X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=gcc%2Fbt-load.c;fp=gcc%2Fbt-load.c;h=f052f6c950786a0a139eef6db06ad7c0fd62af92;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/bt-load.c b/gcc/bt-load.c new file mode 100644 index 00000000..f052f6c9 --- /dev/null +++ b/gcc/bt-load.c @@ -0,0 +1,1575 @@ +/* Perform branch target register load optimizations. + Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "hard-reg-set.h" +#include "regs.h" +#include "fibheap.h" +#include "output.h" +#include "target.h" +#include "expr.h" +#include "flags.h" +#include "insn-attr.h" +#include "function.h" +#include "except.h" +#include "tm_p.h" +#include "toplev.h" +#include "tree-pass.h" +#include "recog.h" +#include "df.h" + +/* Target register optimizations - these are performed after reload. */ + +typedef struct btr_def_group_s +{ + struct btr_def_group_s *next; + rtx src; + struct btr_def_s *members; +} *btr_def_group; + +typedef struct btr_user_s +{ + struct btr_user_s *next; + basic_block bb; + int luid; + rtx insn; + /* If INSN has a single use of a single branch register, then + USE points to it within INSN. If there is more than + one branch register use, or the use is in some way ambiguous, + then USE is NULL. */ + rtx use; + int n_reaching_defs; + int first_reaching_def; + char other_use_this_block; +} *btr_user; + +/* btr_def structs appear on three lists: + 1. A list of all btr_def structures (head is + ALL_BTR_DEFS, linked by the NEXT field). + 2. A list of branch reg definitions per basic block (head is + BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field). + 3. A list of all branch reg definitions belonging to the same + group (head is in a BTR_DEF_GROUP struct, linked by + NEXT_THIS_GROUP field). */ + +typedef struct btr_def_s +{ + struct btr_def_s *next_this_bb; + struct btr_def_s *next_this_group; + basic_block bb; + int luid; + rtx insn; + int btr; + int cost; + /* For a branch register setting insn that has a constant + source (i.e. a label), group links together all the + insns with the same source. For other branch register + setting insns, group is NULL. */ + btr_def_group group; + btr_user uses; + /* If this def has a reaching use which is not a simple use + in a branch instruction, then has_ambiguous_use will be true, + and we will not attempt to migrate this definition. */ + char has_ambiguous_use; + /* live_range is an approximation to the true live range for this + def/use web, because it records the set of blocks that contain + the live range. There could be other live ranges for the same + branch register in that set of blocks, either in the block + containing the def (before the def), or in a block containing + a use (after the use). If there are such other live ranges, then + other_btr_uses_before_def or other_btr_uses_after_use must be set true + as appropriate. */ + char other_btr_uses_before_def; + char other_btr_uses_after_use; + /* We set own_end when we have moved a definition into a dominator. + Thus, when a later combination removes this definition again, we know + to clear out trs_live_at_end again. */ + char own_end; + bitmap live_range; +} *btr_def; + +static int issue_rate; + +static int basic_block_freq (const_basic_block); +static int insn_sets_btr_p (const_rtx, int, int *); +static rtx *find_btr_use (rtx); +static int btr_referenced_p (rtx, rtx *); +static int find_btr_reference (rtx *, void *); +static void find_btr_def_group (btr_def_group *, btr_def); +static btr_def add_btr_def (fibheap_t, basic_block, int, rtx, + unsigned int, int, btr_def_group *); +static btr_user new_btr_user (basic_block, int, rtx); +static void dump_hard_reg_set (HARD_REG_SET); +static void dump_btrs_live (int); +static void note_other_use_this_block (unsigned int, btr_user); +static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *, + sbitmap *, sbitmap *, HARD_REG_SET *); +static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *); +static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int); +static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int); +static void build_btr_def_use_webs (fibheap_t); +static int block_at_edge_of_live_range_p (int, btr_def); +static void clear_btr_from_live_range (btr_def def); +static void add_btr_to_live_range (btr_def, int); +static void augment_live_range (bitmap, HARD_REG_SET *, basic_block, + basic_block, int); +static int choose_btr (HARD_REG_SET); +static void combine_btr_defs (btr_def, HARD_REG_SET *); +static void btr_def_live_range (btr_def, HARD_REG_SET *); +static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *); +static int migrate_btr_def (btr_def, int); +static void migrate_btr_defs (enum reg_class, int); +static int can_move_up (const_basic_block, const_rtx, int); +static void note_btr_set (rtx, const_rtx, void *); + +/* The following code performs code motion of target load instructions + (instructions that set branch target registers), to move them + forward away from the branch instructions and out of loops (or, + more generally, from a more frequently executed place to a less + frequently executed place). + Moving target load instructions further in front of the branch + instruction that uses the target register value means that the hardware + has a better chance of preloading the instructions at the branch + target by the time the branch is reached. This avoids bubbles + when a taken branch needs to flush out the pipeline. + Moving target load instructions out of loops means they are executed + less frequently. */ + +/* An obstack to hold the def-use web data structures built up for + migrating branch target load instructions. */ +static struct obstack migrate_btrl_obstack; + +/* Array