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Note

This document gives a brief overview of TinyOS 2.0, highlighting how and where it departs from
1.1 and 1.0. Further detail on these changes is detailed in TEP (TinyOS Enhancement Proposal)
documents.

1. Introduction

TinyOS 2.0 is a clean slate redesign and re-implementation of TinyOS. Its development was motivated
by our belief that many aspects of 1.x strain to meet requirements and uses that were not foreseen when
it was designed and implemented. The structure and interfaces 1.x defines have several fundamental
limitations. While these limitations can be worked around, this practice has led to tightly coupled
components, hard to find interactions, and a very steep learning curve for a newcomer to sensor network
programming.

TinyOS 2.0 is not backwards compatible with 1.x: code written for the latter will not compile for
the former. However, one important aspect of 2.0’s design is to minimize the difficulty of upgrading
code. Therefore, while porting a 1.x application to 2.0 will require some work, it should not be very
much.

This document provides a high-level overview of 2.0 and describes some of the ways in which it de-
parts from 1.x. It covers the basic TinyOS abstractions, such as hardware abstractions, communication,
timers, the scheduler, booting and initialization. Further detail on each of these can be found in TEPs
(TinyOS Enhancement Proposals), which document and describe these abstractions.

2. Platforms/Hardware Abstraction

Platforms exist in the tos/platforms subdirectory. In TinyOS 2.0, a platform is a collection of chips and
some glue code that connects them together. For example, the mica2 platform is the CC1000 radio chip
and the ATmega128 microcontroller, while the micaZ platform is the CC2420 radio and the ATmega128
microcontroller, and the Teloi platforms are the CC2420 radio and the MSP430 microcontroller. Chip
code exists in tos/chips. A platform directory generally has a .platform file, which has options to
pass to the nesC compiler. For example, the mica2 .platform file tells ncc to look in chips/cc1000 and
chips/atm128 directories, as well as to use avr-gcc to compile a mote binary (Teloi platforms tell it to
use msp430-gcc).

Hardware abstractions in TinyOS 2.0 generally follow a three-level abstaction heirarchy, called the
HAA (Hardware Abstraction Architecture).

At the bottom of the HAA is the HPL (Hardware Presentation Layer). The HPL is a thin software
layer on top of the raw hardware, presenting hardare such as IO pins or registers as nesC interfaces.
The HPL generally has no state besides the hardware itself (it has no variables). HPL components
usually have the prefix Hpl, followed by the name of the chip. For example, the HPL components of
the CC1000 begin with HplCC1000.
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The middle of the HAA is the HAL (Hardware Abstraction Layer). The HAL builds on top of the
HPL and provides higher-level abstractions that are easier to use than the HPL but still provide the
full functionality of the underlying hardware. The HAL components usually have a prefix of the chip
name. For example, the HAL components of the CC1000 begin with CC1000.

The top of the HAA is the HIL (Hardware Independent Layer). The HIL builds on top of the HAL
and provides abstractions that are hardware independent. This generalization means that the HIL
usually does not provide all of the functionality that the HAL can. HIL components have no naming
prefix, as they represent abstractions that applications can use and safely compile on multiple platforms.
For example, the HIL component of the CC1000 on the mica2 is ActiveMessageC, representing a full
active message communication layer.

The HAA is described in TEP 2: Hardware Abstraction Architecture[TEP2].
Currently (as of the 2.0 release in November 2006), TinyOS 2.0 supports the following platforms:

• eyesIFXv2

• intelmote2

• mica2

• mica2dot

• micaZ

• telosb

• tinynode

• btnode3

The btnode3 platform is not included in the RPM.

3. Scheduler

As with TinyOS 1.x, TinyOS 2.0 scheduler has a non-preemptive FIFO policy. However, tasks in 2.0
operate slightly differently than in 1.x.

In TinyOS 1.x, there is a shared task queue for all tasks, and a component can post a task multiple
times. If the task queue is full, the post operation fails. Experience with networking stacks showed this
to be problematic, as the task might signal completion of a split-phase operation: if the post fails, the
component above might block forever, waiting for the completion event.

In TinyOS 2.x, every task has its own reserved slot in the task queue, and a task can only be posted
once. A post fails if and only if the task has already been posted. If a component needs to post a task
multiple times, it can set an internal state variable so that when the task executes, it reposts itself.

This slight change in semantics greatly simplifies a lot of component code. Rather than test to see
if a task is posted already before posting it, a component can just post the task. Components do not
have to try to recover from failed posts and retry. The cost is one byte of state per task. Even in large
systems such as TinyDB, this cost is under one hundred bytes (in TinyDB is is approximately 50).

