
Power Management of Non-Virtualised Devices

TEP: 115
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: 2.x
Author: Kevin Klues, Vlado Handziski, Jan-Hinrich Hauer, Phil Levis
Draft-Created: 11-Jan-2006
Draft-Version: 1.7
Draft-Modified: 2007-02-21
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

This memo documents how TinyOS 2.x manages the power state of physical (not virtualised) abstrac-
tions.

1. Introduction

TinyOS platforms have limited energy. A unified power management strategy for all devices and
peripherpals is not feasible, as they vary significantly in warm-up times, power profiles, and operation
latencies. While some devices, such as microcontrollers, can efficiently calculate their lowest possible
power state very quickly, others, such as sensors with warm-up times, require external knowledge to do
so.

In TinyOS 1.x, an application is responsible for all power management. Low-level subsystems, such
as an SPI bus, are explicitly powered on and off by higher level abstractions. This approach of deep
calls to StdControl.start and StdControl.stop introduces strange behaviors and can get in the way of
power conservation. Turning off the radio on the Telos platform, for example, turns off the SPI bus
and therefore prevents the flash driver from working. Additionally, the microcontroller stays in a higher
power state for the SPI bus even when it is inactive.

TinyOS 2.x defines two classes of devices for power-management: microcontrollers and peripherals.
TEP 112 documents how TinyOS 2.x manages the power state of a microcontroller [TEP112]. Unlike
microcontrollers, which typically have several power states, peripheral devices typically have two distinct
states, on and off. This TEP is dedicated to documenting how TinyOS 2.x controls the power state of
peripheral devices.

1



The term “peripheral device” refers to any hardware device which arbitrates access with the mecha-
nisms described in [TEP108] . These devices are not virtualised in the sense that access to them must
be explicitly requested and released by their users.

2. Power Management Models

There are two different models to managing the power state of a peripheral in TinyOS: explicit power
management and implicit power management.

The explicit model provides a means for a single client to manually control the power state of a
dedicated physical device (as defined by [TEP108]). Whenever this client tells the device to power up
or down it does so without delay (albeit that caused by hardware). This model can be particularly
useful when the control information driving the selection of the proper power state of a device relies on
external logic contained in higher level components. The following section discusses the StdControl,
SplitControl, and AsyncStdControl interfaces used to perform power management of this type.

The implicit model, on the other hand, provides a means for allowing the power state of a device
to be controlled from within the driver for that device itself. Device drivers following this model are
never explicitly powered up or down by some external client, but rather require some internal policy
to be defined that decides exactly when their power states should be changed. This policy could exist
natively on the hardware of the physical device itself, or be implemented on top of some lower level
abstraction of a physical device adhering to the explicit power management model.

Shared devices (as defined by [TEP108]) can infer whether they should be on or off based on the
interfaces they provide to their clients. For example, when a client requests the ADC, this implies the
ADC should be on; if there are no requests of the ADC, this implies it should be off. Therefore shared
devices do not need to provide a power control interface. They can use an implicit power management
policy. Section 4.2 discusses this in more detail.:

/|\ /|\
| |

Data Interface Resource
| |

-----------------------------------------------------------------------
| Shared Device (implicitly power managed) |
-----------------------------------------------------------------------

/|\ /|\
| |

Data Interface Resource
| |
| ---------------------- |
| | Power Manager | |
| ---------------------- |
| /|\ /|\ |
| | | |
| StdControl ResourceDefaultOwner |
| | | |

--------------------------------- --------------------------------
| Dedicated Device | | Arbiter |
| (explicitly power managed) | | |
--------------------------------- --------------------------------

2



3. Explicit Power Management

Just as in TinyOS 1.x, TinyOS 2.x has StdControl and SplitControl interfaces in order to control
the on and off power states of explicitly managed peripherals. TinyOS 2.x also introduces a third
interface, AsyncStdControl. A component representing a hardware device that can be powered on and
off MUST provide one of these three interfaces. The selection of the right interface depends on the
latencies involved in changing between these two states as well as the nature of the code (sync or async)
executing any of the interfaces commands.

3.1 Power Management with StdControl

Whenever the powerup and powerdown times of a non-virtualised device are negligible, they SHOULD
provide the StdControl interface as defined below:

interface StdControl {
command error_t start();
command error_t stop();

}

Note

Powerup and powerdown times on the order of a few microseconds have traditionally been consid-
ered negligible, and can be waited on using one of the BusyWait interfaces described in [TEP102].
Powerup and powerdown times on the order of a few milliseconds, however, should not be ignored,
and MUST be hidden behind the use of the SplitControl interface described later on in this
section. A general rule of thumb is that if waiting for powerup takes more than one hundred
microseconds, SplitControl is probably more suitable.

