
Sensors and Sensor Boards

TEP: 109
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: 2.x
Author: David Gay, Phil Levis, Wei Hong, Joe Polastre, and Gilman Tolle
Draft-Created: 10-Jun-2006
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo documents how sensor drivers are organized in TinyOS and how sets of sensor drivers
are combined into sensor boards and sensor platforms, along with general principles followed by the
components that provide access to sensors.

1. Principles

This section describes the basic organization principles for sensor drivers in TinyOS.
For background, a sensor can be attached to the microcontroller on a TinyOS platform through a

few different types of connections:

• Included within the microcontroller itself

• Connected to general-purpose IO pins for level/edge detection

• Connected to an ADC in the microcontroller for voltage sampling

• Connected to general-purpose IO pins for digital communication

• Connected through a standard digital bus protocol (1-Wire, I2C, SPI)

Physically, these connections can also be decoupled by attaching the sensors to a sensor board, which
can be removed from the TinyOS platform, and could attach to multiple different TinyOS platforms.

The capabilities of a physical sensor are made available to a TinyOS application through a sensor
driver.

According to the HAA [TEP2], TinyOS devices SHOULD provide both simple hardware-independent
interfaces for common-case use (HIL) and rich hardware-dependent interfaces for special-case use (HAL).
Sensor drivers SHOULD follow this spirit as well.

1

TinyOS 2.x represents each sensor as an individual component. This allows the compilation process
to minimize the amount of code included. A sensor board containing multiple sensors SHOULD be
represented as a collection of components, one for each sensor, contained within a sensor board directory.

Sensors, being physical devices that can be shared, can benefit from virtualization and arbitration.
This document describes a design pattern for sensor virtualization that SHOULD be followed by sensor
drivers.

The same physical sensor can be attached to multiple different TinyOS platforms, through platform-
dependent interconnections. The common logic of sensor driver SHOULD be factored into chip-
dependent, platform-independent components, and those components SHOULD be bound to the hard-
ware resources on a platform by platform-dependent components, and to the hardware resources on a
sensor board by sensorboard-dependent components.

A physical sensor has a general class and a specific set of performance characteristics, captured by
the make and model of the sensor itself. The naming of the sensor driver components SHOULD reflect
the specifc name of the sensor, and MAY provide a component with a generic name for application
authors who only care about the general class of the sensor.

This document takes no position on the meaning of the values returned by sensor drivers. They
MAY be raw uninterpreted values or they MAY have some physical meaning. If a driver returns
uninterpreted values, the driver MAY provide additional interfaces that would allow higher-level clients
to obtain information needed to properly interpret the value.

2. Sensor HIL Components

A sensor HIL component MUST provide:

• One or more SID interfaces [TEP114], for reading data.

A sensor HIL component MAY provide:

• One or more SID interfaces [TEP114], for reading or writing calibration coefficients or control
registers.

A sensor device driver SHOULD be a generic component that virtualizes access to the sensor. A
sensor device driver can provide such virtualization for itself by defining a nesC generic client component.
When a client component is being used, a call to a top-level SID interface SHOULD be delayed when
the device is busy, rather than failing. Using one of the system arbiters can make the implementation
of this requirement easier to accomplish.

For example:

generic configuration SensirionSht11C() {
provides interface Read<uint16_t> as Temperature;
provides interface ReadStream<uint16_t> as TemperatureStream;
provides interface DeviceMetadata as TemperatureDeviceMetadata;

provides interface Read<uint16_t> as Humidity;
provides interface ReadStream<uint16_t> as HumidityStream;
provides interface DeviceMetadata as HumidityDeviceMetadata;

}
implementation {
// connect to the ADC HIL, GPIO HAL, or sensor’s HAL

}

When a HIL component is being used, the sensor MUST initialize itself, either by including the
MainC component and wiring to the SoftwareInit interface, or by allowing a lower-level component
(like an ADC) to initialize itself.

2

In addition, the HIL sensor driver MUST start the physical sensor automatically. For sensors without
a constant power draw, the sensor MAY be started once at boot time by wiring to the MainC.Boot
interface. Sensors that draw appreciable power MUST be started in response to a call to one of the
top-level SID interfaces, and stopped some time after that call completes. Using one of the power-
management components described in [TEP115] can make this implementation easier.

