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Abstract

This memo documents a set of hardware-independent interfaces to non-volatile storage for TinyOS 2.x.
It describes some design principles for the HPL and HAL layers of various flash chips.

1. Introduction

Flash chips are a form of EEPROM (electrically-erasable, programmable read-only memory), distin-
guished by a fast erase capability. However, erases can only be done in large units (from 256B to 128kB
depending on the flash chip). Erases are the only way to switch bits from 0 to 1, and programming
operations can only switch 1’s to 0’s. Additionally, some chips require that programming only happen
once between each erase, or that it be in relatively large units (e.g., 256B).

In the table below, we summarise these differences by categorising flash chips by their underlying
technology (NOR vs NAND). We also include a column for Atmel’s AT45DB flash chip family, as it has
significantly different tradeoffs than other flash chips:

X NOR (ex: ST
M25P40, Intel
PXA27x)

AT45DB NAND (ex: Sam-
sung K9K1G08R0B)

Erase Slow (seconds) Fast (ms) Fast (ms)
Erase unit Large (64KB-128KB) Small (256B) Medium (8KB-32KB)
Writes Slow (100s kB/s) Slow (60kB/s) Fast (MBs/s)
Write unit 1 bit 256B 100’s of bytes
Bit-errors Low Low High (requires ECC,

bad-block mapping)
Read Bus limited* Slow+Bus limited Bus limited
Erase cycles 10ˆ4 - 10ˆ5 10ˆ4† 10ˆ5 - 10ˆ7
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X NOR (ex: ST
M25P40, Intel
PXA27x)

AT45DB NAND (ex: Sam-
sung K9K1G08R0B)

Intended use Code storage Data storage Data storage
Energy/byte 1uJ 1uJ .01uJ

The energy/byte is the per-byte cost of erasing plus programming. It is derived from the timing and
power consumption of erase and write operations (for NOR flash, values are for the STMicroelectronics
M25P family, for NAND flash, values are from the Samsung datasheet). Energy/byte for reads appears
to depend mostly on how long the read takes (the power consumptions are comparable), i.e., on the
efficiency of the bus + processor.

Early TinyOS platforms all used a flash chip from the AT45DB family. In TinyOS 1.x, this chip
could be accessed through three different components:

• Using a low-level interface (PageEEPROMC) which gave direct access to per-page read, write and
erase operations.

• Using a high-level memory-like interface (ByteEEPROMC) with read, write and logging operations.

• Using a simple file system (Matchbox) with sequential-only files [1].

Some more recent platforms use different flash chips: the ST M25P family (Telos rev. B, eyes) and
the Intel Strataflash (Intel Mote2). None of the three components listed above are supported on these
chips:

• The PageEEPROMC component is (and was intended to be) AT45DB-specific

• ByteEEPROMC allows arbitrary rewrites of sections of the flash. This is not readily implementable
on a flash chip with large erase units.

• The Matchbox implementation was AT45DB-specific. It was not reimplemented for these other
chips, in part because it does not support some applications (e.g., network reprogramming) very
well.

2. Storage in TinyOS 2.x

One approach to hiding the differences between different flash chips is to provide a disk-like, block
interface (with, e.g., 512B blocks). This is the approach taken by compact flash cards. However, in the
context of TinyOS, this approach has several drawbacks:

• This approach is protected by patents, making it difficult to provide in a free, open-source oper-
ating system.

• To support arbitrary block writes where blocks are smaller than the erase unit, and to deal with
the limited number of erase cycles/block requires remapping blocks. We believe that maintaining
this remapping table is too expensive on many mote-class devices.

∗ M25P40 reads are limited by the use of a 25MHz SPI bus. The PXA27x flash is memory mapped
(reads are very fast and can directly execute code).
† Or infinite? Data sheet just says that every page within a sector must be written every 10ˆ4 writes
within that sector
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A second approach is to provide a generic low-level interface providing operations (read, write, erase)
corresponding to the basic flash operations, along with information describing the flash chip’s layout
(minimum write and erase unit, timing information, etc). However, we believe that the large differences
between NAND and NOR flash (see the table above), in particular the differences in reliability, write
and erase units, make the design of a useful generic low-level interface tricky at best.