An external component MUST call StdControl.start() to power a device on and StdControl.stop()
to power a device off. Calls to either command MUST return either SUCCESS or FAIL.

Upon the successful return of a call to StdControl.start(), a device MUST be completely powered
on, allowing calls to commands of other interfaces implemented by the device to succeed.

Upon the successful return of a call to StdControl.stop(), a device MUST be completely powered
down, and any calls to commands of other interfaces implemented by that device MUST return FAIL
or EOFF.

If a device is not able to complete the StdControl.start() or StdControl.stop() request for any
reason, it MUST return FAIL.

Based on these specifications, the following matrix has been created to describe the valid return
values for any call made through the StdControl interface in one of the devices valid power states:

Call Device On Device Off
StdControl.start() SUCCESS SUCCESS or FAIL
StdControl.stop() SUCCESS or FAIL SUCCESS
operation depends FAIL or EOFF

Devices providing this interface would do so as shown below:

configuration DeviceC {
provides {
interface Init;
interface StdControl; //For Power Management
....

}
}

3



3.2 Power Management with SplitControl

When a device’s powerup and powerdown times are non-negligible, the “SplitControl“ interface MUST
be used in place of the “StdControl“ interface. The definition of this interface can be seen below:

interface SplitControl {
command error_t start();
event void startDone(error_t error);
command error_t stop();
event void stopDone(error_t error);

}

An external component MUST call SplitControl.start() to power a device on and SplitCon-
trol.stop() to power a device off. Calls to either command return one of SUCCESS, FAIL, EBUSY,
or EALREADY. SUCCESS indicates that the device has now started chaning its power mode and it
will signal a corresponding completion event in the future. EBUSY indicates that the device is in the
midst of the other operation (e.g., it is starting when stop is called or stopping when start is called)
and will not issue an event. EALREADY indicates that the device is already in that state; the call
is erroneus and a completion event will not be signaled. FAIL indicates that the device’s power state
could not be changed. More explicitly:

Successful calls to SplitControl.start() MUST signal one of SplitControl.startDone(SUCCESS)
or SplitControl.startDone(FAIL).

Successful calls to SplitControl.stop() MUST signal one of SplitControl.stopDone(SUCCESS)
or SplitControl.stopDone(FAIL).

Upon signaling a SplitControl.startDone(SUCCESS), a device MUST be completely powered on,
and operation requests through calls to commands of other interfaces implemented by the device MAY
succeed.

Upon signalling a SplitControl.stopDone(SUCCESS), a device MUST be completely powered down,
and any subsequent calls to commands of other interfaces implemented by the device MUST return
EOFF or FAIL.

If a device is powered on and a successful call to SplitControl.stop() signals a SplitCon-
trol.stopDone(FAIL), the device MUST still be fully powered on, and operation requests through
calls to commands of other interfaces implemented by the device MAY succeed.

If a device is powered down and a successful call to SplitControl.start() signals a SplitCon-
trol.startDone(FAIL), the device MUST still be fully powered down, and operation requests through
calls to commands of other interfaces implemented by the device MUST return EOFF or FAIL.

If a device is not able to complete the SplitControl.start() or SplitControl.stop() requests
they MUST return FAIL.

Calls to either SplitControl.start() when the device is starting or SplitControl.stop() while
the device is stopping MUST return SUCCESS, with the anticipation that a corresponding SplitCon-
trol.startDone() or SplitControl.stopDone() will be signaled in the future.

Calls to SplitControl.start()‘ when the device is started or SplitControl.stop() while the de-
vice is stopped MUST return EALREADY, indicating that the device is already in that state. The
corresponding completion event (startDone for start or stopDone for stop) MUST NOT be signaled.

Calls to SplitControl.start()‘ when the device is stopping or SplitControl.stop() while the device
is starting MUST return EBUSY, indicating that the device is busy performing a differnet operation.
The correspodning completion event (startDone for start or stopDone for stop) MUST NOT be signaled.

Call Device On Device Off Starting Stopping
SplitControl.start() EALREADY SUCCESS FAIL SUCCESS EBUSY
SplitControl.stop() SUCCESS

FAIL
EALREADY EBUSY SUCCESS

operation depends FAIL EOFF
EOFF

FAIL EOFF
SUCCESS

FAIL EOFF

4



Devices providing this interface would do so as shown below:

configuration DeviceC {
provides {
interface Init;
interface SplitControl; \\ For Power Management
....