Generally, simple types are made up of octets. However, sensor values often have levels of precision
besides a multiple of 8. To account for such cases, each device MUST specify the precision of each one
of its interfaces by providing the DeviceMetadata interface:

interface DeviceMetadata {
command uint8_t getSignificantBits();

}

The name of the instance of DeviceMetadata MUST clearly indicate which interface it corresponds
to.

The getSignificantBits() call MUST return the number of significant bits in the reading. For example,
a sensor reading taken from a 12-bit ADC MUST return the value “12”.

Sensor driver components SHOULD be named according to the make and model of the sensing
device being presented. Using specific names gives the developer the option to bind to a particular
sensor, which provides compile-time detection of missing sensors. However, wrapper components using
“common”names MAY also be provided by the driver author, to support application developers who are
only concerned with the particular type of the sensor and not its make, model, or detailed performance
characteristics.

A “common” naming layer atop a HIL might look like this:

generic configuration TemperatureC() {
provides interface Read<uint16_t>;
provides interface ReadStream<uint16_t>;
provides interface DeviceMetadata;

}
implementation {
components new SensirionSht11C();
Read = SensirionSht11C.Temperature;
ReadStream = SensirionSht11C.TemperatureStream;
DeviceMetadata = SensirionSht11C.TemperatureDeviceMetadata;

}

generic configuration HumidityC() {
provides interface Read<uint16_t>;
provides interface ReadStream<uint16_t>;
provides interface DeviceMetadata;

}
implementation {
components new SensirionSht11C();
Read = SensirionSht11C.Humidity;
ReadStream = SensirionSht11C.HumidityStream;
DeviceMetadata = SensirionSht11C.HumidityDeviceMetadata;

}

3. Sensor HAL Components

Sensors with a richer interface than would be supported by the SID interfaces MAY provide a HAL
component in addition to a HIL component.

3

A sensor HAL component MUST provide:

• A SID-based interface or a specific hardware-dependent interface with commands for sampling
and controlling the sensor device.

A sensor HAL component MAY need to provide:

• A StdControl or SplitControl interface for manual power management by the user, following the
conventions described in [TEP115].

• A Resource[] interface for requesting access to the device and possibly performing automated
power management.

• Any other interfaces needed to control the device.

For example:

configuration SensirionSht11DeviceC {
provides interface Resource[uint8_t client];
provides interface SensirionSht11[uint8_t client];

}
implementation {
// connect to the sensor’s platform-dependent HPL here

}

4. Directory Organization Guidelines

Because the same physical sensor can be attached to TinyOS platforms in many different ways, the
organization of sensor drivers SHOULD reflect the distinction between sensor and sensor interconnect.

Sensor components commonly exist at three levels: platform-independent, sensorboard-dependent,
and platform-dependent. Factoring a sensor driver into these three pieces allows for greater code reuse
when the same sensor is attached to different sensorboards or platforms.

Platform-independent sensor driver components for a particular sensor, like protocol logic, when
in the core TinyOS 2.x source tree, SHOULD be placed into “tos/chips/<sensor>”, where <sensor>
reflects the make and model of the sensor device being supported. When not a part of the core source
tree, this directory can be placed anywhere as long as the nesC compiler recieves a -I directive pointing to
the sensor’s directory. However, not all sensors have a sufficiently large amount of platform-independent
logic to justify a separate“chips”directory. Sensor chips are more likely to be digital sensors than analog
sensors, for example.

A sensor board is a collection of sensor components with a fixed name, intended for attachment to
multiple platforms. Each sensor board MUST have its own directory named <sensorboard>. Default
TinyOS 2.x sensor boards are placed in“tos/sensorboards/<sensorboard>”, but sensor board directories
can be placed anywhere as long as the nesC compiler receives a -I directive pointing to the sensor board’s
directory.

Both sensors and sensor boards MUST have unique names. Case is significant, but two sensor boards
MUST differ in more than case. This is necessary to support platforms where filename case differences
are not significant.

