X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=gcc%2Flambda.h;fp=gcc%2Flambda.h;h=94ca90644e43a4a53460e1a7ad5e816abfe53a81;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/lambda.h b/gcc/lambda.h new file mode 100644 index 00000000..94ca9064 --- /dev/null +++ b/gcc/lambda.h @@ -0,0 +1,525 @@ +/* Lambda matrix and vector interface. + Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 + Free Software Foundation, Inc. + Contributed by Daniel Berlin + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#ifndef LAMBDA_H +#define LAMBDA_H + +#include "vec.h" + +/* An integer vector. A vector formally consists of an element of a vector + space. A vector space is a set that is closed under vector addition + and scalar multiplication. In this vector space, an element is a list of + integers. */ +typedef int *lambda_vector; +DEF_VEC_P(lambda_vector); +DEF_VEC_ALLOC_P(lambda_vector,heap); +DEF_VEC_ALLOC_P(lambda_vector,gc); + +typedef VEC(lambda_vector, heap) *lambda_vector_vec_p; +DEF_VEC_P (lambda_vector_vec_p); +DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap); + +/* An integer matrix. A matrix consists of m vectors of length n (IE + all vectors are the same length). */ +typedef lambda_vector *lambda_matrix; + +DEF_VEC_P (lambda_matrix); +DEF_VEC_ALLOC_P (lambda_matrix, heap); + +/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE + matrix. Rather than use floats, we simply keep a single DENOMINATOR that + represents the denominator for every element in the matrix. */ +typedef struct lambda_trans_matrix_s +{ + lambda_matrix matrix; + int rowsize; + int colsize; + int denominator; +} *lambda_trans_matrix; +#define LTM_MATRIX(T) ((T)->matrix) +#define LTM_ROWSIZE(T) ((T)->rowsize) +#define LTM_COLSIZE(T) ((T)->colsize) +#define LTM_DENOMINATOR(T) ((T)->denominator) + +/* A vector representing a statement in the body of a loop. + The COEFFICIENTS vector contains a coefficient for each induction variable + in the loop nest containing the statement. + The DENOMINATOR represents the denominator for each coefficient in the + COEFFICIENT vector. + + This structure is used during code generation in order to rewrite the old + induction variable uses in a statement in terms of the newly created + induction variables. */ +typedef struct lambda_body_vector_s +{ + lambda_vector coefficients; + int size; + int denominator; +} *lambda_body_vector; +#define LBV_COEFFICIENTS(T) ((T)->coefficients) +#define LBV_SIZE(T) ((T)->size) +#define LBV_DENOMINATOR(T) ((T)->denominator) + +/* Piecewise linear expression. + This structure represents a linear expression with terms for the invariants + and induction variables of a loop. + COEFFICIENTS is a vector of coefficients for the induction variables, one + per loop in the loop nest. + CONSTANT is the constant portion of the linear expression + INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants, + one per invariant. + DENOMINATOR is the denominator for all of the coefficients and constants in + the expression. + The linear expressions can be linked together using the NEXT field, in + order to represent MAX or MIN of a group of linear expressions. */ +typedef struct lambda_linear_expression_s +{ + lambda_vector coefficients; + int constant; + lambda_vector invariant_coefficients; + int denominator; + struct lambda_linear_expression_s *next; +} *lambda_linear_expression; + +#define LLE_COEFFICIENTS(T) ((T)->coefficients) +#define LLE_CONSTANT(T) ((T)->constant) +#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients) +#define LLE_DENOMINATOR(T) ((T)->denominator) +#define LLE_NEXT(T) ((T)->next) + +struct obstack; + +lambda_linear_expression lambda_linear_expression_new (int, int, + struct obstack *); +void print_lambda_linear_expression (FILE *, lambda_linear_expression, int, + int, char); + +/* Loop structure. Our loop structure consists of a constant representing the + STEP of the loop, a set of linear expressions representing the LOWER_BOUND + of the loop, a set of linear expressions representing the UPPER_BOUND of + the loop, and a set of linear expressions representing the LINEAR_OFFSET of + the loop. The linear offset is a set of linear expressions that are + applied to *both* the lower bound, and the upper bound. */ +typedef struct lambda_loop_s +{ + lambda_linear_expression lower_bound; + lambda_linear_expression upper_bound; + lambda_linear_expression linear_offset; + int step; +} *lambda_loop; + +#define LL_LOWER_BOUND(T) ((T)->lower_bound) +#define LL_UPPER_BOUND(T) ((T)->upper_bound) +#define LL_LINEAR_OFFSET(T) ((T)->linear_offset) +#define LL_STEP(T) ((T)->step) + +/* Loop nest structure. + The loop nest structure consists of a set of loop structures (defined + above) in LOOPS, along with an integer representing the DEPTH of the loop, + and an integer representing the number of INVARIANTS in the loop. Both of + these integers are used to size the associated coefficient vectors in the + linear expression structures. */ +typedef struct lambda_loopnest_s +{ + lambda_loop *loops; + int