indexed by basic block number, giving the set of registers + live in that block. */ +static HARD_REG_SET *btrs_live; + +/* Array indexed by basic block number, giving the set of registers live at + the end of that block, including any uses by a final jump insn, if any. */ +static HARD_REG_SET *btrs_live_at_end; + +/* Set of all target registers that we are willing to allocate. */ +static HARD_REG_SET all_btrs; + +/* Provide lower and upper bounds for target register numbers, so that + we don't need to search through all the hard registers all the time. */ +static int first_btr, last_btr; + + + +/* Return an estimate of the frequency of execution of block bb. */ +static int +basic_block_freq (const_basic_block bb) +{ + return bb->frequency; +} + +static rtx *btr_reference_found; + +/* A subroutine of btr_referenced_p, called through for_each_rtx. + PREG is a pointer to an rtx that is to be excluded from the + traversal. If we find a reference to a target register anywhere + else, return 1, and put a pointer to it into btr_reference_found. */ +static int +find_btr_reference (rtx *px, void *preg) +{ + rtx x; + + if (px == preg) + return -1; + x = *px; + if (!REG_P (x)) + return 0; + if (overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x))) + { + btr_reference_found = px; + return 1; + } + return -1; +} + +/* Return nonzero if X references (sets or reads) any branch target register. + If EXCLUDEP is set, disregard any references within the rtx pointed to + by it. If returning nonzero, also set btr_reference_found as above. */ +static int +btr_referenced_p (rtx x, rtx *excludep) +{ + return for_each_rtx (&x, find_btr_reference, excludep); +} + +/* Return true if insn is an instruction that sets a target register. + if CHECK_CONST is true, only return true if the source is constant. + If such a set is found and REGNO is nonzero, assign the register number + of the destination register to *REGNO. */ +static int +insn_sets_btr_p (const_rtx insn, int check_const, int *regno) +{ + rtx set; + + if (NONJUMP_INSN_P (insn) + && (set = single_set (insn))) + { + rtx dest = SET_DEST (set); + rtx src = SET_SRC (set); + + if (GET_CODE (dest) == SUBREG) + dest = XEXP (dest, 0); + + if (REG_P (dest) + && TEST_HARD_REG_BIT (all_btrs, REGNO (dest))) + { + gcc_assert (!btr_referenced_p (src, NULL)); + + if (!check_const || CONSTANT_P (src)) + { + if (regno) + *regno = REGNO (dest); + return 1; + } + } + } + return 0; +} + +/* Find and return a use of a target register within an instruction INSN. */ +static rtx * +find_btr_use (rtx insn) +{ + return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL; +} + +/* Find the group that the target register definition DEF belongs + to in the list starting with *ALL_BTR_DEF_GROUPS. If no such + group exists, create one. Add def to the group. */ +static void +find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def) +{ + if (insn_sets_btr_p (def->insn, 1, NULL)) + { + btr_def_group this_group; + rtx def_src = SET_SRC (single_set (def->insn)); + + /* ?? This linear search is an efficiency concern, particularly + as the search will almost always fail to find a match. */ + for (this_group = *all_btr_def_groups; + this_group != NULL; + this_group = this_group->next) + if (rtx_equal_p (def_src, this_group->src)) + break; + + if (!this_group) + { + this_group = XOBNEW (&migrate_btrl_obstack, struct btr_def_group_s); + this_group->src = def_src; + this_group->members = NULL; + this_group->next = *all_btr_def_groups; + *all_btr_def_groups = this_group; + } + def->group = this_group; + def->next_this_group = this_group->members; + this_group->members = def; + } + else + def->group = NULL; +} + +/* Create a new target register definition structure, for a definition in + block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return + the new definition. */ +static btr_def +add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn, + unsigned int dest_reg, int other_btr_uses_before_def, + btr_def_group *all_btr_def_groups) +{ + btr_def this_def = XOBNEW (&migrate_btrl_obstack, struct btr_def_s); + this_def->bb = bb; + this_def->luid = insn_luid; + this_def->insn = insn; + this_def->btr = dest_reg; + this_def->cost = basic_block_freq (bb); + this_def->has_ambiguous_use = 0; + this_def->other_btr_uses_before_def = other_btr_uses_before_def; + this_def->other_btr_uses_after_use = 0; + this_def->next_this_bb = NULL; + this_def->next_this_group = NULL; + this_def->uses = NULL; + this_def->live_range = NULL; + find_btr_def_group (all_btr_def_groups, this_def); + + fibheap_insert (all_btr_defs, -this_def->cost, this_def); + + if (dump_file) + fprintf (dump_file, + "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n", + dest_reg, bb->index, INSN_UID (insn), + (this_def->group ? "" : ":not const"), this_def->cost); + + return this_def; +} + +/* Create a new target register user structure, for a use in block BB, + instruction INSN. Return the new user. */ +static btr_user +new_btr_user (basic_block bb, int insn_luid, rtx insn) +{ + /* This instruction reads target registers. We need + to decide whether we can replace all target register + uses easily. + */ + rtx *usep = find_btr_use (PATTERN (insn)); + rtx use; + btr_user user = NULL; + + if (usep) + { + int unambiguous_single_use; + + /* We want to ensure that USE is the only use of a target + register in INSN, so that we know that to rewrite INSN to use + a different target register, all we have to do is replace USE. */ + unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep); + if (!unambiguous_single_use) + usep = NULL; + } + use = usep ? *usep : NULL_RTX; + user = XOBNEW (&migrate_btrl_obstack, struct btr_user_s); + user->bb = bb; + user->luid = insn_luid; + user->insn = insn; + user->use = use; + user->other_use_this_block = 0; + user->next = NULL; + user->n_reaching_defs = 0; + user->first_reaching_def = -1; + + if (dump_file) + { + fprintf (dump_file, "Uses target reg: { bb %d, insn %d }", + bb->index, INSN_UID (insn)); + + if (user->use) + fprintf (dump_file, ": unambiguous use of reg %d\n", + REGNO (user->use)); + } + + return user; +} + +/* Write the contents of S to the dump file. */ +static void +dump_hard_reg_set (HARD_REG_SET s) +{ + int reg; + for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++) + if (TEST_HARD_REG_BIT (s, reg)) + fprintf (dump_file, " %d", reg); +} + +/* Write the set of target regs live in block BB to the dump file. */ +static void +dump_btrs_live (int bb) +{ + fprintf (dump_file, "BB%d live:", bb); + dump_hard_reg_set (btrs_live[bb]); + fprintf (dump_file, "\n"); +} + +/* REGNO is the number of a branch target register that is being used or + set. USERS_THIS_BB is a list of preceding branch target register users; + If any of them use the same register, set their other_use_this_block + flag. */ +static void +note_other_use_this_block (unsigned int regno, btr_user users_this_bb) +{ + btr_user user; + + for (user = users_this_bb; user != NULL; user = user->next) + if (user->use && REGNO (user->use) == regno) + user->other_use_this_block = 1; +} + +typedef struct { + btr_user users_this_bb; + HARD_REG_SET btrs_written_in_block; + HARD_REG_SET btrs_live_in_block; + sbitmap bb_gen; + sbitmap *btr_defset; +} defs_uses_info; + +/* Called via note_stores or directly to register stores into / + clobbers of a branch target register DEST that are not recognized as + straightforward definitions. DATA points to information about the + current basic block that needs updating. */ +static void +note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data) +{ + defs_uses_info *info = (defs_uses_info *) data; + int regno, end_regno; + + if (!REG_P (dest)) + return; + regno = REGNO (dest); + end_regno = END_HARD_REGNO (dest); + for (; regno < end_regno; regno++) + if (TEST_HARD_REG_BIT (all_btrs, regno)) + { + note_other_use_this_block (regno, info->users_this_bb); + SET_HARD_REG_BIT (info->btrs_written_in_block, regno); + SET_HARD_REG_BIT (info->btrs_live_in_block, regno); + sbitmap_difference (info->bb_gen, info->bb_gen, + info->btr_defset[regno - first_btr]); + } +} + +static void +compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array, + btr_user *use_array, sbitmap *btr_defset, + sbitmap *bb_gen, HARD_REG_SET *btrs_written) +{ + /* Scan the code building up the set of all defs and all uses. + For each target register, build the set of defs of that register. + For each block, calculate the set of target registers + written in that block. + Also calculate the set of btrs ever live in that block. + */ + int i; + int insn_luid = 0; + btr_def_group all_btr_def_groups = NULL; + defs_uses_info info; + + sbitmap_vector_zero (bb_gen, n_basic_blocks); + for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++) + { + basic_block bb = BASIC_BLOCK (i); + int reg; + btr_def defs_this_bb = NULL; + rtx insn; + rtx last; + int can_throw = 0; + + info.users_this_bb = NULL; + info.bb_gen = bb_gen[i]; + info.btr_defset = btr_defset; + + CLEAR_HARD_REG_SET (info.btrs_live_in_block); + CLEAR_HARD_REG_SET (info.btrs_written_in_block); + for (reg = first_btr; reg <= last_btr; reg++) + if (TEST_HARD_REG_BIT (all_btrs, reg) + && REGNO_REG_SET_P (df_get_live_in (bb), reg)) + SET_HARD_REG_BIT (info.btrs_live_in_block, reg); + + for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); + insn != last; + insn = NEXT_INSN (insn), insn_luid++) + { + if (INSN_P (insn)) + { + int regno; + int insn_uid = INSN_UID (insn); + + if (insn_sets_btr_p (insn, 0, ®no)) + { + btr_def def = add_btr_def ( + all_btr_defs, bb, insn_luid, insn, regno, + TEST_HARD_REG_BIT (info.btrs_live_in_block, regno), + &all_btr_def_groups); + + def_array[insn_uid] = def; + SET_HARD_REG_BIT (info.btrs_written_in_block, regno); + SET_HARD_REG_BIT (info.btrs_live_in_block, regno); + sbitmap_difference (bb_gen[i], bb_gen[i], + btr_defset[regno - first_btr]); + SET_BIT (bb_gen[i], insn_uid); + def->next_this_bb = defs_this_bb; + defs_this_bb = def; + SET_BIT (btr_defset[regno - first_btr], insn_uid); + note_other_use_this_block (regno, info.users_this_bb); + } + /* Check for the blockage emitted by expand_nl_goto_receiver. */ + else if (cfun->has_nonlocal_label + && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE) + { + btr_user user; + + /* Do the equivalent of calling note_other_use_this_block + for every target register. */ + for (user = info.users_this_bb; user != NULL; + user = user->next) + if (user->use) + user->other_use_this_block = 1; + IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs); + IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs); + sbitmap_zero (info.bb_gen); + } + else + { + if (btr_referenced_p (PATTERN (insn), NULL)) + { + btr_user user = new_btr_user (bb, insn_luid, insn); + + use_array[insn_uid] = user; + if (user->use) + SET_HARD_REG_BIT (info.btrs_live_in_block, + REGNO (user->use)); + else + { + int reg; + for (reg = first_btr; reg <= last_btr; reg++) + if (TEST_HARD_REG_BIT (all_btrs, reg) + && refers_to_regno_p (reg, reg + 1, user->insn, + NULL)) + { + note_other_use_this_block (reg, + info.users_this_bb); + SET_HARD_REG_BIT (info.btrs_live_in_block, reg); + } + note_stores (PATTERN (insn), note_btr_set, &info); + } + user->next = info.users_this_bb; + info.users_this_bb = user; + } + if (CALL_P (insn)) + { + HARD_REG_SET *clobbered = &call_used_reg_set; + HARD_REG_SET call_saved; + rtx pat = PATTERN (insn); + int i; + + /* Check for sibcall. */ + if (GET_CODE (pat) == PARALLEL) + for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) + if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN) + { + COMPL_HARD_REG_SET (call_saved, + call_used_reg_set); + clobbered = &call_saved; + } + + for (regno = first_btr; regno <= last_btr; regno++) + if (TEST_HARD_REG_BIT (*clobbered, regno)) + note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info); + } + } + } + } + + COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block); + COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block); + + REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb)); + /* If this block ends in a jump insn, add any uses or even clobbers + of branch target registers that it might have. */ + for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); ) + insn = PREV_INSN (insn); + /* ??? for the fall-through edge, it would make sense to insert the + btr set on the edge, but that would require to split the block + early on so that we can distinguish between dominance from the fall + through edge - which can use the call-clobbered registers - from + dominance by the throw edge. */ + if (can_throw_internal (insn)) + { + HARD_REG_SET tmp; + + COPY_HARD_REG_SET (tmp, call_used_reg_set); + AND_HARD_REG_SET (tmp, all_btrs); + IOR_HARD_REG_SET (btrs_live_at_end[i], tmp); + can_throw = 1; + } + if (can_throw || JUMP_P (insn)) + { + int regno; + + for (regno = first_btr; regno <= last_btr; regno++) + if (refers_to_regno_p (regno, regno+1, insn, NULL)) + SET_HARD_REG_BIT (btrs_live_at_end[i], regno); + } + + if (dump_file) + dump_btrs_live(i); + } +} + +static void +compute_kill (sbitmap *bb_kill, sbitmap *btr_defset, + HARD_REG_SET *btrs_written) +{ + int i; + int regno; + + /* For each basic block, form the set BB_KILL - the set + of definitions that the block kills. */ + sbitmap_vector_zero (bb_kill, n_basic_blocks); + for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++) + { + for (regno = first_btr; regno <= last_btr; regno++) + if (TEST_HARD_REG_BIT (all_btrs, regno) + && TEST_HARD_REG_BIT (btrs_written[i], regno)) + sbitmap_a_or_b (bb_kill[i], bb_kill[i], + btr_defset[regno - first_btr]); + } +} + +static void +compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid) +{ + /* Perform iterative dataflow: + Initially, for all blocks, BB_OUT = BB_GEN. + For each block, + BB_IN = union over predecessors of BB_OUT(pred) + BB_OUT = (BB_IN - BB_KILL) + BB_GEN + Iterate until the bb_out sets stop growing. */ + int i; + int changed; + sbitmap bb_in = sbitmap_alloc (max_uid); + + for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++) + sbitmap_copy (bb_out[i], bb_gen[i]); + + changed = 1; + while (changed) + { + changed = 0; + for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++) + { + sbitmap_union_of_preds (bb_in, bb_out, i); + changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i], + bb_in, bb_kill[i]); + } + } + sbitmap_free (bb_in); +} + +static void +link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out, + sbitmap *btr_defset, int max_uid) +{ + int i; + sbitmap reaching_defs = sbitmap_alloc (max_uid); + + /* Link uses to the uses lists of all of their reaching defs. + Count up the number of reaching defs of each use. */ + for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++) + { + basic_block bb = BASIC_BLOCK (i); + rtx insn; + rtx last; + + sbitmap_union_of_preds (reaching_defs, bb_out, i); + for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); + insn != last; + insn = NEXT_INSN (insn)) + { + if (INSN_P (insn)) + { + int insn_uid = INSN_UID (insn); + + btr_def def = def_array[insn_uid]; + btr_user user = use_array[insn_uid]; + if (def != NULL) + { + /* Remove all reaching defs of regno except + for this one. */ + sbitmap_difference (reaching_defs, reaching_defs, + btr_defset[def->btr - first_btr]); + SET_BIT(reaching_defs, insn_uid); + } + + if (user != NULL) + { + /* Find all the reaching defs for this use. */ + sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid); + unsigned int uid = 0; + sbitmap_iterator sbi; + + if (user->use) + sbitmap_a_and_b ( + reaching_defs_of_reg, + reaching_defs, + btr_defset[REGNO (user->use) - first_btr]); + else + { + int reg; + + sbitmap_zero (reaching_defs_of_reg); + for (reg = first_btr; reg <= last_btr; reg++) + if (TEST_HARD_REG_BIT (all_btrs, reg) + && refers_to_regno_p (reg, reg + 1, user->insn, + NULL)) + sbitmap_a_or_b_and_c (reaching_defs_of_reg, + reaching_defs_of_reg, + reaching_defs, + btr_defset[reg - first_btr]); + } + EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi) + { + btr_def def = def_array[uid]; + + /* We now know that def reaches user. */ + + if (dump_file) + fprintf (dump_file, + "Def in insn %d reaches use in insn %d\n", + uid, insn_uid); + + user->n_reaching_defs++; + if (!user->use) + def->has_ambiguous_use = 1; + if (user->first_reaching_def != -1) + { /* There is more than one reaching def. This is + a rare case, so just give up on this def/use + web when it occurs. */ + def->has_ambiguous_use = 1; + def_array[user->first_reaching_def] + ->has_ambiguous_use = 1; + if (dump_file) + fprintf (dump_file, + "(use %d has multiple reaching defs)\n", + insn_uid); + } + else + user->first_reaching_def = uid; + if (user->other_use_this_block) + def->other_btr_uses_after_use = 1; + user->next = def->uses; + def->uses = user; + } + sbitmap_free (reaching_defs_of_reg); + } + + if (CALL_P (insn)) + { + int regno; + + for (regno = first_btr; regno <= last_btr; regno++) + if (TEST_HARD_REG_BIT (all_btrs, regno) + && TEST_HARD_REG_BIT (call_used_reg_set, regno)) + sbitmap_difference (reaching_defs, reaching_defs, + btr_defset[regno - first_btr]); + } + } + } + } + sbitmap_free (reaching_defs); +} + +static void +build_btr_def_use_webs (fibheap_t all_btr_defs) +{ + const int max_uid = get_max_uid (); + btr_def *def_array = XCNEWVEC (btr_def, max_uid); + btr_user *use_array = XCNEWVEC (btr_user, max_uid); + sbitmap *btr_defset = sbitmap_vector_alloc ( + (last_btr - first_btr) + 1, max_uid); + sbitmap *bb_gen = sbitmap_vector_alloc (n_basic_blocks, max_uid); + HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET, n_basic_blocks); + sbitmap *bb_kill; + sbitmap *bb_out; + + sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1); + + compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset, + bb_gen, btrs_written); + + bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid); + compute_kill (bb_kill, btr_defset, btrs_written); + free (btrs_written); + + bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid); + compute_out (bb_out, bb_gen, bb_kill, max_uid); + + sbitmap_vector_free (bb_gen); + sbitmap_vector_free (bb_kill); + + link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid); + + sbitmap_vector_free (bb_out); + sbitmap_vector_free (btr_defset); + free (use_array); + free (def_array); +} + +/* Return true if basic block BB contains the start or end of the + live range of the definition DEF, AND there are other live + ranges of the same target register that include BB. */ +static int +block_at_edge_of_live_range_p (int bb, btr_def def) +{ + if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb) + return 1; + else if (def->other_btr_uses_after_use) + { + btr_user user; + for (user = def->uses; user != NULL; user = user->next) + if (BASIC_BLOCK (bb) == user->bb) + return 1; + } + return 0; +} + +/* We are removing the def/use web DEF. The target register + used in this web is therefore no longer live in the live range + of this web, so remove it from the live set of all basic blocks + in the live range of the web. + Blocks at the boundary of the live range may contain other live + ranges for the same target register, so we have to be careful + to remove the target register from the live set of these blocks + only if they do not contain other live ranges for the same register. */ +static void +clear_btr_from_live_range (btr_def def) +{ + unsigned bb; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi) + { + if ((!def->other_btr_uses_before_def + && !def->other_btr_uses_after_use) + || !block_at_edge_of_live_range_p (bb, def)) + { + CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr); + CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr); + if (dump_file) + dump_btrs_live (bb); + } + } + if (def->own_end) + CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr); +} + + +/* We are adding the def/use web DEF. Add the target register used + in this web to the live set of all of the basic blocks that contain + the live range of the web. + If OWN_END is set, also show that the register is live from our + definitions at the end of the basic block where it is defined. */ +static void +add_btr_to_live_range (btr_def def, int own_end) +{ + unsigned bb; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi) + { + SET_HARD_REG_BIT (btrs_live[bb], def->btr); + SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr); + if (dump_file) + dump_btrs_live (bb); + } + if (own_end) + { + SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr); + def->own_end = 1; + } +} + +/* Update a live range to contain the basic block NEW_BLOCK, and all + blocks on paths between the existing live range and NEW_BLOCK. + HEAD is a block contained in the existing live range that dominates + all other blocks in the existing live range. + Also add to the set BTRS_LIVE_IN_RANGE all target registers that + are live in the blocks that we add to the live range. + If FULL_RANGE is set, include the full live range of NEW_BB; + otherwise, if NEW_BB dominates HEAD_BB, only add registers that + are life at the end of NEW_BB for NEW_BB itself. + It is a precondition that either NEW_BLOCK dominates HEAD,or + HEAD dom NEW_BLOCK. This is used to speed up the + implementation of this function. */ +static void +augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range, + basic_block head_bb, basic_block new_bb, int full_range) +{ + basic_block *worklist, *tos; + + tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1); + + if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb)) + { + if (new_bb == head_bb) + { + if (full_range) + IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]); + free (tos); + return; + } + *tos++ = new_bb; + } + else + { + edge e; + edge_iterator ei; + int new_block = new_bb->index; + + gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb)); + + IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]); + bitmap_set_bit (live_range, new_block); + /* A previous btr migration could have caused a register to be + live just at the end of new_block which we need in full, so + use trs_live_at_end even if full_range is set. */ + IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]); + if (full_range) + IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]); + if (dump_file) + { + fprintf (dump_file, + "Adding end of block %d and rest of %d to live range\n", + new_block, head_bb->index); + fprintf (dump_file,"Now live btrs are "); + dump_hard_reg_set (*btrs_live_in_range); + fprintf (dump_file, "\n"); + } + FOR_EACH_EDGE (e, ei, head_bb->preds) + *tos++ = e->src; + } + + while (tos != worklist) + { + basic_block bb = *--tos; + if (!bitmap_bit_p (live_range, bb->index)) + { + edge e; + edge_iterator ei; + + bitmap_set_bit (live_range, bb->index); + IOR_HARD_REG_SET (*btrs_live_in_range, + btrs_live[bb->index]); + /* A previous btr migration could have caused a register to be + live just at the end of a block which we need in full. */ + IOR_HARD_REG_SET (*btrs_live_in_range, + btrs_live_at_end[bb->index]); + if (dump_file) + { + fprintf (dump_file, + "Adding block %d to live range\n", bb->index); + fprintf (dump_file,"Now live btrs are "); + dump_hard_reg_set (*btrs_live_in_range); + fprintf (dump_file, "\n"); + } + + FOR_EACH_EDGE (e, ei, bb->preds) + { + basic_block pred = e->src; + if (!bitmap_bit_p (live_range, pred->index)) + *tos++ = pred; + } + } + } + + free (worklist); +} + +/* Return the most desirable target register that is not in + the set USED_BTRS. */ +static int +choose_btr (HARD_REG_SET used_btrs) +{ + int i; + + if (!hard_reg_set_subset_p (all_btrs, used_btrs)) + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { +#ifdef REG_ALLOC_ORDER + int regno = reg_alloc_order[i]; +#else + int regno = i; +#endif + if (TEST_HARD_REG_BIT (all_btrs, regno) + && !TEST_HARD_REG_BIT (used_btrs, regno)) + return regno; + } + return -1; +} + +/* Calculate the set of basic blocks that contain the live range of + the def/use web DEF. + Also calculate the set of target registers that are live at time + in this live range, but ignore the live range represented by DEF + when calculating this set. */ +static void +btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range) +{ + if (!def->live_range) + { + btr_user user; + + def->live_range = BITMAP_ALLOC (NULL); + + bitmap_set_bit (def->live_range, def->bb->index); + COPY_HARD_REG_SET (*btrs_live_in_range, + (flag_btr_bb_exclusive + ? btrs_live : btrs_live_at_end)[def->bb->index]); + + for (user = def->uses; user != NULL; user = user->next) + augment_live_range (def->live_range, btrs_live_in_range, + def->bb, user->bb, + (flag_btr_bb_exclusive + || user->insn != BB_END (def->bb) + || !JUMP_P (user->insn))); + } + else + { + /* def->live_range is accurate, but we need to recompute + the set of target registers live over it, because migration + of other PT instructions may have affected it. + */ + unsigned bb; + unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index; + bitmap_iterator bi; + + CLEAR_HARD_REG_SET (*btrs_live_in_range); + EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi) + { + IOR_HARD_REG_SET (*btrs_live_in_range, + (def_bb == bb + ? btrs_live_at_end : btrs_live) [bb]); + } + } + if (!def->other_btr_uses_before_def && + !def->other_btr_uses_after_use) + CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr); +} + +/* Merge into the def/use web DEF any other def/use webs in the same + group that are dominated by DEF, provided that there is a target + register available to allocate to the merged web. */ +static void +combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range) +{ + btr_def other_def; + + for (other_def = def->group->members; + other_def != NULL; + other_def = other_def->next_this_group) + { + if (other_def != def + && other_def->uses != NULL + && ! other_def->has_ambiguous_use + && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb)) + { + /* def->bb dominates the other def, so def and other_def could + be combined. */ + /* Merge their live ranges, and get the set of + target registers live over the merged range. */ + int btr; + HARD_REG_SET combined_btrs_live; + bitmap combined_live_range = BITMAP_ALLOC (NULL); + btr_user user; + + if (other_def->live_range == NULL) + { + HARD_REG_SET dummy_btrs_live_in_range; + btr_def_live_range (other_def, &dummy_btrs_live_in_range); + } + COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range); + bitmap_copy (combined_live_range, def->live_range); + + for (user = other_def->uses; user != NULL; user = user->next) + augment_live_range (combined_live_range, &combined_btrs_live, + def->bb, user->bb, + (flag_btr_bb_exclusive + || user->insn != BB_END (def->bb) + || !JUMP_P (user->insn))); + + btr = choose_btr (combined_btrs_live); + if (btr != -1) + { + /* We can combine them. */ + if (dump_file) + fprintf (dump_file, + "Combining def in insn %d with def in insn %d\n", + INSN_UID (other_def->insn), INSN_UID (def->insn)); + + def->btr = btr; + user = other_def->uses; + while (user != NULL) + { + btr_user next = user->next; + + user->next = def->uses; + def->uses = user; + user = next; + } + /* Combining def/use webs can make target registers live + after uses where they previously were not. This means + some REG_DEAD notes may no longer be correct. We could + be more precise about this if we looked at the combined + live range, but here I just delete any REG_DEAD notes + in case they are no longer correct. */ + for (user = def->uses; user != NULL; user = user->next) + remove_note (user->insn, + find_regno_note (user->insn, REG_DEAD, + REGNO (user->use))); + clear_btr_from_live_range (other_def); + other_def->uses = NULL; + bitmap_copy (def->live_range, combined_live_range); + if (other_def->btr == btr && other_def->other_btr_uses_after_use) + def->other_btr_uses_after_use = 1; + COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live); + + /* Delete the old target register initialization. */ + delete_insn (other_def->insn); + + } + BITMAP_FREE (combined_live_range); + } + } +} + +/* Move the definition DEF from its current position to basic + block NEW_DEF_BB, and modify it to use branch target register BTR. + Delete the old defining insn, and insert a new one in NEW_DEF_BB. + Update all reaching uses of DEF in the RTL to use BTR. + If this new position means that other defs in the + same group can be combined with DEF then combine them. */ +static void +move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range, + HARD_REG_SET *btrs_live_in_range) +{ + /* We can move the instruction. + Set a target register in block NEW_DEF_BB to the value + needed for this target register definition. + Replace all uses of the old target register definition by + uses of the new definition. Delete the old definition. */ + basic_block b = new_def_bb; + rtx insp = BB_HEAD (b); + rtx old_insn = def->insn; + rtx src; + rtx btr_rtx; + rtx new_insn; + enum machine_mode btr_mode; + btr_user user; + rtx set; + + if (dump_file) + fprintf(dump_file, "migrating to basic block %d, using reg %d\n", + new_def_bb->index, btr); + + clear_btr_from_live_range (def); + def->btr = btr; + def->bb = new_def_bb; + def->luid = 0; + def->cost = basic_block_freq (new_def_bb); + bitmap_copy (def->live_range, live_range); + combine_btr_defs (def, btrs_live_in_range); + btr = def->btr; + def->other_btr_uses_before_def + = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0; + add_btr_to_live_range (def, 1); + if (LABEL_P (insp)) + insp = NEXT_INSN (insp); + /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some + optimizations can result in insp being both first and last insn of + its basic block. */ + /* ?? some assertions to check that insp is sensible? */ + + if (def->other_btr_uses_before_def) + { + insp = BB_END (b); + for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp)) + gcc_assert (insp != BB_HEAD (b)); + + if (JUMP_P (insp) || can_throw_internal (insp)) + insp = PREV_INSN (insp); + } + + set = single_set (old_insn); + src = SET_SRC (set); + btr_mode = GET_MODE (SET_DEST (set)); + btr_rtx = gen_rtx_REG (btr_mode, btr); + + new_insn = gen_move_insn (btr_rtx, src); + + /* Insert target register initialization at head of basic block. */ + def->insn = emit_insn_after (new_insn, insp); + + df_set_regs_ever_live (btr, true); + + if (dump_file) + fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n", + INSN_UID (def->insn), INSN_UID (insp)); + + /* Delete the old target register initialization. */ + delete_insn (old_insn); + + /* Replace each use of the old target register by a use of the new target + register. */ + for (user = def->uses; user != NULL; user = user->next) + { + /* Some extra work here to ensure consistent modes, because + it seems that a target register REG rtx can be given a different + mode depending on the context (surely that should not be + the case?). */ + rtx replacement_rtx; + if (GET_MODE (user->use) == GET_MODE (btr_rtx) + || GET_MODE (user->use) == VOIDmode) + replacement_rtx = btr_rtx; + else + replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr); + validate_replace_rtx (user->use, replacement_rtx, user->insn); + user->use = replacement_rtx; + } +} + +/* We anticipate intra-block scheduling to be done. See if INSN could move + up within BB by N_INSNS. */ +static int +can_move_up (const_basic_block bb, const_rtx insn, int n_insns) +{ + while (insn != BB_HEAD (bb) && n_insns > 0) + { + insn = PREV_INSN (insn); + /* ??? What if we have an anti-dependency that actually prevents the + scheduler from doing the move? We'd like to re-allocate the register, + but not necessarily put the load into another basic block. */ + if (INSN_P (insn)) + n_insns--; + } + return n_insns <= 0; +} + +/* Attempt to migrate the target register definition DEF to an + earlier point in the flowgraph. + + It is a precondition of this function that DEF is migratable: + i.e. it has a constant source, and all uses are unambiguous. + + Only migrations that reduce the cost of DEF will be made. + MIN_COST is the lower bound on the cost of the DEF after migration. + If we migrate DEF so that its cost falls below MIN_COST, + then we do not attempt to migrate further. The idea is that + we migrate definitions in a priority order based on their cost, + when the cost of this definition falls below MIN_COST, then + there is another definition with cost == MIN_COST which now + has a higher priority than this definition. + + Return nonzero if there may be benefit from attempting to + migrate this DEF further (i.e. we have reduced the cost below + MIN_COST, but we may be able to reduce it further). + Return zero if no further migration is possible. */ +static int +migrate_btr_def (btr_def def, int min_cost) +{ + bitmap live_range; + HARD_REG_SET btrs_live_in_range; + int btr_used_near_def = 0; + int def_basic_block_freq; + basic_block attempt; + int give_up = 0; + int def_moved = 0; + btr_user user; + int def_latency; + + if (dump_file) + fprintf (dump_file, + "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ", + INSN_UID (def->insn), def->cost, min_cost); + + if (!def->group || def->has_ambiguous_use) + /* These defs are not migratable. */ + { + if (dump_file) + fprintf (dump_file, "it's not migratable\n"); + return 0; + } + + if (!def->uses) + /* We have combined this def with another in the same group, so + no need to consider it further. + */ + { + if (dump_file) + fprintf (dump_file, "it's already combined with another pt\n"); + return 0; + } + + btr_def_live_range (def, &btrs_live_in_range); + live_range = BITMAP_ALLOC (NULL); + bitmap_copy (live_range, def->live_range); + +#ifdef INSN_SCHEDULING + def_latency = insn_default_latency (def->insn) * issue_rate; +#else + def_latency = issue_rate; +#endif + + for (user = def->uses; user != NULL; user = user->next) + { + if (user->bb == def->bb + && user->luid > def->luid + && (def->luid + def_latency) > user->luid + && ! can_move_up (def->bb, def->insn, + (def->luid + def_latency) - user->luid)) + { + btr_used_near_def = 1; + break; + } + } + + def_basic_block_freq = basic_block_freq (def->bb); + + for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb); + !give_up && attempt && attempt != ENTRY_BLOCK_PTR && def->cost >= min_cost; + attempt = get_immediate_dominator (CDI_DOMINATORS, attempt)) + { + /* Try to move the instruction that sets the target register into + basic block ATTEMPT. */ + int try_freq = basic_block_freq (attempt); + edge_iterator ei; + edge e; + + /* If ATTEMPT has abnormal edges, skip it. */ + FOR_EACH_EDGE (e, ei, attempt->succs) + if (e->flags & EDGE_COMPLEX) + break; + if (e) + continue; + + if (dump_file) + fprintf (dump_file, "trying block %d ...", attempt->index); + + if (try_freq < def_basic_block_freq + || (try_freq == def_basic_block_freq && btr_used_near_def)) + { + int btr; + augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt, + flag_btr_bb_exclusive); + if (dump_file) + { + fprintf (dump_file, "Now btrs live in range are: "); + dump_hard_reg_set (btrs_live_in_range); + fprintf (dump_file, "\n"); + } + btr = choose_btr (btrs_live_in_range); + if (btr != -1) + { + move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range); + bitmap_copy(live_range, def->live_range); + btr_used_near_def = 0; + def_moved = 1; + def_basic_block_freq = basic_block_freq (def->bb); + } + else + { + /* There are no free target registers available to move + this far forward, so give up */ + give_up = 1; + if (dump_file) + fprintf (dump_file, + "giving up because there are no free target registers\n"); + } + + } + } + if (!def_moved) + { + give_up = 1; + if (dump_file) + fprintf (dump_file, "failed to move\n"); + } + BITMAP_FREE (live_range); + return !give_up; +} + +/* Attempt to move instructions that set target registers earlier + in the flowgraph, away from their corresponding uses. */ +static void +migrate_btr_defs (enum reg_class btr_class, int allow_callee_save) +{ + fibheap_t all_btr_defs = fibheap_new (); + int reg; + + gcc_obstack_init (&migrate_btrl_obstack); + if (dump_file) + { + int i; + + for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++) + { + basic_block bb = BASIC_BLOCK (i); + fprintf(dump_file, + "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC + " loop-depth = %d idom = %d\n", + i, (HOST_WIDEST_INT) bb->count, bb->loop_depth, + get_immediate_dominator (CDI_DOMINATORS, bb)->index); + } + } + + CLEAR_HARD_REG_SET (all_btrs); + for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++) + if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg) + && (allow_callee_save || call_used_regs[reg] + || df_regs_ever_live_p (reg))) + { + SET_HARD_REG_BIT (all_btrs, reg); + last_btr = reg; + if (first_btr < 0) + first_btr = reg; + } + + btrs_live = XCNEWVEC (HARD_REG_SET, n_basic_blocks); + btrs_live_at_end = XCNEWVEC (HARD_REG_SET, n_basic_blocks); + + build_btr_def_use_webs (all_btr_defs); + + while (!fibheap_empty (all_btr_defs)) + { + btr_def def = (btr_def) fibheap_extract_min (all_btr_defs); + int min_cost = -fibheap_min_key (all_btr_defs); + if (migrate_btr_def (def, min_cost)) + { + fibheap_insert (all_btr_defs, -def->cost, (void *) def); + if (dump_file) + { + fprintf (dump_file, + "Putting insn %d back on queue with priority %d\n", + INSN_UID (def->insn), def->cost); + } + } + else + BITMAP_FREE (def->live_range); + } + + free (btrs_live); + free (btrs_live_at_end); + obstack_free (&migrate_btrl_obstack, NULL); + fibheap_delete (all_btr_defs); +} + +static void +branch_target_load_optimize (bool after_prologue_epilogue_gen) +{ + enum reg_class klass = targetm.branch_target_register_class (); + if (klass != NO_REGS) + { + /* Initialize issue_rate. */ + if (targetm.sched.issue_rate) + issue_rate = targetm.sched.issue_rate (); + else + issue_rate = 1; + + if (!after_prologue_epilogue_gen) + { + /* Build the CFG for migrate_btr_defs. */ +#if 1 + /* This may or may not be needed, depending on where we + run this phase. */ + cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0); +#endif + } + df_analyze (); + + + /* Dominator info is also needed for migrate_btr_def. */ + calculate_dominance_info (CDI_DOMINATORS); + migrate_btr_defs (klass, + (targetm.branch_target_register_callee_saved + (after_prologue_epilogue_gen))); + + free_dominance_info (CDI_DOMINATORS); + } +} + +static bool +gate_handle_branch_target_load_optimize1 (void) +{ + return flag_branch_target_load_optimize; +} + + +static unsigned int +rest_of_handle_branch_target_load_optimize1 (void) +{ + branch_target_load_optimize (epilogue_completed); + return 0; +} + +struct rtl_opt_pass pass_branch_target_load_optimize1 = +{ + { + RTL_PASS, + "btl1", /* name */ + gate_handle_branch_target_load_optimize1, /* gate */ + rest_of_handle_branch_target_load_optimize1, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | + TODO_verify_rtl_sharing | + TODO_ggc_collect, /* todo_flags_finish */ + } +}; + +static bool +gate_handle_branch_target_load_optimize2 (void) +{ + return (optimize > 0 && flag_branch_target_load_optimize2); +} + + +static unsigned int +rest_of_handle_branch_target_load_optimize2 (void) +{ + static int warned = 0; + + /* Leave this a warning for now so that it is possible to experiment + with running this pass twice. In 3.6, we should either make this + an error, or use separate dump files. */ + if (flag_branch_target_load_optimize + && flag_branch_target_load_optimize2 + && !warned) + { + warning (0, "branch target register load optimization is not intended " + "to be run twice"); + + warned = 1; + } + + branch_target_load_optimize (epilogue_completed); + return 0; +} + +struct rtl_opt_pass pass_branch_target_load_optimize2 = +{ + { + RTL_PASS, + "btl2", /* name */ + gate_handle_branch_target_load_optimize2, /* gate */ + rest_of_handle_branch_target_load_optimize2, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | + TODO_ggc_collect, /* todo_flags_finish */ + } +}; +