
message t

TEP: 111
Group: Core Working Group
Type: Documentary
Status: Final
TinyOS-Version: 2.x
Author: Philip Levis

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo covers the TinyOS 2.x message buffer abstraction, message_t. It describes the message
buffer design considerations, how and where message_t is specified, and how data link layers should
access it. The major goal of message_t is to allow datagrams to be passed between different link layers
as a contiguous region of memory with zero copies.

1. Introduction

In TinyOS 1.x, a message buffer is a TOS_Msg. A buffer contains an active message (AM) packet as well
as packet metadata, such as timestamps, acknowledgement bits, and signal strength if the packet was
received. TOS_Msg is a fixed size structure whose size is defined by the maximum AM payload length
(the default is 29 bytes). Fixed sized buffers allows TinyOS 1.x to have zero-copy semantics: when a
component receives a buffer, rather than copy out the contents it can return a pointer to a new buffer
for the underlying layer to use for the next received packet.

One issue that arises is what defines the TOS_Msg structure, as different link layers may require
different layouts. For example, 802.15.4 radio hardware (such as the CC2420, used in the Telos and
micaZ platforms) may require 802.15.4 headers, while a software stack built on top of byte radios (such
as the CC1000, used in the mica2 platform) can specify its own packet format. This means that TOS_Msg
may be different on different platforms.

The solution to this problem in TinyOS 1.x is for there to be a standard definition of TOS_Msg,
which a platform (e.g., the micaZ) can redefine to match its radio. For example, a mica2 mote uses the
standard definition, which is:

typedef struct TOS_Msg {
// The following fields are transmitted/received on the radio.
uint16_t addr;
uint8_t type;
uint8_t group;

1

uint8_t length;
int8_t data[TOSH_DATA_LENGTH];
uint16_t crc;

// The following fields are not actually transmitted or received
// on the radio! They are used for internal accounting only.
// The reason they are in this structure is that the AM interface
// requires them to be part of the TOS_Msg that is passed to
// send/receive operations.
uint16_t strength;
uint8_t ack;
uint16_t time;
uint8_t sendSecurityMode;
uint8_t receiveSecurityMode;

} TOS_Msg;

while on a mote with a CC2420 radio (e.g., micaZ), TOS_Msg is defined as:

typedef struct TOS_Msg {
// The following fields are transmitted/received on the radio.
uint8_t length;
uint8_t fcfhi;
uint8_t fcflo;
uint8_t dsn;
uint16_t destpan;
uint16_t addr;
uint8_t type;
uint8_t group;
int8_t data[TOSH_DATA_LENGTH];

// The following fields are not actually transmitted or received
// on the radio! They are used for internal accounting only.
// The reason they are in this structure is that the AM interface
// requires them to be part of the TOS_Msg that is passed to
// send/receive operations.

uint8_t strength;
uint8_t lqi;
bool crc;
uint8_t ack;
uint16_t time;
} TOS_Msg;

There are two basic problems with this approach. First, exposing all of the link layer fields leads
components to directly access the packet structure. This introduces dependencies between higher level
components and the structure layout. For example, many network services built on top of data link
layers care whether sent packets are acknowledged. They therefore check the ack field of TOS_Msg. If a
link layer does not provide acknowledgements, it must still include the ack field and always set it to 0,
wasting a byte of RAM per buffer.

Second, this model does not easily support multiple data link layers. Radio chip implementations
assume that the fields they require are defined in the structure and directly access them. If a platform
has two different link layers (e.g., a CC1000 and a CC2420 radio), then a TOS_Msg needs to allocate
the right amount of space for both of their headers while allowing implementations to directly access
header fields. This is very difficult to do in C.

2

The data payload is especially problematic. Many components refer to this field, so it must be at a
fixed offset from the beginning of the structure. Depending on the underlying link layer, the header fields
preceding it might have different lengths, and packet-level radios often require packets to be contiguous
memory regions. Overall, these complexities make specifying the format of TOS_Msg very difficult.

TinyOS has traditionally used statically sized packet buffers, rather than more dynamic approaches,
such as scatter-gather I/O in UNIX sockets (see the man page for recv(2) for details). TinyOS 2.x
continues this approach.

2. message t

In TinyOS 2.x, the standard message buffer is message_t. The message t structure is defined in
tos/types/message.h:

typedef nx_struct message_t {
nx_uint8_t header[sizeof(message_header_t)];
nx_uint8_t data[TOSH_DATA_LENGTH];
nx_uint8_t footer[sizeof(message_footer_t)];
nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

This format keeps data at a fixed offset on a platform, which is important when passing a message
buffer between two different link layers. If the data payload were at different offsets for different link
layers, then passing a packet between two link layers would require a memmove(3) operation (essentially,
a copy). Unlike in TinyOS 1.x, where TOS Msg as explicitly an active messaging packet, message t is a
more general data-link buffer. In practice, most data-link layers in TinyOS 2.x provide active messaging,
but it is possible for a non-AM stack to share message t with AM stacks.