Each sensor board directory MUST contain a .sensor file. This file is a perl script which gets executed
as part of the ncc nesC compiler frontend. It can add or modify any compile-time options necessary for
a particular sensor board. It MAY modify the following perl variables, and MUST NOT modify any
others:

• @new args: This is the array of arguments which will be passed to nescc. For instance, you might
add an include directive to @new args with push @new args, -Isomedir. This could be used to
include subdirectories.

4

• @commonboards: This can be set to a list of sensor board names which will be added to the
include path list. These sensor boards MUST be in tinyos-2.x/tos/sensorboards.

If the sensor board wishes to define any C types or constants, it SHOULD place these in a file named
<sensorboard>.h in the sensor board’s directory.

A sensor board directory MAY contain a “chips” directory, with subdirectories for each of the sen-
sors connected to the sensor board. If a “chips” subdirectory is used, sensorboard-dependent driver
components needed to connect platform-independent logic to a particular attachment for that sensor
SHOULD be placed in “<sensorboard>/chips/<sensor>”.

Components needed to connect the platform-independent sensor driver components or sensorboard-
dependent components to the hardware resources available on a particular platform SHOULD be placed
in “tos/<platform>/chips/<sensor>”. In addition, components for a sensor that only exists on a
particular platform SHOULD be placed in a such a directory.

Sensors that exist as part of a larger chip, like a MCU internal voltage sensor, SHOULD be placed
in a subdirectory of the chip’s directory. “tos/<chip>/sensors/<sensor>”.

The .platform and .sensor files need to include enough -I directives to locate all of the necessary
components needed to support the sensors on a platform and/or sensorboard.

All of these directory organization guidelines are only intended for code that will enter the core
source tree. In general, sensor components can be placed anywhere as long as the nesC compiler
receives enough -I directives to locate all of the necessary pieces.

5. Authors’ Addresses

David Gay
2150 Shattuck Ave, Suite 1300
Intel Research
Berkeley, CA 94704

phone - +1 510 495 3055

email - david.e.gay@intel.com

Wei Hong
Arch Rock
657 Mission St. Suite 600
San Francisco, CA 94105

email - wei.hong@gmail.com

Philip Levis
358 Gates Hall
Computer Science Department
353 Serra Mall
Stanford, CA 94305

phone - +1 650 725 9046

email - pal@cs.stanford.edu

5

mailto:david.e.gay@intel.com
mailto:wei.hong@gmail.com
mailto:pal@cs.stanford.edu

Joe Polastre
467 Soda Hall
UC Berkeley
Berkeley, CA 94720

email - polastre@cs.berkeley.edu

Gilman Tolle
Arch Rock
657 Mission St. Suite 600
San Francisco, CA 94105

email - gtolle@archrock.com

6. Citations

Appendix A: Sensor Driver Examples

1. Analog ADC-Connected Sensor

The Analog sensor requires two components

• a component to present the sensor itself (HamamatsuS1087ParC)

• a component to select the appropriate hardware resources, such as ADC port 4, reference voltage
1.5V, and a slow sample and hold time (HamamatsuS1087ParP).

The AdcReadClientC component and underlying machinery handles all of the arbitration and access
to the ADC.

tos/platforms/telosa/chips/s1087/HamamatsuS1087ParC.nc

generic configuration HamamatsuS1087ParC() {
provides interface Read<uint16_t>;
provides interface ReadStream<uint16_t>;
provides interface DeviceMetadata;

}
implementation {
components new AdcReadClientC();
Read = AdcReadClientC;

components new AdcReadStreamClientC();
ReadStream = AdcReadStreamClientC;

components HamamatsuS1087ParP;

[TEP2] TEP 2: Hardware Abstraction Architecture
[TEP114] TEP 114: SIDs: Source and Sink Indepedent Drivers
[TEP115] TEP 115: Power Management of Non-Virtualized Devices

6

mailto:polastre@cs.berkeley.edu
mailto:gtolle@archrock.com

DeviceMetadata = HamamatsuS1087ParP;
AdcReadClientC.AdcConfigure -> HamamatsuS1087ParP;
AdcReadStreamClientC.AdcConfigure -> HamamatsuS1087ParP;

}

tos/platforms/telosa/chips/s1087/HamamatsuS1087ParP.nc

#include "Msp430Adc12.h"

module HamamatsuS1087ParP {
provides interface AdcConfigure<const msp430adc12_channel_config_t*>;
provides interface DeviceMetadata;