We thus believe it is best, for now at least, to define high-level storage abstractions that are useful
for sensor network applications, and leave their implementation up to each flash chip - such abstractions
will be necessary anyway. We leave open the possibility that a future TEP may define portable lower-
level flash interfaces (either for all flash chips, or, e.g., for NOR-family flashes). Such low-level interfaces
would allow implementations of the storage abstractions defined in this TEP to be used for multiple
flash chips.

This TEP describes three high-level storage abstractions: large objects written in a single session,
small objects with arbitrary reads and writes, and logs. TinyOS 2.x, divides flash chips into separate
volumes (with sizes fixed at compile-time). Each volume provides a single storage abstraction (the
abstraction defines the format).

We prefer the use of single abstractions over fixed-size volumes over the use of a more general filing
system (like Matchbox) for several reasons:

• TinyOS is currently targeted at running a single application, and many applications know their
storage needs in advance: for instance, a little space for configuration data, and everything else
for a log of all sampled data. In such cases, the flexibility offered by a filing system (e.g., arbitrary
numbers of files) is overkill,

• Each abstraction is relatively easy to implement on a new flash chip, and has relatively little
overhead.

• The problem of dealing with the limited number of erase cycles/block is simplified: it is unlikely
that user applications will need to rewrite the same small object 100’000 times, or cycle 100’000
times through their log. Thus the abstractions can mostly ignore the need for “wear levelling”
(ensuring that each block of the flash is erased the same number of time, to maximise flash chip
lifetime).

New abstractions (including a filing system) can easily be added to this framework.
The rest of this TEP covers some principles for the organisation of flash chips (Section 3), then

describes the flash volumes and storage abstractions in detail (Section 4).

3. HPL/HAL/HIL Architecture

The flash chip architecture follows the three-layer Hardware Abstraction Architecture (HAA), with
each chip providing a presentation layer (HPL, Section 3.1), adaptation layer (HAL, Section 3.2)
and platform-independent interface layer (HIL, Section 3.3) [2]. The implementation of these layers
SHOULD be found in the tos/chips/CHIPNAME directory. If a flash chip is part of a larger family with
a similar interface, the HAA SHOULD support all family members by relying, e.g., on platform-provided
configuration information.

Appendix A shows example HPL and HAL specifications for the AT45DB and ST M25P chip
families.

3.1 Hardware Presentation Layer (HPL)

The flash HPL has a chip-dependent, platform-independent interface. The implementation of this HPL
is platform-dependent. The flash HPL SHOULD be stateless.

To remain platform independent, a flash chip’s HPL SHOULD connect to platform-specific compo-
nents providing access to the flash chip; these components SHOULD be placed in the tos/platforms/PLATFORM/chips/CHIPNAME
directory. If the flash chip implementation supports a family of flash chips, this directory MAY also
contain a file describing the particular flash chip found on the platform.
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3.2 Hardware Adaptation Layer (HAL)

The flash HAL has a chip-dependent, platform-independent interface and implementation. Flash fam-
ilies with a common HPL SHOULD have a common HAL. Flash HAL’s SHOULD expose a Resource
interface and automatically power-manage the underlying flash chip. Finally, the flash HAL MUST
provide a way to access the volume information specified by the programmer (see Section 3). This
allows users to build new flash abstractions that interact cleanly with the rest of the flash system.

3.3 Hardware Interface Layer (HIL)

Each flash chip MUST support at least one of the storage abstractions described in Section 4. These ab-
stractions SHOULD be presented in components named ChipAbstractionC, e.g., At45dbLogStorageC.
Additionally, a flash chip implementation MAY support platforms with multiple instances of the same
storage chip. The way in which this is achieved is not specified further in this TEP.

Each platform MUST have AbstractionC components (e.g., LogStorageC) implementing the storage
abstractions of Section 4 supported by its flash chip(s). On platforms with multiple storage chips
SHOULD redirect uses of AbstractionC to the appropriate storage chip, based on the requested volume.

4. Non-Volatile Storage Abstractions

The HIL implementations are platform-independent, but chip (family) dependent. They implement the
three storage abstractions and volume structure discussed in the introduction.