depth; + int invariants; +} *lambda_loopnest; + +#define LN_LOOPS(T) ((T)->loops) +#define LN_DEPTH(T) ((T)->depth) +#define LN_INVARIANTS(T) ((T)->invariants) + +lambda_loopnest lambda_loopnest_new (int, int, struct obstack *); +lambda_loopnest lambda_loopnest_transform (lambda_loopnest, + lambda_trans_matrix, + struct obstack *); +struct loop; +bool perfect_nest_p (struct loop *); +void print_lambda_loopnest (FILE *, lambda_loopnest, char); + +#define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s)) + +void print_lambda_loop (FILE *, lambda_loop, int, int, char); + +lambda_matrix lambda_matrix_new (int, int); + +void lambda_matrix_id (lambda_matrix, int); +bool lambda_matrix_id_p (lambda_matrix, int); +void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int); +void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int); +void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int); +void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int, + int); +void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int, + lambda_matrix, int, int); +void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix, + int, int, int); +void lambda_matrix_delete_rows (lambda_matrix, int, int, int); +void lambda_matrix_row_exchange (lambda_matrix, int, int); +void lambda_matrix_row_add (lambda_matrix, int, int, int, int); +void lambda_matrix_row_negate (lambda_matrix mat, int, int); +void lambda_matrix_row_mc (lambda_matrix, int, int, int); +void lambda_matrix_col_exchange (lambda_matrix, int, int, int); +void lambda_matrix_col_add (lambda_matrix, int, int, int, int); +void lambda_matrix_col_negate (lambda_matrix, int, int); +void lambda_matrix_col_mc (lambda_matrix, int, int, int); +int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int); +void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix); +void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix); +void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix); +int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int); +void lambda_matrix_project_to_null (lambda_matrix, int, int, int, + lambda_vector); +void print_lambda_matrix (FILE *, lambda_matrix, int, int); + +lambda_trans_matrix lambda_trans_matrix_new (int, int); +bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix); +bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix); +int lambda_trans_matrix_rank (lambda_trans_matrix); +lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix); +lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix); +lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix); +void print_lambda_trans_matrix (FILE *, lambda_trans_matrix); +void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector, + lambda_vector); +bool lambda_trans_matrix_id_p (lambda_trans_matrix); + +lambda_body_vector lambda_body_vector_new (int, struct obstack *); +lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix, + lambda_body_vector, + struct obstack *); +void print_lambda_body_vector (FILE *, lambda_body_vector); +lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *, + VEC(tree,heap) **, + VEC(tree,heap) **, + struct obstack *); +void lambda_loopnest_to_gcc_loopnest (struct loop *, + VEC(tree,heap) *, VEC(tree,heap) *, + VEC(gimple,heap) **, + lambda_loopnest, lambda_trans_matrix, + struct obstack *); +void remove_iv (gimple); +tree find_induction_var_from_exit_cond (struct loop *); + +static inline void lambda_vector_negate (lambda_vector, lambda_vector, int); +static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int); +static inline void lambda_vector_add (lambda_vector, lambda_vector, + lambda_vector, int); +static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int, + lambda_vector, int); +static inline void lambda_vector_copy (lambda_vector, lambda_vector, int); +static inline bool lambda_vector_zerop (lambda_vector, int); +static inline void lambda_vector_clear (lambda_vector, int); +static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int); +static inline int lambda_vector_min_nz (lambda_vector, int, int); +static inline int lambda_vector_first_nz (lambda_vector, int, int); +static inline void print_lambda_vector (FILE *, lambda_vector, int); + +/* Allocate a new vector of given SIZE. */ + +static inline lambda_vector +lambda_vector_new (int size) +{ + return GGC_CNEWVEC (int, size); +} + + + +/* Multiply vector VEC1 of length SIZE by a constant CONST1, + and store the result in VEC2. */ + +static inline void +lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2, + int size, int const1) +{ + int i; + + if (const1 == 0) + lambda_vector_clear (vec2, size); + else + for (i = 0; i < size; i++) + vec2[i] = const1 * vec1[i]; +} + +/* Negate vector VEC1 with length SIZE and store it in VEC2. */ + +static inline void +lambda_vector_negate (lambda_vector vec1, lambda_vector vec2, + int size) +{ + lambda_vector_mult_const (vec1, vec2, size, -1); +} + +/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */ + +static inline void +lambda_vector_add (lambda_vector vec1, lambda_vector