}
implementation {

msp430adc12_channel_config_t config = {
inch: INPUT_CHANNEL_A4,
sref: REFERENCE_VREFplus_AVss,
ref2_5v: REFVOLT_LEVEL_1_5,
adc12ssel: SHT_SOURCE_ACLK,
adc12div: SHT_CLOCK_DIV_1,
sht: SAMPLE_HOLD_4_CYCLES,
sampcon_ssel: SAMPCON_SOURCE_SMCLK,
sampcon_id: SAMPCON_CLOCK_DIV_1

};

async command const msp430adc12_channel_config_t* AdcConfig-
ure.getConfiguration() {

return &config;
}

command uint8_t DeviceMetadata.getSignificantBits() { return 12; }
}

2. Binary Pin-Connected Sensor

The Binary sensor gets a bit more complex, because it has three components:

• one to present the sensor (UserButtonC)

• one to execute the driver logic (UserButtonLogicP)

• one to select the appropriate hardware resources, such as MSP430 Port 27 (HplUserButtonC).

Note that the presentation of this sensor is not arbitrated because none of the operations are split-
phase.

tos/platforms/telosa/UserButtonC.nc

configuration UserButtonC {
provides interface Get<bool>;
provides interface Notify<bool>;
provides interface DeviceMetadata;

}

7

implementation {

components UserButtonLogicP;
Get = UserButtonLogicP;
Notify = UserButtonLogicP;
DeviceMetadata = UserButtonLogicP;

components HplUserButtonC;
UserButtonLogicP.GpioInterrupt -> HplUserButtonC.GpioInterrupt;
UserButtonLogicP.GeneralIO -> HplUserButtonC.GeneralIO;

}

tos/platforms/telosa/UserButtonLogicP.nc

module UserButtonLogicP {
provides interface Get<bool>;
provides interface Notify<bool>;
provides interface DeviceMetadata;

uses interface GeneralIO;
uses interface GpioInterrupt;

}
implementation {
norace bool m_pinHigh;

task void sendEvent();

command bool Get.get() { return call GeneralIO.get(); }

command error_t Notify.enable() {
call GeneralIO.makeInput();

if (call GeneralIO.get()) {
m_pinHigh = TRUE;
return call GpioInterrupt.enableFallingEdge();

} else {
m_pinHigh = FALSE;
return call GpioInterrupt.enableRisingEdge();

}
}

command error_t Notify.disable() {
return call GpioInterrupt.disable();

}

async event void GpioInterrupt.fired() {
call GpioInterrupt.disable();

m_pinHigh = !m_pinHigh;

post sendEvent();
}

8

task void sendEvent() {
bool pinHigh;
pinHigh = m_pinHigh;

signal Notify.notify(pinHigh);

if (pinHigh) {
call GpioInterrupt.enableFallingEdge();

} else {
call GpioInterrupt.enableRisingEdge();

}
}

command uint8_t DeviceMetadata.getSignificantBits() { return 1; }
}

tos/platforms/telosa/HplUserButtonC.nc

configuration HplUserButtonC {
provides interface GeneralIO;
provides interface GpioInterrupt;

}
implementation {

components HplMsp430GeneralIOC as GeneralIOC;

components new Msp430GpioC() as UserButtonC;
UserButtonC -> GeneralIOC.Port27;
GeneralIO = UserButtonC;

components HplMsp430InterruptC as InterruptC;

components new Msp430InterruptC() as InterruptUserButtonC;
InterruptUserButtonC.HplInterrupt -> InterruptC.Port27;
GpioInterrupt = InterruptUserButtonC.Interrupt;

}

3. Digital Bus-Connected Sensor

The Digital sensor is the most complex out of the set, and includes six components:

• one to present the sensor (SensirionSht11C)

• one to request arbitrated access and to transform the sensor HAL into the sensor HIL (Sensirion-
Sht11P)

• one to present the sensor HAL (HalSensirionSht11C)

• one to perform the driver logic needed to support the HAL, which twiddles pins according to a
sensor-specific protocol (SensirionSht11LogicP).

• one to select the appropriate hardware resources, such as the clock, data, and power pins, and to
provide an arbiter for the sensor (HplSensirionSht11C).