The header, footer, and metadata formats are all opaque. Source code cannot access fields directly.
Instead, data-link layers provide access to fields through nesC interfaces. Section 3 discusses this in
greater depth.

Every link layer defines its header, footer, and metadata structures. These structures MUST be
external structs (nx_struct), and all of their fields MUST be external types (nx_*), for two reasons.
First, external types ensure cross-platform compatibility1. Second, it forces structures to be aligned on
byte boundaries, circumventing issues with the alignment of packet buffers and field offsets within them.
Metadata fields must be nx structs for when complete packets are forwarded to the serial port in order
to log traffic. For example, the CC1000 radio implementation defines its structures in CC1000Msg.h:

typedef nx_struct cc1000_header {
nx_am_addr_t addr;
nx_uint8_t length;
nx_am_group_t group;
nx_am_id_t type;

} cc1000_header_t;

typedef nx_struct cc1000_footer {
nxle_uint16_t crc;

} cc1000_footer_t;

typedef nx_struct cc1000_metadata {
nx_uint16_t strength;
nx_uint8_t ack;
nx_uint16_t time;
nx_uint8_t sendSecurityMode;
nx_uint8_t receiveSecurityMode;

} cc1000_metadata_t;

3

Each link layer defines its structures, but a platform is responsible for defining message_header_t,
message_footer_t, and message_metadata_t. This is because a platform may have multiple link
layers, and so only it can resolve which structures are needed. These definitions MUST be in a file in a
platform directory named platform_message.h. The mica2 platform, for example, has two data link
layers: the CC1000 radio and the TinyOS serial stack2. The serial packet format does not have a footer
or metadata section. The platform_message.h of the mica2 looks like this:

typedef union message_header {
cc1000_header_t cc1k;
serial_header_t serial;

} message_header_t;

typedef union message_footer {
cc1000_footer_t cc1k;

} message_footer_t;

typedef union message_metadata {
cc1000_metadata cc1k;

} message_metadata_t;

For a more complex example, consider a fictional platform named ’megamica’ that has both a
CC1000 and a CC2420 radio. Its platform_message.h would look like this:

typedef union mega_mica_header {
cc1000_header_t cc1k;
cc2420_header_t cc2420;
serial_header_t serial;

} message_header_t;

typedef union mega_mica_footer {
cc1000_footer_t cc1k;
cc2420_footer_t cc2420;

} message_footer_t;

typedef union mega_mica_metadata {
cc1000_metadata_t cc1k;
cc2420_metadata_t cc2420;

} message__metadata_t;

If a platform has more than one link layer, it SHOULD define each of the message t fields to be
a union of the underlying link layer structures. This ensures that enough space is allocated for all
underlying link layers.

3. The message t fields

TinyOS 2.x components treat packets as abstract data types (ADTs), rather than C structures, obtain-
ing all of the traditional benefits of this approach. First and foremost, clients of a packet layer do not
depend on particular field names or locations, allowing the implementations to choose packet formats
and make a variety of optimizations.

Components above the basic data-link layer MUST always access packet fields through interfaces. A
component that introduces new packet fields SHOULD provide an interface to those that are of interest
to other components. These interfaces SHOULD take the form of get/set operations that take and
return values, rather than offsts into the structure.

4

For example, active messages have an interface named AMPacket which provides access commands
to AM fields. In TinyOS 1.x, a component would directly access TOS_Msg.addr; in TinyOS 2.x, a
component calls AMPacket.getAddress(msg). The most basic of these interfaces is Packet, which
provides access to a packet payload. TEP 116 describes common TinyOS packet ADT interfaces3.

Link layer components MAY access packet fields differently than other components, as they are
aware of the actual packet format. They can therefore implement the interfaces that provide access to
the fields for other components.

3.1 Headers

The message t header field is an array of bytes whose size is the size of a platform’s union of data-link
headers. Because radio stacks often prefer packets to be stored contiguously, the layout of a packet in
memory does not necessarily reflect the layout of its nesC structure.

A packet header MAY start somewhere besides the beginning of the message t. For example, consider
the Telos platform:

typedef union message_header {
cc2420_header_t cc2420;
serial_header_t serial;

} message_header_t;

The CC2420 header is 11 bytes long, while the serial header is 5 bytes long. The serial header ends
at the beginning of the data payload, and so six padding bytes precede it. This figure shows the layout
of message t, a 12-byte CC2420 packet, and a 12-byte serial packet on the Telos platform:

11 bytes TOSH_DATA_LENGTH 7 bytes
+-----------+-----------------------------+-------+

message_t | header | data | meta |
+-----------+-----------------------------+-------+

+-----------+------------+ +-------+
CC2420 | header | data | | meta |

+-----------+------------+ +-------+

+-----+------------+
Serial | hdr | data |

+-----+------------+

Neither the CC2420 nor the serial stack has packet footers, and the serial stack does not have any
metadata.