4.1. Volumes

The division of the flash chip into fixed-size volumes is specified by an XML file that is placed in the
application’s directory (where one types ’make’). The XML file specifies the allocation as follows:

<volume_table>
<volume name="DELUGE0" size="65536" />
<volume name="CONFIGLOG" size="65536" />
<volume name="DATALOG" size="131072" />
<volume name="GOLDENIMAGE" size="65536" base="983040" />

</volume_table>

The name and size parameters are required, while base is optional. The name is a string containing
one or more characters in [a-zA-Z0-9 ], while size and base are in bytes. Each storage chip MUST
provide a compile-time tool that translates the allocation specification to chip-specific nesC code. There
is no constraint on how this is done or what code is produced, except that the specification to physical
allocation MUST be one-to-one (i.e. a given specification should always have the same resulting physical
allocation on a given chip) and the result MUST be placed in the build directory. When not specified, the
tool picks a suitable physical location for a volume. If there is any reason that the physical allocation
cannot be satisfied, an error should be given at compile time. The tool SHOULD be named tos-
storage-CHIPNAME and be distributed with the other tools supporting a platform. The XML file
SHOULD be named volumes-CHIPNAME.xml.

The compile-time tool MUST prepend ’VOLUME ’ to each volume name in the XML file and
’#define’ each resulting name to map to a unique integer.

The storage abstractions are accessed by instantiating generic components that take the volume
macro as argument:

components new BlockStorageC(VOLUME_DELUGE0);

If the named volume is not in the specification, nesC will give a compile-time error since the symbol
will be undefined.

A volume MUST NOT be used with more than one storage abstraction instance.
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4.2 Large objects

The motivating example for large objects is the transmission or long-term storage of large pieces of
data. For instance, programs in a network-reprogramming system, or large data-packets in a reliable
data-transmission system. Such objects have an interesting characteristic: each byte in the object is
written at most once.

This leads to the definition of the BlockStorageC abstraction for storing large objects or other
“write-once” objects:

• A large object ranges from a few kilobytes upwards.

• A large object is erased before the first write.

• A sync ensures that a large object survives a reboot or crash

• Reads are unrestricted

• Each byte can only be written once between two erases

Large objects are accessed by instantiating a BlockStorageC component which takes a volume id
argument:

generic configuration BlockStorageC(volume_id_t volid) {
provides {

interface BlockWrite;
interface BlockRead;

}
} ...

The BlockRead and BlockWrite interfaces (briefly presented in Appendix B) contain the following
operations (all split-phase, except BlockRead.getSize):

• BlockWrite.erase: erase the volume. After a reboot or a commit, a volume MUST be erased
before it can be written to.

• BlockWrite.write: write some bytes starting at a given offset. Each byte MUST NOT be written
more than once between two erases.

• BlockWrite.sync: ensure all previous writes are present on a given volume. Sync MUST be
called to ensure written data survives a reboot or crash.

• BlockRead.read: read some bytes starting at a given offset.

• BlockRead.computeCrc: compute the CRC of some bytes starting at a given offset.

• BlockRead.getSize: return bytes available for large object storage in volume.

For full details on arguments and other considerations, see the comments in the interface definitions.
Note that these interfaces contain no direct support for verifying the integrity of the BlockStorage

data, but such support can easily be built by using the computeCrc command and storing the result in
a well-defined location, and checking this CRC when desired.

4.3 Logging

Event and result logging is a common requirement in sensor networks. Such logging should be reliable
(a mote crash should not lose data). It should also be easy to extract data from the log, either partially
or fully. Some logs are linear (stop logging when the volume is full), others are circular (the oldest data
is overwritten when the volume is full).
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The LogStorageC abstraction supports these requirements. The log is record based: each call to
LogWrite.append (see below) creates a new record. On failure (crash or reboot), the log MUST only
lose whole records from the end of the log. Additionally, once a circular log wraps around, calls to
LogWrite.append MUST only lose whole records from the beginning of the log.

Logs are accessed by instantiating a LogStorageC component which takes a volume id and a boolean
argument:

generic configuration LogStorageC(volume_id_t volid, bool circular) {
provides {

interface LogWrite;
interface LogRead;

}
} ...

If the circular argument is TRUE, the log is circular; otherwise it is linear.
The LogRead and LogWrite interfaces (briefly presented in Appendix B) contain the following opera-

tions (all split-phase except LogWrite.currentOffset, LogRead.currentOffset and LogRead.getSize):

• LogWrite.erase: erase the log. A log MUST be erased (possibly in some previous session) before
any other operation can be used.