Applications can also replace the scheduler, if they wish. This allows programmers to try new
scheduling policies, such as priority- or deadline-based. It is important to maintain non-preemptiveness,
however, or the scheduler will break all nesC’s static concurrency analysis. Details on the new scheduler
and how to extend it can be found in TEP 106: Schedulers and Tasks[TEP106].

4. Booting/Initialization

TinyOS 2.0 has a different boot sequence than 1.x. The 1.x interface StdControl has been split into
two interfaces: Init and StdControl. The latter only has two commands: start and stop. In TinyOS
1.x, wiring components to the boot sequence would cause them to be powered up and started at boot.
That is no longer the case: the boot sequence only initializes components. When it has completed
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initializing the scheduler, hardware, and software, the boot sequence signals the Boot.booted event.
The top-level application component handles this event and start services accordingly. Details on the
new boot sequence can be found in TEP 107: TinyOS 2.x Boot Sequence[TEP107].

5. Virtualization

TinyOS 2.0 is written with nesC 1.2, which introduces the concept of a ’generic’ or instantiable compo-
nent. Generic modules allow TinyOS to have reusable data structures, such as bit vectors and queues,
which simplify development. More importantly, generic configurations allow services to encapsulate
complex wiring relationships for clients that need them.

In practice, this means that many basic TinyOS services are now virtualized. Rather than wire
to a component with a parameterized interface (e.g., GenericComm or TimerC in 1.x), a program
instantiates a service component that provides the needed interface. This service component does all of
the wiring underneath (e.g., in the case of timers, to a unique) automatically, reducing wiring mistakes
and simplifying use of the abstraction.

6. Timers

TinyOS 2.0 provides a much richer set of timer interfaces than 1.x. Experience has shown that timers
are one of the most critical abstractions a mote OS can provide, and so 2.0 expands the fidelity and
form that timers take. Depending on the hardware resources of a platform, a component can use 32KHz
as well as millisecond granularity timers, and the timer system may provide one or two high-precision
timers that fire asynchronously (they have the async keyword). Components can query their timers
for how much time remainins before they fire, and can start timers in the future (e.g., ’start firing a
timer at 1Hz starting 31ms from now’). TEP 102: Timers[TEP102] defines what HIL components a
platform must provide in order to support standard TinyOS timers. Platforms are required to provide
millisecond granularity timers, and can provide finer granularity timers (e.g., 32kHz) if needed.

Timers present a good example of virtualization in 2.0. In 1.x, a program instantiates a timer by
wiring to TimerC:

components App, TimerC;
App.Timer -> TimerC.Timer[unique("Timer")];

In 2.0, a program instantiates a timer:

components App, new TimerMilliC();
App.Timer -> TimerMilliC;

7. Communication

In TinyOS 2.0, the message buffer type is message_t, and it is a buffer that is large enough to hold a
packet from any of a node’s communication interfaces. The structure itself is completely opaque: com-
ponents cannot reference its fields. Instead, all buffer accesses go through interfaces. For example, to get
the destination address of an AM packet named msg, a component calls AMPacket.destination(msg).

Send interfaces distinguish the addressing mode of communication abstractions. For example, ac-
tive message communication has the AMSend interface, as sending a packet require an AM destination
address. In contrast, broadcasting and collection tree abstractions have the address-free Send interface.

Active messages are the network HIL. A platform’s ActiveMessageC component defines which net-
work interface is the standard communication medium. For example, a mica2 defines the CC1000
active message layer as ActiveMessageC, while the TMote defines the CC2420 active message layer as
ActiveMessageC.
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There is no longer a TOS UART ADDRESS for active message communication. Instead, a com-
ponent should wire to SerialActiveMessageC, which provides active message communication over the
serial port.

Active message communication is virtualized through four generic components, which take the AM
type as a parameter: AMSenderC, AMReceiverC, AMSnooperC, and AMSnoopingReceiverC. AM-
SenderC is virtualized in that the call to send() does not fail if some other component is sending (as
it does with GenericComm in 1.x). Instead, it fails only if that particular AMSenderC already has a
packet outstanding or if the radio is not in a sending state. Underneath, the active message system
queues and sends these outstanding packets. This is different than the QueuedSendC approach of 1.x,
in which there is an N-deep queue that is shared among all senders. With N AMSenderC components,
there is an N-deep queue where each sender has a single reserved entry. This means that each AM-
SenderC receives 1/n of the available post-MAC transmission opportunities, where n is the number of
AMSenderC components with outstanding packets. In the worst case, n is the number of components;
even when every protocol and component that sends packets is trying to send a packet, each one will
receive its fair share of transmission opportunities.