vec2, + lambda_vector vec3, int size) +{ + int i; + for (i = 0; i < size; i++) + vec3[i] = vec1[i] + vec2[i]; +} + +/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */ + +static inline void +lambda_vector_add_mc (lambda_vector vec1, int const1, + lambda_vector vec2, int const2, + lambda_vector vec3, int size) +{ + int i; + for (i = 0; i < size; i++) + vec3[i] = const1 * vec1[i] + const2 * vec2[i]; +} + +/* Copy the elements of vector VEC1 with length SIZE to VEC2. */ + +static inline void +lambda_vector_copy (lambda_vector vec1, lambda_vector vec2, + int size) +{ + memcpy (vec2, vec1, size * sizeof (*vec1)); +} + +/* Return true if vector VEC1 of length SIZE is the zero vector. */ + +static inline bool +lambda_vector_zerop (lambda_vector vec1, int size) +{ + int i; + for (i = 0; i < size; i++) + if (vec1[i] != 0) + return false; + return true; +} + +/* Clear out vector VEC1 of length SIZE. */ + +static inline void +lambda_vector_clear (lambda_vector vec1, int size) +{ + memset (vec1, 0, size * sizeof (*vec1)); +} + +/* Return true if two vectors are equal. */ + +static inline bool +lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size) +{ + int i; + for (i = 0; i < size; i++) + if (vec1[i] != vec2[i]) + return false; + return true; +} + +/* Return the minimum nonzero element in vector VEC1 between START and N. + We must have START <= N. */ + +static inline int +lambda_vector_min_nz (lambda_vector vec1, int n, int start) +{ + int j; + int min = -1; + + gcc_assert (start <= n); + for (j = start; j < n; j++) + { + if (vec1[j]) + if (min < 0 || vec1[j] < vec1[min]) + min = j; + } + gcc_assert (min >= 0); + + return min; +} + +/* Return the first nonzero element of vector VEC1 between START and N. + We must have START <= N. Returns N if VEC1 is the zero vector. */ + +static inline int +lambda_vector_first_nz (lambda_vector vec1, int n, int start) +{ + int j = start; + while (j < n && vec1[j] == 0) + j++; + return j; +} + + +/* Multiply a vector by a matrix. */ + +static inline void +lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat, + int n, lambda_vector dest) +{ + int i, j; + lambda_vector_clear (dest, n); + for (i = 0; i < n; i++) + for (j = 0; j < m; j++) + dest[i] += mat[j][i] * vect[j]; +} + +/* Compare two vectors returning an integer less than, equal to, or + greater than zero if the first argument is considered to be respectively + less than, equal to, or greater than the second. + We use the lexicographic order. */ + +static inline int +lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2, + int length2) +{ + int min_length; + int i; + + if (length1 < length2) + min_length = length1; + else + min_length = length2; + + for (i = 0; i < min_length; i++) + if (vec1[i] < vec2[i]) + return -1; + else if (vec1[i] > vec2[i]) + return 1; + else + continue; + + return length1 - length2; +} + +/* Print out a vector VEC of length N to OUTFILE. */ + +static inline void +print_lambda_vector (FILE * outfile, lambda_vector vector, int n) +{ + int i; + + for (i = 0; i < n; i++) + fprintf (outfile, "%3d ", vector[i]); + fprintf (outfile, "\n"); +} + +/* Compute the greatest common divisor of two numbers using + Euclid's algorithm. */ + +static inline int +gcd (int a, int b) +{ + int x, y, z; + + x = abs (a); + y = abs (b); + + while (x > 0) + { + z = y % x; + y = x; + x = z; + } + + return y; +} + +/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */ + +static inline int +lambda_vector_gcd (lambda_vector vector, int size) +{ + int i; + int gcd1 = 0; + + if (size > 0) + { + gcd1 = vector[0]; + for (i = 1; i < size; i++) + gcd1 = gcd (gcd1, vector[i]); + } + return gcd1; +} + +/* Returns true when the vector V is lexicographically positive, in + other words, when the first nonzero element is positive. */ + +static inline bool +lambda_vector_lexico_pos (lambda_vector v, + unsigned n) +{ + unsigned i; + for (i = 0; i < n; i++) + { + if (v[i] == 0) + continue; + if (v[i] < 0) + return false; + if (v[i] > 0) + return true; + } + return true; +} + +/* Given a vector of induction variables IVS, and a vector of + coefficients COEFS, build a tree that is a linear combination of + the induction variables. */ + +static inline tree +build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs) +{ + unsigned i; + tree iv; + tree expr = fold_convert (type, integer_zero_node); + + for (i = 0; VEC_iterate (tree, ivs, i, iv); i++) + { + int k = coefs[i]; + + if (k == 1) + expr = fold_build2 (PLUS_EXPR, type, expr, iv); + + else if (k != 0) + expr = fold_build2 (PLUS_EXPR, type, expr, + fold_build2 (MULT_EXPR, type, iv, + build_int_cst (type, k))); + } + + return expr; +} + +/* Returns the dependence level for a vector DIST of size LENGTH. + LEVEL = 0 means a lexicographic dependence, i.e. a dependence due + to the sequence of statements, not carried by any loop. */ + + +static inline unsigned +dependence_level (lambda_vector dist_vect, int length) +{ + int i; + + for (i = 0; i < length; i++) + if (dist_vect[i] != 0) + return i + 1; + + return 0; +} + +#endif /* LAMBDA_H */