X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=gcc%2Fomp-low.c;fp=gcc%2Fomp-low.c;h=9d634f66f15a8c27d483fc345cdeab2b6762052e;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/omp-low.c b/gcc/omp-low.c new file mode 100644 index 00000000..9d634f66 --- /dev/null +++ b/gcc/omp-low.c @@ -0,0 +1,6876 @@ +/* Lowering pass for OpenMP directives. Converts OpenMP directives + into explicit calls to the runtime library (libgomp) and data + marshalling to implement data sharing and copying clauses. + Contributed by Diego Novillo + + Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "rtl.h" +#include "gimple.h" +#include "tree-iterator.h" +#include "tree-inline.h" +#include "langhooks.h" +#include "diagnostic.h" +#include "tree-flow.h" +#include "timevar.h" +#include "flags.h" +#include "function.h" +#include "expr.h" +#include "toplev.h" +#include "tree-pass.h" +#include "ggc.h" +#include "except.h" +#include "splay-tree.h" +#include "optabs.h" +#include "cfgloop.h" + + +/* Lowering of OpenMP parallel and workshare constructs proceeds in two + phases. The first phase scans the function looking for OMP statements + and then for variables that must be replaced to satisfy data sharing + clauses. The second phase expands code for the constructs, as well as + re-gimplifying things when variables have been replaced with complex + expressions. + + Final code generation is done by pass_expand_omp. The flowgraph is + scanned for parallel regions which are then moved to a new + function, to be invoked by the thread library. */ + +/* Context structure. Used to store information about each parallel + directive in the code. */ + +typedef struct omp_context +{ + /* This field must be at the beginning, as we do "inheritance": Some + callback functions for tree-inline.c (e.g., omp_copy_decl) + receive a copy_body_data pointer that is up-casted to an + omp_context pointer. */ + copy_body_data cb; + + /* The tree of contexts corresponding to the encountered constructs. */ + struct omp_context *outer; + gimple stmt; + + /* Map variables to fields in a structure that allows communication + between sending and receiving threads. */ + splay_tree field_map; + tree record_type; + tree sender_decl; + tree receiver_decl; + + /* These are used just by task contexts, if task firstprivate fn is + needed. srecord_type is used to communicate from the thread + that encountered the task construct to task firstprivate fn, + record_type is allocated by GOMP_task, initialized by task firstprivate + fn and passed to the task body fn. */ + splay_tree sfield_map; + tree srecord_type; + + /* A chain of variables to add to the top-level block surrounding the + construct. In the case of a parallel, this is in the child function. */ + tree block_vars; + + /* What to do with variables with implicitly determined sharing + attributes. */ + enum omp_clause_default_kind default_kind; + + /* Nesting depth of this context. Used to beautify error messages re + invalid gotos. The outermost ctx is depth 1, with depth 0 being + reserved for the main body of the function. */ + int depth; + + /* True if this parallel directive is nested within another. */ + bool is_nested; +} omp_context; + + +struct omp_for_data_loop +{ + tree v, n1, n2, step; + enum tree_code cond_code; +}; + +/* A structure describing the main elements of a parallel loop. */ + +struct omp_for_data +{ + struct omp_for_data_loop loop; + tree chunk_size; + gimple for_stmt; + tree pre, iter_type; + int collapse; + bool have_nowait, have_ordered; + enum omp_clause_schedule_kind sched_kind; + struct omp_for_data_loop *loops; +}; + + +static splay_tree all_contexts; +static int taskreg_nesting_level; +struct omp_region *root_omp_region; +static bitmap task_shared_vars; + +static void scan_omp (gimple_seq, omp_context *); +static tree scan_omp_1_op (tree *, int *, void *); + +#define WALK_SUBSTMTS \ + case GIMPLE_BIND: \ + case GIMPLE_TRY: \ + case GIMPLE_CATCH: \ + case GIMPLE_EH_FILTER: \ + /* The sub-statements for these should be walked. */ \ + *handled_ops_p = false; \ + break; + +/* Convenience function for calling scan_omp_1_op on tree operands. */ + +static inline tree +scan_omp_op (tree *tp, omp_context *ctx) +{ + struct walk_stmt_info wi; + + memset (&wi, 0, sizeof (wi)); + wi.info = ctx; + wi.want_locations = true; + + return walk_tree (tp, scan_omp_1_op, &wi, NULL); +} + +static void lower_omp (gimple_seq, omp_context *); +static tree lookup_decl_in_outer_ctx (tree, omp_context *); +static tree maybe_lookup_decl_in_outer_ctx (tree, omp_context *); + +/* Find an OpenMP clause of type KIND within CLAUSES. */ + +tree +find_omp_clause (tree clauses, enum omp_clause_code kind) +{ + for (; clauses ; clauses = OMP_CLAUSE_CHAIN (clauses)) + if (OMP_CLAUSE_CODE (clauses) == kind) + return clauses; + + return NULL_TREE; +} + +/* Return true if CTX is for an omp parallel. */ + +static inline bool +is_parallel_ctx (omp_context *ctx) +{ + return gimple_code (ctx->stmt) == GIMPLE_OMP_PARALLEL; +} + + +/* Return true if CTX is for an omp task. */ + +static inline bool +is_task_ctx (omp_context *ctx) +{ + return gimple_code (ctx->stmt) == GIMPLE_OMP_TASK; +} + + +/* Return true if CTX is for an omp parallel or omp task. */ + +static inline bool +is_taskreg_ctx (omp_context *ctx) +{ + return gimple_code (ctx->stmt) == GIMPLE_OMP_PARALLEL + || gimple_code (ctx->stmt) == GIMPLE_OMP_TASK; +} + + +/* Return true if REGION is a combined parallel+workshare region. */ + +static inline bool +is_combined_parallel (struct omp_region *region) +{ + return region->is_combined_parallel; +} + + +/* Extract the header elements of parallel loop FOR_STMT and store + them into *FD. */ + +static void +extract_omp_for_data (gimple for_stmt, struct omp_for_data *fd, + struct omp_for_data_loop *loops) +{ + tree t, var, *collapse_iter, *collapse_count; + tree count = NULL_TREE, iter_type = long_integer_type_node; + struct omp_for_data_loop *loop; + int i; + struct omp_for_data_loop dummy_loop; + + fd->for_stmt = for_stmt; + fd->pre = NULL; + fd->collapse = gimple_omp_for_collapse (for_stmt); + if (fd->collapse > 1) + fd->loops = loops; + else + fd->loops = &fd->loop; + + fd->have_nowait = fd->have_ordered = false; + fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC; + fd->chunk_size = NULL_TREE; + collapse_iter = NULL; + collapse_count = NULL; + + for (t = gimple_omp_for_clauses (for_stmt); t ; t = OMP_CLAUSE_CHAIN (t)) + switch (OMP_CLAUSE_CODE (t)) + { + case OMP_CLAUSE_NOWAIT: + fd->have_nowait = true; + break; + case OMP_CLAUSE_ORDERED: + fd->have_ordered = true; + break; + case OMP_CLAUSE_SCHEDULE: + fd->sched_kind = OMP_CLAUSE_SCHEDULE_KIND (t); + fd->chunk_size = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t); + break; + case OMP_CLAUSE_COLLAPSE: + if (fd->collapse > 1) + { + collapse_iter = &OMP_CLAUSE_COLLAPSE_ITERVAR (t); + collapse_count = &OMP_CLAUSE_COLLAPSE_COUNT (t); + } + default: + break; + } + + /* FIXME: for now map schedule(auto) to schedule(static). + There should be analysis to determine whether all iterations + are approximately the same amount of work (then schedule(static) + is best) or if it varies (then schedule(dynamic,N) is better). */ + if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_AUTO) + { + fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC; + gcc_assert (fd->chunk_size == NULL); + } + gcc_assert (fd->collapse == 1 || collapse_iter != NULL); + if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME) + gcc_assert (fd->chunk_size == NULL); + else if (fd->chunk_size == NULL) + { + /* We only need to compute a default chunk size for ordered + static loops and dynamic loops. */ + if (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC + || fd->have_ordered + || fd->collapse > 1) + fd->chunk_size = (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC) + ? integer_zero_node : integer_one_node; + } + + for (i = 0; i < fd->collapse; i++) + { + if (fd->collapse == 1) + loop = &fd->loop; + else if (loops != NULL) + loop = loops + i; + else + loop = &dummy_loop; + + + loop->v = gimple_omp_for_index (for_stmt, i); + gcc_assert (SSA_VAR_P (loop->v)); + gcc_assert (TREE_CODE (TREE_TYPE (loop->v)) == INTEGER_TYPE + || TREE_CODE (TREE_TYPE (loop->v)) == POINTER_TYPE); + var = TREE_CODE (loop->v) == SSA_NAME ? SSA_NAME_VAR (loop->v) : loop->v; + loop->n1 = gimple_omp_for_initial (for_stmt, i); + + loop->cond_code = gimple_omp_for_cond (for_stmt, i); + loop->n2 = gimple_omp_for_final (for_stmt, i); + switch (loop->cond_code) + { + case LT_EXPR: + case GT_EXPR: + break; + case LE_EXPR: + if (POINTER_TYPE_P (TREE_TYPE (loop->n2))) + loop->n2 = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (loop->n2), + loop->n2, size_one_node); + else + loop->n2 = fold_build2 (PLUS_EXPR, TREE_TYPE (loop->n2), loop->n2, + build_int_cst (TREE_TYPE (loop->n2), 1)); + loop->cond_code = LT_EXPR; + break; + case GE_EXPR: + if (POINTER_TYPE_P (TREE_TYPE (loop->n2))) + loop->n2 = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (loop->n2), + loop->n2, size_int (-1)); + else + loop->n2 = fold_build2 (MINUS_EXPR, TREE_TYPE (loop->n2), loop->n2, + build_int_cst (TREE_TYPE (loop->n2), 1)); + loop->cond_code = GT_EXPR; + break; + default: + gcc_unreachable (); + } + + t = gimple_omp_for_incr (for_stmt, i); + gcc_assert (TREE_OPERAND (t, 0) == var); + switch (TREE_CODE (t)) + { + case PLUS_EXPR: + case POINTER_PLUS_EXPR: + loop->step = TREE_OPERAND (t, 1); + break; + case MINUS_EXPR: + loop->step = TREE_OPERAND (t, 1); + loop->step = fold_build1 (NEGATE_EXPR, TREE_TYPE (loop->step), + loop->step); + break; + default: + gcc_unreachable (); + } + + if (iter_type != long_long_unsigned_type_node) + { + if (POINTER_TYPE_P (TREE_TYPE (loop->v))) + iter_type = long_long_unsigned_type_node; + else if (TYPE_UNSIGNED (TREE_TYPE (loop->v)) + && TYPE_PRECISION (TREE_TYPE (loop->v)) + >= TYPE_PRECISION (iter_type)) + { + tree n; + + if (loop->cond_code == LT_EXPR) + n = fold_build2 (PLUS_EXPR, TREE_TYPE (loop->v), + loop->n2, loop->step); + else + n = loop->n1; + if (TREE_CODE (n) != INTEGER_CST + || tree_int_cst_lt (TYPE_MAX_VALUE (iter_type), n)) + iter_type = long_long_unsigned_type_node; + } + else if (TYPE_PRECISION (TREE_TYPE (loop->v)) + > TYPE_PRECISION (iter_type)) + { + tree n1, n2; + + if (loop->cond_code == LT_EXPR) + { + n1 = loop->n1; + n2 = fold_build2 (PLUS_EXPR, TREE_TYPE (loop->v), + loop->n2, loop->step); + } + else + { + n1 = fold_build2 (MINUS_EXPR, TREE_TYPE (loop->v), + loop->n2, loop->step); + n2 = loop->n1; + } + if (TREE_CODE (n1) != INTEGER_CST + || TREE_CODE (n2) != INTEGER_CST + || !tree_int_cst_lt (TYPE_MIN_VALUE (iter_type), n1) + || !tree_int_cst_lt (n2, TYPE_MAX_VALUE (iter_type))) + iter_type = long_long_unsigned_type_node; + } + } + + if (collapse_count && *collapse_count == NULL) + { + if ((i == 0 || count != NULL_TREE) + && TREE_CODE (TREE_TYPE (loop->v)) == INTEGER_TYPE + && TREE_CONSTANT (loop->n1) + && TREE_CONSTANT (loop->n2) + && TREE_CODE (loop->step) == INTEGER_CST) + { + tree itype = TREE_TYPE (loop->v); + + if (POINTER_TYPE_P (itype)) + itype + = lang_hooks.types.type_for_size (TYPE_PRECISION (itype), 0); + t = build_int_cst (itype, (loop->cond_code == LT_EXPR ? -1 : 1)); + t = fold_build2 (PLUS_EXPR, itype, + fold_convert (itype, loop->step), t); + t = fold_build2 (PLUS_EXPR, itype, t, + fold_convert (itype, loop->n2)); + t = fold_build2 (MINUS_EXPR, itype, t, + fold_convert (itype, loop->n1)); + if (TYPE_UNSIGNED (itype) && loop->cond_code == GT_EXPR) + t = fold_build2 (TRUNC_DIV_EXPR, itype, + fold_build1 (NEGATE_EXPR, itype, t), + fold_build1 (NEGATE_EXPR, itype, + fold_convert (itype, + loop->step))); + else + t = fold_build2 (TRUNC_DIV_EXPR, itype, t, + fold_convert (itype, loop->step)); + t = fold_convert (long_long_unsigned_type_node, t); + if (count != NULL_TREE) + count = fold_build2 (MULT_EXPR, long_long_unsigned_type_node, + count, t); + else + count = t; + if (TREE_CODE (count) != INTEGER_CST) + count = NULL_TREE; + } + else + count = NULL_TREE; + } + } + + if (count) + { + if (!tree_int_cst_lt (count, TYPE_MAX_VALUE (long_integer_type_node))) + iter_type = long_long_unsigned_type_node; + else + iter_type = long_integer_type_node; + } + else if (collapse_iter && *collapse_iter != NULL) + iter_type = TREE_TYPE (*collapse_iter); + fd->iter_type = iter_type; + if (collapse_iter && *collapse_iter == NULL) + *collapse_iter = create_tmp_var (iter_type, ".iter"); + if (collapse_count && *collapse_count == NULL) + { + if (count) + *collapse_count = fold_convert (iter_type, count); + else + *collapse_count = create_tmp_var (iter_type, ".count"); + } + + if (fd->collapse > 1) + { + fd->loop.v = *collapse_iter; + fd->loop.n1 = build_int_cst (TREE_TYPE (fd->loop.v), 0); + fd->loop.n2 = *collapse_count; + fd->loop.step = build_int_cst (TREE_TYPE (fd->loop.v), 1); + fd->loop.cond_code = LT_EXPR; + } +} + + +/* Given two blocks PAR_ENTRY_BB and WS_ENTRY_BB such that WS_ENTRY_BB + is the immediate dominator of PAR_ENTRY_BB, return true if there + are no data dependencies that would prevent expanding the parallel + directive at PAR_ENTRY_BB as a combined parallel+workshare region. + + When expanding a combined parallel+workshare region, the call to + the child function may need additional arguments in the case of + GIMPLE_OMP_FOR regions. In some cases, these arguments are + computed out of variables passed in from the parent to the child + via 'struct .omp_data_s'. For instance: + + #pragma omp parallel for schedule (guided, i * 4) + for (j ...) + + Is lowered into: + + # BLOCK 2 (PAR_ENTRY_BB) + .omp_data_o.i = i; + #pragma omp parallel [child fn: bar.omp_fn.0 ( ..., D.1598) + + # BLOCK 3 (WS_ENTRY_BB) + .omp_data_i = &.omp_data_o; + D.1667 = .omp_data_i->i; + D.1598 = D.1667 * 4; + #pragma omp for schedule (guided, D.1598) + + When we outline the parallel region, the call to the child function + 'bar.omp_fn.0' will need the value D.1598 in its argument list, but + that value is computed *after* the call site. So, in principle we + cannot do the transformation. + + To see whether the code in WS_ENTRY_BB blocks the combined + parallel+workshare call, we collect all the variables used in the + GIMPLE_OMP_FOR header check whether they appear on the LHS of any + statement in WS_ENTRY_BB. If so, then we cannot emit the combined + call. + + FIXME. If we had the SSA form built at this point, we could merely + hoist the code in block 3 into block 2 and be done with it. But at + this point we don't have dataflow information and though we could + hack something up here, it is really not worth the aggravation. */ + +static bool +workshare_safe_to_combine_p (basic_block par_entry_bb, basic_block ws_entry_bb) +{ + struct omp_for_data fd; + gimple par_stmt, ws_stmt; + + par_stmt = last_stmt (par_entry_bb); + ws_stmt = last_stmt (ws_entry_bb); + + if (gimple_code (ws_stmt) == GIMPLE_OMP_SECTIONS) + return true; + + gcc_assert (gimple_code (ws_stmt) == GIMPLE_OMP_FOR); + + extract_omp_for_data (ws_stmt, &fd, NULL); + + if (fd.collapse > 1 && TREE_CODE (fd.loop.n2) != INTEGER_CST) + return false; + if (fd.iter_type != long_integer_type_node) + return false; + + /* FIXME. We give up too easily here. If any of these arguments + are not constants, they will likely involve variables that have + been mapped into fields of .omp_data_s for sharing with the child + function. With appropriate data flow, it would