• LogWrite.append: append some bytes to the log. In a circular log, this may overwrite the
current read position. In this case, the read position MUST be advanced to the log’s current
beginning (i.e., as if LogRead.seek had been called with SEEK_BEGINNING). Additionally, the
LogWrite.appendDone event reports whenever, in a circular log, an append MAY have erased old
records.

Each append creates a separate record. Log implementations may have a maximum record size;
all implementations MUST support records of up to 255 bytes.

• LogWrite.sync: guarantee that data written so far will not be lost to a crash or reboot (it can
still be overwritten when a circular log wraps around). Using sync MAY waste some space in the
log.

• LogWrite.currentOffset: return cookie representing current append position (for use with Lo-
gRead.seek).

• LogRead.read: read some bytes from the current read position in the log and advance the read
position.

LogStorageC implementations MUST include error detection codes to increase the likelihood of
detection of corrupted or invalid log data. Data returned by a successful read MUST have passed
this error detection check. The behaviour on failure of this check is unspecified (e.g., the at45db
believes as if the end of the log has been reached; other implementations may behave differently).

• LogRead.currentOffset: return cookie representing current read position (for use with Lo-
gRead.seek).

• LogRead.seek: set the read position to a value returned by a prior call to LogWrite.currentOffset
or LogRead.currentOffset, or to the special SEEK_BEGINNING value. In a circular log, if the spec-
ified position has been overwritten, behave as if SEEK_BEGINNING was requested.

SEEK_BEGINNING positions the read position at the beginning of the oldest record still present in
the log.

After reboot, the current read position is SEEK_BEGINNING.

• LogRead.getSize: return an approximation of the log’s capacity in bytes. Uses of sync and other
overhead may reduce this number.
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For full details on arguments, etc, see the comments in the interface definitions.
Note that while each call to append logically creates a separate record, the LogStorageC API does

not report record boundaries. Additionally, crashes, reboots, and appends after wrap-around in a
circular log can cause the loss of multiple consecutive records. Taken together, these restrictions mean
that a LogStorageC implementation MAY internally aggregate several consecutive appends into a single
record. However, the guarantee that only whole records are lost is sufficient to ensure that applications
do not to have worry about incomplete or inconsistent log entries.

4.4 Small objects:

Sensor network applications need to store configuration data, e.g., mote identity, radio frequency, sample
rates, etc. Such data is not large, but losing it may lead to a mote misbehaving or losing contact with
the network.

The ConfigStorageC abstraction stores a single small object in a volume. It:

• Assumes that configuration data is relatively small (a few hundred bytes).

• Allows random reads and writes.

• Has simple transactional behaviour: each read is a separate transaction, all writes up to a commit
form a single transaction.

• At reboot, the volume contains the data as of the most recent successful commit.

Small objects are accessed by instantiating a ConfigStorageC component which takes a volume id
argument:

generic configuration ConfigStorageC(volume_id_t volid) {
provides {

interface Mount;
interface ConfigStorage;

}
} ...

A small object MUST be mounted (via the Mount interface) before the first use.
The Mount and ConfigStorage interfaces (briefly presented in Appendix B) contain the following

operations (all split-phase except ConfigStorage.getSize and ConfigStorage.valid):

• Mount.mount: mount the volume.

• ConfigStorage.valid: return TRUE if the volume contains a valid small object.

• ConfigStorage.read: read some bytes starting at a given offset. Fails if the small object is not
valid. Note that this reads the data as of the last successful commit.

• ConfigStorage.write: write some bytes to a given offset.

• ConfigStorage.commit: make the small object contents reflect all the writes since the last com-
mit.

• ConfigStorage.getSize: return the number of bytes that can be stored in the small object.

For full details on arguments, etc, see the comments in the interface definitions.

5. Implementations

An AT45DB implementation can be found in tinyos-2.x/tos/chips/at45db.
An ST M25P implementation can be found in tinyos-2.x/tos/chips/stm25p.
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Appendix A. HAA for some existing flash chips

A.1 AT45DB

The Atmel AT45DB family HPL is:

configuration HplAt45dbC {
provides interface HplAt45db;

} ...

