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Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

A TinyOS application developer may desire a globally-unique node identifier within the IEEE EUI-64
namespace. This document describes the TinyOS components used to access such an identifier.

1. Interfaces

A platform that can provide a valid IEEE EUI-64 globally-unique node identifier SHOULD provide
it through a component with the signature defined here, enabling platform-independent access to the
identifier:

configuration LocalIeeeEui64C {
provides interface LocalIeeeEui64;

}

The identifier is accessed through the following interface:

interface LocalIeeeEui64 {
command ieee_eui64_t getId();

}

The ieee eui64 t type is defined in tos/types/IeeeEui64.h as:
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enum { IEEE_EUI64_LENGTH = 8; }

typedef struct ieee_eui64 {
uint8_t data[IEEE_EUI64_LENGTH];

} ieee_eui64_t;

If the platform can provide a valid IEEE EUI-64, the value returned from this call MUST follow the
IEEE EUI-64 standard.

If a platform can provide a unique identifier that is not a valid IEEE EUI-64 identifier, it SHOULD
provide its unique identifier through a component with a different name and a different interface. The
definition of such an interface is outside the scope of this TEP.

2. IEEE EUI-64

The IEEE EUI-64 structure is copied here:

| company_id | extension identifier |
|addr+0 | addr+1 | addr+2 | addr+3 | addr+4 | addr+5 | addr+6 | addr+7|
| AC | DE | 48 | 23 | 45 | 67 | AB | CD |
10101100 11011110 01001000 00100011 01000101 01100111 10101011 11001101
| | | |
| most significant byte least significant byte |
most-significant bit least-significant bit

If provided in byte-addressable media, the original byte-address order
of the manufacturer is specified: the most through least significant
bytes of the EUI-64 value are contained within the lowest through
highest byte addresses, as illustrated above.

See: http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
The author of the LocalIeeeEui64C component MUST ensure that the getId() call returns a valid

EUI-64 identifier that follows the standard, with the bytes in the order described above.

3. Implementation Notes

Some TinyOS node platforms contain a unique hardware identifier that can be used to build the EUI-64
node identifier. That hardware identifier may be obtained from several places, e.g. a dedicated serial
ID chip or a flash storage device. Users of the interface described in this document MUST NOT require
knowledge of how the unique identifier is generated.

The EUI-64 node identifier MUST be available before the Boot.booted() event is signalled. If the
EUI-64 is derived from a hardware device, the hardware device should be accessed during the Init
portion of the boot sequence.
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