be possible to + see through this. */ + if (!is_gimple_min_invariant (fd.loop.n1) + || !is_gimple_min_invariant (fd.loop.n2) + || !is_gimple_min_invariant (fd.loop.step) + || (fd.chunk_size && !is_gimple_min_invariant (fd.chunk_size))) + return false; + + return true; +} + + +/* Collect additional arguments needed to emit a combined + parallel+workshare call. WS_STMT is the workshare directive being + expanded. */ + +static tree +get_ws_args_for (gimple ws_stmt) +{ + tree t; + + if (gimple_code (ws_stmt) == GIMPLE_OMP_FOR) + { + struct omp_for_data fd; + tree ws_args; + + extract_omp_for_data (ws_stmt, &fd, NULL); + + ws_args = NULL_TREE; + if (fd.chunk_size) + { + t = fold_convert (long_integer_type_node, fd.chunk_size); + ws_args = tree_cons (NULL, t, ws_args); + } + + t = fold_convert (long_integer_type_node, fd.loop.step); + ws_args = tree_cons (NULL, t, ws_args); + + t = fold_convert (long_integer_type_node, fd.loop.n2); + ws_args = tree_cons (NULL, t, ws_args); + + t = fold_convert (long_integer_type_node, fd.loop.n1); + ws_args = tree_cons (NULL, t, ws_args); + + return ws_args; + } + else if (gimple_code (ws_stmt) == GIMPLE_OMP_SECTIONS) + { + /* Number of sections is equal to the number of edges from the + GIMPLE_OMP_SECTIONS_SWITCH statement, except for the one to + the exit of the sections region. */ + basic_block bb = single_succ (gimple_bb (ws_stmt)); + t = build_int_cst (unsigned_type_node, EDGE_COUNT (bb->succs) - 1); + t = tree_cons (NULL, t, NULL); + return t; + } + + gcc_unreachable (); +} + + +/* Discover whether REGION is a combined parallel+workshare region. */ + +static void +determine_parallel_type (struct omp_region *region) +{ + basic_block par_entry_bb, par_exit_bb; + basic_block ws_entry_bb, ws_exit_bb; + + if (region == NULL || region->inner == NULL + || region->exit == NULL || region->inner->exit == NULL + || region->inner->cont == NULL) + return; + + /* We only support parallel+for and parallel+sections. */ + if (region->type != GIMPLE_OMP_PARALLEL + || (region->inner->type != GIMPLE_OMP_FOR + && region->inner->type != GIMPLE_OMP_SECTIONS)) + return; + + /* Check for perfect nesting PAR_ENTRY_BB -> WS_ENTRY_BB and + WS_EXIT_BB -> PAR_EXIT_BB. */ + par_entry_bb = region->entry; + par_exit_bb = region->exit; + ws_entry_bb = region->inner->entry; + ws_exit_bb = region->inner->exit; + + if (single_succ (par_entry_bb) == ws_entry_bb + && single_succ (ws_exit_bb) == par_exit_bb + && workshare_safe_to_combine_p (par_entry_bb, ws_entry_bb) + && (gimple_omp_parallel_combined_p (last_stmt (par_entry_bb)) + || (last_and_only_stmt (ws_entry_bb) + && last_and_only_stmt (par_exit_bb)))) + { + gimple ws_stmt = last_stmt (ws_entry_bb); + + if (region->inner->type == GIMPLE_OMP_FOR) + { + /* If this is a combined parallel loop, we need to determine + whether or not to use the combined library calls. There + are two cases where we do not apply the transformation: + static loops and any kind of ordered loop. In the first + case, we already open code the loop so there is no need + to do anything else. In the latter case, the combined + parallel loop call would still need extra synchronization + to implement ordered semantics, so there would not be any + gain in using the combined call. */ + tree clauses = gimple_omp_for_clauses (ws_stmt); + tree c = find_omp_clause (clauses, OMP_CLAUSE_SCHEDULE); + if (c == NULL + || OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_STATIC + || find_omp_clause (clauses, OMP_CLAUSE_ORDERED)) + { + region->is_combined_parallel = false; + region->inner->is_combined_parallel = false; + return; + } + } + + region->is_combined_parallel = true; + region->inner->is_combined_parallel = true; + region->ws_args = get_ws_args_for (ws_stmt); + } +} + + +/* Return true if EXPR is variable sized. */ + +static inline bool +is_variable_sized (const_tree