}
}

3.3 Power Management with AsyncStdControl

The commands and the events of the “StdControl“ and the “SplitControl“ interfaces are synchronous
and can not be called from within asynchronous code (such as interrupt service routines, etc.). For the
cases when the power state of the device needs to be controlled from within asynchronous code, the
“AsyncStdControl“ interface MUST be used in place of the “StdControl“ interface. The definition of
this interface can be seen below:

interface AsyncStdControl {
async command error_t start();
async command error_t stop();

}

All of the semantics that hold true for devices providing the StdControl interface also hold for this
interface.

Devices providing this interface would do so as shown below:

configuration DeviceC {
provides {
interface Init;
interface AsyncStdControl; \\ For Power Management
....

}
}

Note

The AsyncStdControl interface should be provided whenever it might be necessary to allow a
device to be powered on or off while running in async context. If it is anticipated that a device
will not (or more likely should not) be powered on or off while in asynchronous context, then
the StdControl interface SHOULD be provided instead. Components that wish to power the
device on or off from within async context would then be required to post a task before doing so.
In practice, AsyncStdControl is provided by low-level hardware resources, while StdControl is
provided by higher level services built on top of these resources.

4. Implicit Power Management

While explicit power management provides the mechanism for changing power states, it does not specify
a policy. This does not represent a large problem for the simple case of dedicated devices, but can become
crucial for non-trivial cases involving complex interdependencies between devices controlled by multiple
clients.

For example, if component A is a client of both component B and component C, what happens
with B and C if StdControl.stop() is called on component A ? Should components B and C also be

5



stopped? What about the reverse case where both B and C are clients of the single shared component,
A? If devices B and C are shut off, should A be shut off as well? How can one decide when it is
appropriate to cascade such powerup and powerdown requests?

The complex nature of the problem is evident from the number of unexpected behaviors in TinyOS
1.x involving StdControl. On several platforms, one of the SPI buses is shared between the radio
and the flash device. On some of them, issuing StdControl.stop() on the radio results in a series of
cascaded calls that result in SPI bus becoming disabled, rendering the communication with the flash
impossible. Of course, the right policy would involve tracking the clients of the SPI bus and powering
it off only once both the radio and the flash devices were no longer using it. Conversely, the SPI bus
should be powered on whenever there is at least one active client.

The selection of the right power management policy to use is a complex task that depends on the
nature of the devices in use, their interdependency, as well as on any specific application requirements.
For cases when some of these features are known a-priori or are restricted in some sense, it is preferable
that the system provide architectural support for enforcing a meaningful default power-management
policy instead of passing that task on to the application programmer to be solved on a case-by-case
basis.

4.1. Power Management Policies

Just as generic arbiters are offered in TinyOS 2.x to provide the arbitration functionality required by
shared resources, generic power management policies are also offered to allow the power management
of non-virtualised devices to be automatically control.

Through the use of the arbiter components described in [TEP108], device drivers implemented
as shared resources provide the type of restricted resource interdependency where default power-
management policies can be offered. The shared resource class defined in Section 2.3 of [TEP108],
provides a well defined component interdependency, where a single resource is shared among multiple
clients. This relationship enables the definition of default power-management policies that can be used
to automatically power the resource on and off.

The Power Manager component implementing one of these polices acts as the default owner of the
shared resource device and interacts with it through the use of the ResourceDefaultOwner interface:

interface ResourceDefaultOwner {
async event void granted();
async command error_t release();
async command bool isOwner();
async event void requested();
async event void immediateRequested();

}

Acting as the default owner, the Power Manager waits for the ResourceDefaultOwner.granted()
event to be signaled in order to gain ownership over the resource device.

Once it owns the device, the Power Manager is free to execute its power-management policy using the
StdControl-like interface provided by the underlying resource. Different power managers can implement
different policies. In the simplest case, this would involve an immediate power-down via one of the
stop() commands. When the power-state transition involves non-negligible costs in terms of wake-up
latency or power consumption, the PowerManager might revert to a more intelligent strategy that tries
to reduce these effects. As pointed out in the introduction, one such strategy might involve the use of
a timer to defer the power-down of the resource to some later point in time, giving any resource clients
a window of opportunity to put in requests before the device is fully shut down.

Regardless of the power management policy in use, the Power Manager remains owner of the resource
as long as the resource is not requested by one of its clients. Whenever a client puts in a request, the
Power Manager will receive a ResourceDefaultOwner.requested() event (or immediateRequested()
event) from the arbiter it is associated with. Upon receiving this event, the Power Manager MUST
power up the resource through the StdControl-like interface provided by the lower level abstraction of

6



the physical device. The Power Manager SHOULD release the ownership of the resource (using the
ResourceDefaultOwner.release() command) but MUST wait until after the resource has been fully
powered on before doing so.