9

• one to perform the power control logic needed to support the power manager associated with the
arbiter (HplSensirionSht11P).

This bus-connected sensor is overly complex because it does not rely on a shared framework of
bus manipulation components. A sensor built on top of the I2C or SPI bus would likely require fewer
components.

tos/platforms/telosa/chips/sht11/SensirionSht11C.nc

generic configuration SensirionSht11C() {
provides interface Read<uint16_t> as Temperature;
provides interface DeviceMetadata as TemperatureDeviceMetadata;
provides interface Read<uint16_t> as Humidity;
provides interface DeviceMetadata as HumidityDeviceMetadata;

}
implementation {
components new SensirionSht11ReaderP();

Temperature = SensirionSht11ReaderP.Temperature;
TemperatureDeviceMetadata = Sensirion-

Sht11ReaderP.TemperatureDeviceMetadata;
Humidity = SensirionSht11ReaderP.Humidity;
HumidityDeviceMetadata = SensirionSht11ReaderP.HumidityDeviceMetadata;

components HalSensirionSht11C;

enum { TEMP_KEY = unique("Sht11.Resource") };
enum { HUM_KEY = unique("Sht11.Resource") };

SensirionSht11ReaderP.TempResource -
> HalSensirionSht11C.Resource[TEMP_KEY];
SensirionSht11ReaderP.Sht11Temp -

> HalSensirionSht11C.SensirionSht11[TEMP_KEY];
SensirionSht11ReaderP.HumResource -

> HalSensirionSht11C.Resource[HUM_KEY];
SensirionSht11ReaderP.Sht11Hum -

> HalSensirionSht11C.SensirionSht11[HUM_KEY];
}

tos/chips/sht11/SensirionSht11ReaderP.nc

generic module SensirionSht11ReaderP() {
provides interface Read<uint16_t> as Temperature;
provides interface DeviceMetadata as TemperatureDeviceMetadata;
provides interface Read<uint16_t> as Humidity;
provides interface DeviceMetadata as HumidityDeviceMetadata;

uses interface Resource as TempResource;
uses interface Resource as HumResource;
uses interface SensirionSht11 as Sht11Temp;
uses interface SensirionSht11 as Sht11Hum;

}
implementation {
command error_t Temperature.read() {

10

call TempResource.request();
return SUCCESS;

}

event void TempResource.granted() {
error_t result;
if ((result = call Sht11Temp.measureTemperature()) != SUCCESS) {
call TempResource.release();
signal Temperature.readDone(result, 0);

}
}

event void Sht11Temp.measureTemperatureDone(error_t re-
sult, uint16_t val) {

call TempResource.release();
signal Temperature.readDone(result, val);

}

command uint8_t TemperatureDeviceMetadata.getSignificantBits() { re-
turn 14; }

command error_t Humidity.read() {
call HumResource.request();
return SUCCESS;

}

event void HumResource.granted() {
error_t result;
if ((result = call Sht11Hum.measureHumidity()) != SUCCESS) {
call HumResource.release();
signal Humidity.readDone(result, 0);

}
}

event void Sht11Hum.measureHumidityDone(error_t result, uint16_t val) {
call HumResource.release();
signal Humidity.readDone(result, val);

}

command uint8_t HumidityDeviceMetadata.getSignificantBits() { re-
turn 12; }

event void Sht11Temp.resetDone(error_t result) { }
event void Sht11Temp.measureHumidityDone(error_t re-

sult, uint16_t val) { }
event void Sht11Temp.readStatusRegDone(error_t result, uint8_t val) { }
event void Sht11Temp.writeStatusRegDone(error_t result) { }

event void Sht11Hum.resetDone(error_t result) { }
event void Sht11Hum.measureTemperatureDone(error_t re-

sult, uint16_t val) { }
event void Sht11Hum.readStatusRegDone(error_t result, uint8_t val) { }
event void Sht11Hum.writeStatusRegDone(error_t result) { }

11

default event void Temperature.readDone(error_t re-
sult, uint16_t val) { }
default event void Humidity.readDone(error_t result, uint16_t val) { }

