
Porting TinyOS 1.x Code to TinyOS 2.0

Author: Tahir Azim and Philip Levis
Date: October 26 2006

Note

This document provides a few important points that describe major steps required for porting
TinyOS 1.x code to TinyOS 2.0. It is based on Tahir Azim’s experience porting Beacon Vector
Routing (BVR[1]) from TinyOS 1.x to T2. This document is not a complete porting guide, but
the hope is that it will provide some help or guidance.

1. Porting Points

As these observations come from porting a network protocol, they are rather protocol-centric and do
not consider other abstractions such as storage. We hope to add such points in the future.

1. SUCCESS was a non-zero error code in TinyOS 1.x, while FAIL was non-zero. So
any “if blocks” of the following form need to be changed:

if (call Packet...) {
//SUCCESS!: do this...

}

In TinyOS 2.x, SUCCESS is equal to a zero error code, while other error codes are non-
zero. So calls like this should be changed to make sure they test the result for equality with
SUCCESS:

if (call Packet... () == SUCCESS ) {
//SUCCESS!: do this...

}

2. The “init()” and “start/stop()” methods in StdControl have been separated in
TinyOS 2.x. The init() method is now part of the “Init” interface. Therefore
all modules implementing StdControl should now implement Init also. Modules
wired to the StdControl interface of a module should also wire to its Init interface.

3. The nx bool data type should be replaced by nx uint8 t.

4. Radios need to be started manually using SplitControl.start() and SplitControl.stop()
at the beginning of the simulation. In TinyOS 1.x, this was assumed to be done
automatically by TOSSIM/TinyOS.

5. Packets are now an abstract data type (ADT) in TinyOS 2.x. Therefore, desti-
nation addresses from packets can no longer be obtained by using “msg -> addr”.
Instead the AMPacket.destination() method of the AMPacket interface should
be used for this purpose. AMSenderC or AMReceiverC can be used to wire the
AMPacket interface.

1



6. Similarly, in order to get a pointer to the payload of received message t struc-
tures, and to get the payload lengths and maximum payload lengths of message t
structures, the Packet interface is used. This can also be wired to an AMSenderC
or AMReceiverC component. Similarly, instead of using “msg->strength” to get
the strength of a received signal, CC2420Packet.getRssi(msg) can be used. The
CC2420Packet interface can be wired to CC2420ActiveMessageC.

7. Communication interfaces are very similar but require straightforward porting.
SendMsg and ReceiveMsg interfaces (wherever used or provided by various mod-
ules) should be replaced by AMSend and Receive interfaces. At the lowest layer
of the communication stack, AMSend and Receive interfaces should be wired to
AMSenderC and AMReceiverC.

8. Where a module that previously provided SendMsg is changed to provide AMSend,
extra methods have to be added that are part of the AMSend signature. These
include the cancel, getPayload and maxPayloadLength methods. The Packet in-
terface wired to AMSenderC can generally be used to implement these methods.

9. TOS UART ADDRESS no longer exists. Use an SerialAMSenderC component
when you would like to send to the serial port.

10. TOS LOCAL ADDRESS no longer exists. There is now a distinction between the
local node’s ID (which is TOS NODE ID) and the active message address. The
active message address of a communication interface can be obtained through the
AMPacket.localAddress() command. By default, node ID and AM address are the
same. TOS NODE ID is bound at compile-time, while an interface’s AM address
can be changed at runtime.

11. Calls such as Leds.greenToggle(), Leds.yellowToggle() etc need to be replaced by
Leds.led1Toggle(), Leds.led2Toggle() etc.

12. You should no longer use“#ifdef PLATFORM PC”to separate pieces of code that
are to run only on the ’pc’ target. Instead, “#ifdef TOSSIM” is used to identify
blocks of code that should be run only in TOSSIM.

13. dbg messages no longer use one of the debug modes of the form, DBG * as
their first argument. Instead, they should be replaced with strings identifying
the sources from where the messages originated.

2. Author’s Address

Tahir Azim
358 Gates Hall
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

email - tazim@cs.stanford.edu

Philip Levis
358 Gates Hall
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

2

mailto:tazim@cs.stanford.edu


phone - +1 650 725 9046

email - pal@cs.stanford.edu

3. Citations

1 Rodrigo Fonseca, David Culler, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. “Beacon Vec-
tor Routing: Scalable Point-to-Point Routing in Wireless Sensornets.” In Proceedings of the Second
USENIX/ACM Symposium on Network Systems Design and Implementation (NSDI 2005).

3

mailto:pal@cs.stanford.edu

	1. Porting Points
	2. Author's Address
	3. Citations