Modeling devices as shared resources and allowing them to be controlled in the way described here,
solves the problems outlined in section 3 regarding how to keep track of when and how the powerdown of
nested resources should proceed. The Power Manager component answers the question of how, and the
combination of the power management policy being used and the reception of the ResourceDefault-
Owner.granted() and ResourceDefaultOwner.requested() events answers the question of when. As
long as the resource at the bottom of a large set of nested resource clients has been fully released, the
power mananger will be able to power down the resource appropriately.

Using the model described above, a resource that uses one of these policies according to the implicitly
power management model could be built as shown below:

module MyFlashP {
provides {
interface Init;
interface SplitControl;

interface Resource;
interface FlashCommands;
...

}
}
implementation {
...

}

generic module PowerManagerC(uint8_t POWERDOWN_DELAY) {
provides {

interface Init;
}
uses {

interface SplitControl;
interface ResourceDefaultOwner;

}
}
implementation {
...

}

#define MYFLASH_RESOURCE "MyFlash.resource"
#define MYFLASH_POWERDOWN_DELAY 1000
configuration MyFlashC {
provides {

interface Init;
interface Resource;
interface FlashCommands;

}
}
implementation {
components new PowerManagerC(MYFLASH_POWERDOWN_DELAY)

, FcfsArbiter(MYFLASH_RESOURCE)
, MyFlashP;

7



Init = MyFlashP;
Resource = FcfsArbiter;
FlashCommands = MyFlashP;

PowerManagerC.ResourceDefaultUser -> FcfsArbiter;
PowerManagerC.SplitControl -> MyFlashP;

}

This example implementation is built out of three components. The first component (MyFlashP)
follows the explicit power management model for defining the interfaces to the physical flash device.
The second component (PowerManagerC) is the generic Power Manager component that will be used
to implement the specific power management policy for this device. The third component (MyFlashC)
is the configuration file that wires together all of the components required by the implementation of
of the device as it adheres to the implicit power management model. It includes the MyflashP and
PowerManagerC components, as well as an arbiter component for managing shared clients of the device.
Notice how the Power Manager is wired to both the ResourceDefaultUser interface provided by the
arbiter, and the SplitControl interface provided by the flash. All clients of this flash device are directly
connected to the resource interface provided by the arbiter. As outlined above, the PowerManagerC
component will use the events signaled through the ResourceDefaultUser interface to determine when
to make calls to power the device up and power it down through the SplitControl interface.

4.2. Example Power Managers: PowerManagerC and DeferredPowerMan-
agerC

TinyOS 2.x currently has two default power management policies that it provides. These policies are
implemented by the various components located under tinyos-2.x/lib/power. The first policy is imple-
mented using an immediate power control scheme, whereby devices are powered on and off immediately
after they have been requested and released. The second policy is implemented using a deferred power
control scheme, whereby devices are powered on immediately after being requested, but powered off
after some small delay from being released.

Each policy has three different implementations for use by each of the StdControl, SplitControl,
and AsyncStdControl interfaces.

For reference, each of the available components are listed below

Immediate Power Management: • StdControlPowerManagerC

• SplitControlPowerManagerC

• AsyncStdControlPowerManagerC

Deferred Power Management: • StdControlDeferredPowerManagerC

• SplitControlDeferredPowerManagerC

• AsyncStdControlDeferredPowerManagerC

5. Author’s Address

Kevin Klues
503 Bryan Hall
Washington University
St. Louis, MO 63130

phone - +1-314-935-6355

8



email - klueska@cs.wustl.edu

Vlado Handziski
Sekr FT5
Einsteinufer 25
10587 Berlin
GERMANY

phone - +49 30 314 23831
email - handzisk@tkn.tu-berlin.de

Jan-Hinrich Hauer
Sekr FT5
Einsteinufer 25
10587 Berlin
GERMANY

phone - +49 30 314 23813
email - hauer@tkn.tu-berlin.de

Philip Levis
358 Gates Hall
Stanford University
Stanford, CA 94305-9030

phone - +1 650 725 9046
email - pal@cs.stanford.edu

6. Citations

[TEP102] TEP 102: Timers.
[TEP108] TEP 108: Resource Arbitration.
[TEP112] TEP 112: Microcontroller Power Management.

9

mailto:klueska@cs.wustl.edu
mailto:handzisk@tkn.tu-berlin.de
mailto:hauer@tkn.tu-berlin.de
mailto:pal@cs.stanford.edu

	Abstract
	1. Introduction
	2. Power Management Models
	3. Explicit Power Management
	3.1 Power Management with StdControl
	3.2 Power Management with SplitControl
	3.3 Power Management with AsyncStdControl

	4. Implicit Power Management
	4.1. Power Management Policies
	4.2. Example Power Managers: PowerManagerC and DeferredPowerManagerC

	5. Author's Address
	6. Citations