}

tos/platforms/telosa/chips/sht11/HalSensirionSht11C.nc

configuration HalSensirionSht11C {
provides interface Resource[uint8_t client];
provides interface SensirionSht11[uint8_t client];

}
implementation {
components new SensirionSht11LogicP();
SensirionSht11 = SensirionSht11LogicP;

components HplSensirionSht11C;
Resource = HplSensirionSht11C.Resource;
SensirionSht11LogicP.DATA -> HplSensirionSht11C.DATA;
SensirionSht11LogicP.CLOCK -> HplSensirionSht11C.SCK;
SensirionSht11LogicP.InterruptDATA -> HplSensirionSht11C.InterruptDATA;

components new TimerMilliC();
SensirionSht11LogicP.Timer -> TimerMilliC;

components LedsC;
SensirionSht11LogicP.Leds -> LedsC;

}

tos/chips/sht11/SensirionSht11LogicP.nc

generic module SensirionSht11LogicP() {
provides interface SensirionSht11[uint8_t client];

uses interface GeneralIO as DATA;
uses interface GeneralIO as CLOCK;
uses interface GpioInterrupt as InterruptDATA;

uses interface Timer<TMilli>;

uses interface Leds;
}
implementation {

... bus protocol details omitted for brevity ...

}

tos/platforms/telosa/chips/sht11/HplSensirionSht11C.nc

configuration HplSensirionSht11C {
provides interface Resource[uint8_t id];
provides interface GeneralIO as DATA;
provides interface GeneralIO as SCK;

12

provides interface GpioInterrupt as InterruptDATA;
}
implementation {
components HplMsp430GeneralIOC;

components new Msp430GpioC() as DATAM;
DATAM -> HplMsp430GeneralIOC.Port15;
DATA = DATAM;

components new Msp430GpioC() as SCKM;
SCKM -> HplMsp430GeneralIOC.Port16;
SCK = SCKM;

components new Msp430GpioC() as PWRM;
PWRM -> HplMsp430GeneralIOC.Port17;

components HplSensirionSht11P;
HplSensirionSht11P.PWR -> PWRM;
HplSensirionSht11P.DATA -> DATAM;
HplSensirionSht11P.SCK -> SCKM;

components new TimerMilliC();
HplSensirionSht11P.Timer -> TimerMilliC;

components HplMsp430InterruptC;
components new Msp430InterruptC() as InterruptDATAC;
InterruptDATAC.HplInterrupt -> HplMsp430InterruptC.Port15;
InterruptDATA = InterruptDATAC.Interrupt;

components new FcfsArbiterC("Sht11.Resource") as Arbiter;
Resource = Arbiter;

components new SplitControlPowerManagerC();
SplitControlPowerManagerC.SplitControl -> HplSensirionSht11P;
SplitControlPowerManagerC.ArbiterInit -> Arbiter.Init;
SplitControlPowerManagerC.ArbiterInfo -> Arbiter.ArbiterInfo;
SplitControlPowerManagerC.ResourceDefaultOwner -

> Arbiter.ResourceDefaultOwner;
}

tos/platforms/telosa/chips/sht11/HplSensirionSht11P.nc

module HplSensirionSht11P {
provides interface SplitControl;
uses interface Timer<TMilli>;
uses interface GeneralIO as PWR;
uses interface GeneralIO as DATA;
uses interface GeneralIO as SCK;

}
implementation {
task void stopTask();

command error_t SplitControl.start() {

13

call PWR.makeOutput();
call PWR.set();
call Timer.startOneShot(11);
return SUCCESS;

}

event void Timer.fired() {
signal SplitControl.startDone(SUCCESS);

}

command error_t SplitControl.stop() {
call SCK.makeInput();
call SCK.clr();
call DATA.makeInput();
call DATA.clr();
call PWR.clr();
post stopTask();
return SUCCESS;

}

task void stopTask() {
signal SplitControl.stopDone(SUCCESS);

}
}

14

	Abstract
	1. Principles
	2. Sensor HIL Components
	3. Sensor HAL Components
	4. Directory Organization Guidelines
	5. Authors' Addresses
	6. Citations
	Appendix A: Sensor Driver Examples
	1. Analog ADC-Connected Sensor
	2. Binary Pin-Connected Sensor
	3. Digital Bus-Connected Sensor