The HplAt45db interface has flash->buffer, buffer->flash, compare buffer to flash, erase page, read,
compute CRC, and write operations. Most of these operations are asynchronous, i.e., their completion
is signaled before the flash chip has completed the operation. The HPL also includes operations to wait
for asynchronous operations to complete.

A generic, system-independent implementation of the HPL (HplAt45dbByteC) is included allowing
platforms to just provide SPI and chip selection interfaces.

Different members of the AT45DB family are supported by specifying a few constants (number of
pages, page size).

The AT45DB HAL has two components, one for chip access and the other providing volume infor-
mation:

component At45dbC
{
provides {
interface At45db;

1 David Gay. “Design of Matchbox, the simple filing system for motes. (version 1.0).”
2 TEP 2: Hardware Abstraction Architecture.
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interface Resource[uint8_t client];
interface ResourceController;
interface ArbiterInfo;

}
} ...

configuration At45dbStorageManagerC {
provides interface At45dbVolume[volume_id_t volid];

} ...

Note that the AT45DB HAL resource management is independent of the underlying HPL’s power
management. The motivation for this is that individual flash operations may take a long time, so it
may be desirable to release the flash’s bus during long-running operations.

The At45db interface abstracts from the low-level HPL operations by:

• using the flash’s 2 RAM buffers as a cache to allow faster reads and writes

• hiding the asynchronous nature of the HPL operations

• verifying that all writes were successful

It provides cached read, write and CRC computation, and page erase and copy. It also includes
flush and sync operations to manage the cache.

The At45dbVolume interface has operations to report volume size and map volume-relative pages to
absolute pages.

A.2 ST M25P

The ST M25P family HPL is:

configuration Stm25pSpiC {
provides interface Init;
provides interface Resource;
provides interface Stm25pSpi;

}

The Stm25pSpi interface has read, write, compute CRC, sector erase and block erase operations.
The implementation of this HPL is system-independent, built over a few system-dependent components
providing SPI and chip selection interfaces.

Note that these two examples have different resource management policies: the AT45DB encapsu-
lates resource acquisition and release within each operation, while the M25P family requires that HPL
users acquire and release the resource itself.

The ST M25P HAL is:

configuration Stm25pSectorC {
provides interface Resource as ClientResource[storage_volume_t volume];
provides interface Stm25pSector as Sector[storage_volume_t volume];
provides interface Stm25pVolume as Volume[storage_volume_t volume];

}

The Stm25pSector interface provides volume-relative operations similar to those from the HPL
interface: read, write, compute CRC and erase. Additionally, it has operations to report volume size
and remap volume-relative addresses. Clients of the ST M25P HAL must implement the getVolumeId
event of the Stm25pVolume interface so that the HAL can obtain the volume id of each of its clients.
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Appendix B. Storage interfaces

These interfaces are presented briefly here for reference; please refer to the TinyOS documentation for
a full description of the commands, events and their parameters.

B.1 BlockStorage interfaces

The BlockStorage interfaces are:

interface BlockRead {
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
event void readDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t computeCrc(storage_addr_t addr, storage_len_t len,
uint16_t crc);

event void computeCrcDone(storage_addr_t addr, storage_len_t len,
uint16_t crc, error_t error);

command storage_len_t getSize();
}

interface BlockWrite {
command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t erase();
event void eraseDone(error_t error);

command error_t sync();
event void syncDone(error_t error);

}

B.2 ConfigStorage interfaces

The ConfigStorage interfaces are:

interface Mount {
command error_t mount();
event void mountDone(error_t error);

}

interface ConfigStorage {
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
event void readDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len,

error_t error);

command error_t commit();

10



event void commitDone(error_t error);

command storage_len_t getSize();
command bool valid();

}

B.3 LogStorage interfaces

The LogStorage interfaces are:

interface LogRead {
command error_t read(void* buf, storage_len_t len);
event void readDone(void* buf, storage_len_t len, error_t error);

command storage_cookie_t currentOffset();

command error_t seek(storage_cookie_t offset);
event void seekDone(error_t error);

command storage_len_t getSize();
}

interface LogWrite {
command error_t append(void* buf, storage_len_t len);
event void appendDone(void* buf, storage_len_t len, bool recordsLost,

error_t error);

command storage_cookie_t currentOffset();

command error_t erase();
event void eraseDone(error_t error);

command error_t sync();
event void syncDone(error_t error);

}
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