
Deluge T2 - Programming Manual

Chieh-Jan Mike Liang

Razvan Musaloiu-E.

May 21, 2007

1 Introduction

Deluge is a reliable data dissemination protocol for large objects, such as program binaries. Together with
a bootloader, Deluge provides a way to reprogram sensor motes in a network. Deluge is maintained by
Jonathan Hui, and Deluge 2.0 is the most recent version. Documentations on Deluge 2.0 are available at
http://www.cs.berkeley.edu/~jwhui/research/deluge/.

Deluge T2 is an effort to port Deluge 2.0 from TinyOS 1 to TinyOS 2. Since the code from Deluge 2.0
is reused as much as possible, the behavior and the usage of Deluge T2 should be similar to Deluge 2.0.
Having said that, it would be helpful to read the Deluge 2.0 manual and related documentations.

Deluge T2 is still in experimental phase. One current limitation is platform support. Deluge T2 has
been developed and tested on tmote sky (telosb) only. In addition, Deluge T2 comes with 2 flash volumes
by default. However, more volumes can be added, if necessary. There are also minor details that will be
improved in future releases.

2 Quick Start

This section introduces the basics of reprogramming with an example. In addition, it provides a quick test for
software prerequisite. The latest TinyOS 2 CVS tree and Python 2.4 with pySerial support are recommended
for running Deluge T2.

To start the example, we run a burn script provided in tinyos-2.x/apps/tests/deluge/Blink. For
example,

% ./burn /dev/ttyUSB0

This burn script programs the directly-connected mote with one version of blink. Then, it injects and
reprograms the mote with another version of blink. At this point, you can try to retrieve program image
versioning information. The script to interface with the mote is provided in tinyos-2.x/tools/. For
example,

% tos-deluge.py /dev/ttyUSB0 -p 0

You should see something similar to the output below.

Pinging node ...

Connected to Deluge node.

--------------------------------------------------

Stored image 0

Prog Name: BlinkAppC

Compiled On: Thu May 17 00:36:33 2007

Platform: telosb

User ID: mike

Host Name: sprite

User Hash: 0xC50D8DA4L

1



Num Pages: 24/24

Size: 26512

UID: 2302157803

Version: 6

--------------------------------------------------

The usage of delugy.py is available by running the script without any arguments, and it will be discussed
in section 4.

3 Reprogramming a Network

This section illustrates the procedure to reprogram a network. Specifically, we will see how program images
are injected and how versioning information is retrieved.

3.1 Setting Up the Motes

We first install both TOSBoot and a program that runs Deluge T2. For simplicity, we use the golden image
as the program. The golden image is provided in tinyos-2.x/apps/tests/deluge/GoldenImage, and it
does nothing except initializing Deluge T2. This step can be done by compiling and programming the mote
normally. For example,

% make telosb install,0 bsl,/dev/ttyUSB0

Deluge T2 makes sure the mote ID remain persistent over image reprogramming. You can test the installation
by interacting with the mote through deluge.py.

3.2 Preparing Your Application

In most cases, the only two files you need to modify are the top-level wiring file and the Make file. You need
to make sure DelugeC component is included. In addition, the Make file should have the following lines:

TINYOS_NP=BNP

CFLAGS += -DTOSH_DATA_LENGTH=100

Finally, compile your application without installing it on the mote. For example,

% make telosb

3.3 Injecting Your Application

Before a program image is disseminated in the network, we need to first inject it to the base station. For
example,

% tos-deluge.py /dev/ttyUSB0 -i 1 apps/Blink/build/telosb/tos_image.xml

You should see something similar to the output below.

Pinging node ...

Connected to Deluge nodes.

--------------------------------------------------

Stored image 1

No proper Deluge image found!

--------------------------------------------------

Ihex read complete:

Total bytes = 25526

Sections = 2

2



--------------------------------------------------

Replace image with:

Prog Name: BlinkAppC

Compiled On: Mon May 07 00:01:43 2007

Platform: telosb

User ID: mike

Host Name: sprite

User Hash: 0xC50D8DA4L

Num Pages: 24/24

Size: 26512

UID: 507153792

Version: 0

--------------------------------------------------

3.4 Reprogramming with New Image

After you decide which program image you want to reprogram, you can first test on the base station by
issuing the reboot command. For example,

% tos-deluge.py /dev/ttyUSB0 -r 1

After a few moments, the mote will begin quickly flashing the LEDs to signify the reprogramming process.
Now, you can have the base station disseminate a program image to the rest of the network. For example,

% tos-deluge.py /dev/ttyUSB0 -d 1

This command instructs the base station to notify the whole network of the availablility of a new program
image. This notification is currently done via TinyOS dissemination service, and it triggers all motes in
the network to get the new program image. Upon receiving the complete image over-the-air, each node
automatically reboots and reprograms itself.

4 Deluge T2 Python Toolchain

Different from Deluge 2.0, Deluge T2 toolchain is written in Python. However, as demonstrated in the
previous section, the usage is very similar.

4.1 -p –ping

This command is useful for checking the status of program images on a mote. It provides information such
as program name, compile time, size of the image, and so on.

4.2 -i –inject

This command creates a program image from the supplied tos_image.xml file, and it injects the image into
specified volume on the mote. All versioning information is kept on the mote, so no state is stored on the
PC.

4.3 -r –reboot

This command sets up the mote to reprogram itself after reboot, and then it reboots the mote. This command
is applicable only to the directly connected mote.

3



4.4 -d –dissemination

This command instructs the directly connected mote to disseminate an image to the network. This image
is specified by the volume ID. Upon successfully receiving an image, motes in the network automatically
reprogram themselves.

4.5 -e –erase

This command erases a flash volume on the directly connected mote.

4.6 -s –reset

This command resets versioning information of a specific image on the directly connected mote.

4


