
IEEE EUI-64 Unique Node Identifier

TEP: 122
Group: Core Working Group
Type: Documentary
Status: Draft
TinyOS-Version: 2.x
Author: Gilman Tolle, Jonathan Hui
Draft-Created: 26-Apr-2006
Draft-Version:
Draft-Modified:
Draft-Discuss: TinyOS Developer List <tinyos-devel at

mail.millennium.berkeley.edu>

Note

This memo documents a part of TinyOS for the TinyOS Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited. This memo is in full
compliance with TEP 1.

Abstract

A TinyOS application developer may desire a globally-unique node identifier within the IEEE EUI-64
namespace. This document describes the TinyOS components used to access such an identifier.

1. Interfaces

A platform that can provide a valid IEEE EUI-64 globally-unique node identifier SHOULD provide
it through a component with the signature defined here, enabling platform-independent access to the
identifier:

configuration LocalIeeeEui64C {
provides interface LocalIeeeEui64;

}

The identifier is accessed through the following interface:

interface LocalIeeeEui64 {
command ieee_eui64_t getId();

}

The ieee eui64 t type is defined in tos/types/IeeeEui64.h as:

1

enum { IEEE_EUI64_LENGTH = 8; }

typedef struct ieee_eui64 {
uint8_t data[IEEE_EUI64_LENGTH];

} ieee_eui64_t;

If the platform can provide a valid IEEE EUI-64, the value returned from this call MUST follow the
IEEE EUI-64 standard.

If a platform can provide a unique identifier that is not a valid IEEE EUI-64 identifier, it SHOULD
provide its unique identifier through a component with a different name and a different interface. The
definition of such an interface is outside the scope of this TEP.

2. IEEE EUI-64

The IEEE EUI-64 structure is copied here:

company_id	extension identifier						
addr+0	addr+1	addr+2	addr+3	addr+4	addr+5	addr+6	addr+7
AC	DE	48	23	45	67	AB	CD
10101100 11011110 01001000 00100011 01000101 01100111 10101011 11001101							
most significant byte least significant byte							
most-significant bit least-significant bit

If provided in byte-addressable media, the original byte-address order
of the manufacturer is specified: the most through least significant
bytes of the EUI-64 value are contained within the lowest through
highest byte addresses, as illustrated above.

See: http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
The author of the LocalIeeeEui64C component MUST ensure that the getId() call returns a valid

EUI-64 identifier that follows the standard, with the bytes in the order described above.

3. Implementation Notes

Some TinyOS node platforms contain a unique hardware identifier that can be used to build the EUI-64
node identifier. That hardware identifier may be obtained from several places, e.g. a dedicated serial
ID chip or a flash storage device. Users of the interface described in this document MUST NOT require
knowledge of how the unique identifier is generated.

The EUI-64 node identifier MUST be available before the Boot.booted() event is signalled. If the
EUI-64 is derived from a hardware device, the hardware device should be accessed during the Init
portion of the boot sequence.

4. Author’s Address

Gilman Tolle
Arch Rock Corporation
657 Mission St. Suite 600
San Francisco, CA 94105

phone - +1 415 692 0828

2

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

email - gtolle@archrock.com

Jonathan Hui
Arch Rock Corporation
657 Mission St. Suite 600
San Francisco, CA 94105

phone - +1 415 692 0828
email - jhui@archrock.com

3

mailto:gtolle@archrock.com
mailto:jhui@archrock.com

	Abstract
	1. Interfaces
	2. IEEE EUI-64
	3. Implementation Notes
	4. Author's Address

