths other than TMilli and
uint32_t, respectively. Also, alternative TimesyncedPacket implementations MAY use clock sources
other than HILTimerMilliC.LocalTime.

2



4. Implementation

A reference implementation of the packet timestamping mechanism described in this TEP can be found
in tinyos-2.x/tos/chips/rf230.

5. Author’s Address

Miklos Maroti
Janos Sallai
Institute for Software Integrated Systems
Vanderbilt University
2015 Terrace Place
Nashville, TN 37203
phone: +1 (615) 343-7555

6. Citations

1 TEP 111: message t
2 Maroti, M., Kusy, B., Simon, G., and Ledeczi, A. 2004. The flooding time synchronization protocol. In
Proceedings of the 2nd international Conference on Embedded Networked Sensor Systems (Baltimore,
MD, USA, November 03 - 05, 2004). ACM SenSys ’04.
3 TEP 116: Packet protocols
4 TEP 102: Timers

3