The packet for a link layer does not necessarily start at the beginning of the message t. Instead,
it starts at a negative offset from the data field. When a link layer component needs to read or write
protocol header fields, it MUST compute the location of the header as a negative offset from the data
field. For example, the serial stack header has active message fields, such as the AM type. The command
that returns the AM type, AMPacket.type(), looks like this:

serial_header_t* getHeader(message_t* msg) {
return (serial_header_t*)(msg->data - sizeof(serial_header_t));

}
command am_id_t AMPacket.type(message_t* msg) {
serial_header_t* hdr = getheader(msg);
return hdr->type;

}

Because calculating the negative offset is a little bit unwieldy, the serial stack uses the internal helper
function getHeader(). Many single-hop stacks follow this approach, as it is very likely that nesC will

5

inline the function, eliminating the possible overhead. In most cases, the C compiler also compiles the
call into a simple memory offset load.

The following code is incorrect, as it directly casts the header field. It is an example of what
components MUST NOT do:

serial_header_t* getHeader(message_t* msg) {
return (serial_header_t*)(msg->header);

}

In the case of Telos, for example, this would result in a packet layout that looks like this:

11 bytes TOSH_DATA_LENGTH 7 bytes
+-----------+-----------------------------+-------+

message_t | header | data | meta |
+-----------+-----------------------------+-------+

+-----+ +------------+
Serial | hdr | | data |

+-----+ +------------+

3.2 Data

The data field of message t stores the single-hop packet payload. It is TOSH DATA LENGTH bytes
long. The default size is 28 bytes. A TinyOS application can redefine TOSH DATA LENGTH at
compile time with a command-line option to ncc: -DTOSH_DATA_LENGTH=x. Because this value can be
reconfigured, it is possible that two different versions of an application can have different MTU sizes.
If a packet layer receives a packet whose payload size is longer than TOSH DATA LENGTH, it MUST
discard the packet. As headers are right justified to the beginning of the data payload, the data payloads
of all link layers on a platform start at the same fixed offset from the beginning of the message buffer.

3.3 Footer

The message footer t field ensures that message t has enough space to store the footers for all underlying
link layers when there are MTU-sized packets. Like headers, footers are not necessarily stored where
the C structs indicate they are: instead, their placement is implementation dependent. A single-hop
layer MAY store the footer contiguously with the data region. For short packets, this can mean that
the footer will actually be stored in the data field.

3.4 Metadata

The metadata field of message t stores data that a single-hop stack uses or collects does not transmit.
This mechanism allows packet layers to store per-packet information such as RSSI or timestamps. For
example, this is the CC2420 metadata structure:

typedef nx_struct cc2420_metadata_t {
nx_uint8_t tx_power;
nx_uint8_t rssi;
nx_uint8_t lqi;
nx_bool crc;
nx_bool ack;
nx_uint16_t time;

} cc2420_metadata_t;

6

3.5 Variable Sized Structures

The message t structure is optimized for packets with fixed-size headers and footers. Variable-sized
footers are generally easy to implement. Variable-sized headers are a bit more difficult. There are three
general approaches that can be used.

If the underlying link hardware is byte-based, the header can just be stored at the beginning of the
message t, giving it a known offset. There may be padding between the header and the data region,
but assuming a byte-based send path this merely requires adjusting the index.

If the underlying link hardware is packet-based, then the protocol stack can either include metadata
(e.g., in the metadata structure) stating where the header begins or it can place the header at a fixed
position and use memmove(3) on reception and transmit. In this latter case, on reception the packet is
continguously read into the message t beginning at the offset of the header structure. Once the packet is
completely received, the header can be decoded, its length calculated, and the data region of the packet
can be moved to the data field. On transmission, the opposite occurs: the data region (and footer if
need be) are moved to be contiguous with the header. Note that on completion of transmission, they
need to be moved back. Alternatively, the radio stack can institute a single copy at the botttom layer.

4. Implementation

The definition of message t can be found in tinyos-2.x/tos/types/message.h.
The definition of the CC2420 message format can be found in tinyos-2.x/tos/chips/cc2420/CC2420.h.
The defintion of the CC1000 message format can be found in tinyos-2.x/tos/chips/cc1000/CC1000Msg.h.
The definition of the standard serial stack packet format can be found in tinyos-2.x/tos/lib/serial/Serial.h
The definition of the telos family packet format can be found in tinyos-2.x/tos/platform/telosa/platform_message.h

and the micaz format can be found in tinyos-2.x/tos/platforms/micaz/platform_message.h.

5. Author’s Address

Philip Levis
358 Gates Hall
Computer Science Laboratory
Stanford University
Stanford, CA 94305

phone - +1 650 725 9046
email - pal@cs.stanford.edu

6. Citations

1 nesC: A Programming Language for Deeply Embedded Networks.
2 TEP 113: Serial Communication.
3 TEP 116: Packet Protocols.

7

mailto:pal@cs.stanford.edu
http://nescc.sourceforge.net

	Abstract
	1. Introduction
	2. message_t
	3. The message_t fields
	3.1 Headers
	3.2 Data
	3.3 Footer
	3.4 Metadata
	3.5 Variable Sized Structures

	4. Implementation
	5. Author's Address
	6. Citations