Further information on message t can be found in TEP 111: message t[TEP111], while further
information on AM can be found in TEP 116: Packet Protocols[TEP116].

The current TinyOS release has a low-power stack for the CC1000 radio (mica2 platform) and an
experimental low-power stack for the CC2420 radio (micaz, telosb, and intelmote2 platforms).

8. Sensors

In TinyOS 2.0, named sensor components comprise the HIL of a platform’s sensors. TEP 114 describes
a set of HIL data acquisition interfaces, such as Read, ReadStream, and Get, which sensors provide
according to their acquisition capabilities.

If a component needs high-frequency or very accurate sampling, it must use the HAL, which gives it
the full power of the underlying platform (highly accurate platform-independent sampling is not really
feasible, due to the particulars of individual platforms). Read assumes that the request can tolerate
some latencies (for example, it might schedule competing requests using a FIFO policy).

Details on the ADC subsystem can be found in TEP 101: Analog-to-Digital Converters[TEP101];
details on the organization of sensor boards can be found in TEP 109: Sensorboards[TEP109], and
the details of the HIL sensor interfaces can be found in TEP 114: Source and Sink Independent
Drivers[TEP114].

9. Error Codes

The standard TinyOS 1.x return code is result_t, whose value is either SUCCESS (a non-zero value) or
FAIL (a zero value). While this makes conditionals on calls very easy to write (e.g., if (call A.b())),
it does not allow the callee to distinguish causes of error to the caller. In TinyOS 2.0, result_t
is replaced by error_t, whose values include SUCCESS, FAIL, EBUSY, and ECANCEL. Interface
commands and events define which error codes they may return and why.

From the perspective of porting code, this is the most significant different in 2.0. Calls that were
once:

if (call X.y()) {
busy = TRUE;

}

now have their meanings reversed. In 1.x, the busy statement will execute if the call succeeds,
while in 2.0 it will execute if the call fails. This encourages a more portable, upgradable, and readable
approach:
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if (call X.y() == SUCCESS) {
busy = TRUE;

}

10. Arbitration

While basic abstractions, such as packet communication and timers, can be virtualized, experiences
with 1.x showed that some cannot without either adding significant complexity or limiting the system.
The most pressing example of this is a shared bus on a microcontroller. Many different systems --
sensors, storage, the radio -- might need to use the bus at the same time, so some way of arbitrating
access is needed.

To support these kinds of abstractions, TinyOS 2.0 introduces the Resource interface, which compo-
nents use to request and acquire shared resources, and arbiters, which provide a policy for arbitrating
access between multiple clients. For some abstractions, the arbiter also provides a power management
policy, as it can tell when the system is no longer needed and can be safely turned off.

TEP 108: Resource Arbitration[TEP108] describes the Resource interface and how arbiters work.

11. Power Management

Power management in 2.0 is divided into two parts: the power state of the microcontroller and the power
state of devices. The former, discussed in TEP 112: Microcontroller Power Management[TEP112], is
computed in a chip-specific manner by examining which devices and interrupt souces are active. The
latter, discussed in TEP 115: Power Management of Non-Virtualised Devices{TEP115], is handled
through resource abiters. Fully virtualized services have their own, individual power management
policies.

TinyOS 2.0 provides low-power stacks for the CC1000 (mica2) and CC2420 (micaz, telosb, imote2)
radios. Both use a low-power listening apporach, where transmitters send long preambles or repeatedly
send packets and receivers wake up periodically to sense the channel to hear if there is a packet being
transmitted. The low-power stack CC1000 is standard, while the CC2420 stack is experimental. That
is, the default CC1000 stack (chips/cc1000) has low-power-listening, while the default CC2420 stack
(chips/cc2420) does not. To use the low-power CC2420 stack, you must include chips/cc2420 lpl in
your application Makefile.

12. Network Protocols

TinyOS 2.0 provides simple reference implementations of two of the most basic protocols used in mote
networks: dissemination and collection. Dissemination reliably delivers small (fewer than 20 byte) data
items to every node in a network, while collection builds a routing tree rooted at a sink node. Together,
these two protocols enable a wide range of data collection applications. Collection has advanced signif-
icantly since the most recent beta release; experimental tests in multiple network conditions have seen
very high (>98%) deliver rates as long as the network is not saturated.

13. Conclusion

TinyOS 2.0 represents the next step of TinyOS development. Building on user experiences over the
past few years, it has taken the basic TinyOS architecture and pushed it forward in several directions,
hopefully leading to simpler and easier application development. It is still under active development:
future prereleases will include non-volatile storage, basic multihop protocols (collection routing, dissem-
ination), and further power management abstractions.
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