expr) +{ + return !TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (expr))); +} + +/* Return true if DECL is a reference type. */ + +static inline bool +is_reference (tree decl) +{ + return lang_hooks.decls.omp_privatize_by_reference (decl); +} + +/* Lookup variables in the decl or field splay trees. The "maybe" form + allows for the variable form to not have been entered, otherwise we + assert that the variable must have been entered. */ + +static inline tree +lookup_decl (tree var, omp_context *ctx) +{ + tree *n; + n = (tree *) pointer_map_contains (ctx->cb.decl_map, var); + return *n; +} + +static inline tree +maybe_lookup_decl (const_tree var, omp_context *ctx) +{ + tree *n; + n = (tree *) pointer_map_contains (ctx->cb.decl_map, var); + return n ? *n : NULL_TREE; +} + +static inline tree +lookup_field (tree var, omp_context *ctx) +{ + splay_tree_node n; + n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var); + return (tree) n->value; +} + +static inline tree +lookup_sfield (tree var, omp_context *ctx) +{ + splay_tree_node n; + n = splay_tree_lookup (ctx->sfield_map + ? ctx->sfield_map : ctx->field_map, + (splay_tree_key) var); + return (tree) n->value; +} + +static inline tree +maybe_lookup_field (tree var, omp_context *ctx) +{ + splay_tree_node n; + n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var); + return n ? (tree) n->value : NULL_TREE; +} + +/* Return true if DECL should be copied by pointer. SHARED_CTX is + the parallel context if DECL is to be shared. */ + +static bool +use_pointer_for_field (tree decl, omp_context *shared_ctx) +{ + if (AGGREGATE_TYPE_P (TREE_TYPE (decl))) + return true; + + /* We can only use copy-in/copy-out semantics for shared variables + when we know the value is not accessible from an outer scope. */ + if (shared_ctx) + { + /* ??? Trivially accessible from anywhere. But why would we even + be passing an address in this case? Should we simply assert + this to be false, or should we have a cleanup pass that removes + these from the list of mappings? */ + if (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) + return true; + + /* For variables with DECL_HAS_VALUE_EXPR_P set, we cannot tell + without analyzing the expression whether or not its location + is accessible to anyone else. In the case of nested parallel + regions it certainly may be. */ + if (TREE_CODE (decl) != RESULT_DECL && DECL_HAS_VALUE_EXPR_P (decl)) + return true; + + /* Do not use copy-in/copy-out for variables that have their + address taken. */ + if (TREE_ADDRESSABLE (decl)) + return true; + + /* Disallow copy-in/out in nested parallel if + decl is shared in outer parallel, otherwise + each thread could store the shared variable + in its own copy-in location, making the + variable no longer really shared. */ + if (!TREE_READONLY (decl) && shared_ctx->is_nested) + { + omp_context *up; + + for (up = shared_ctx->outer; up; up = up->outer) + if (is_taskreg_ctx (up) && maybe_lookup_decl (decl, up)) + break; + + if (up) + { + tree c; + + for (c = gimple_omp_taskreg_clauses (up->stmt); + c; c = OMP_CLAUSE_CHAIN (c)) + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SHARED + && OMP_CLAUSE_DECL (c) == decl) + break; + + if (c) + return true; + } + } + + /* For tasks avoid using copy-in/out, unless they are readonly + (in which case just copy-in is used). As tasks can be + deferred or executed in different thread, when GOMP_task + returns, the task hasn't necessarily terminated. */ + if (!TREE_READONLY (decl) && is_task_ctx (shared_ctx)) + { + tree outer = maybe_lookup_decl_in_outer_ctx (decl, shared_ctx); + if (is_gimple_reg (outer)) + { + /* Taking address of OUTER in lower_send_shared_vars + might need regimplification of everything that uses the + variable. */ + if (!task_shared_vars) + task_shared_vars = BITMAP_ALLOC (NULL); + bitmap_set_bit (task_shared_vars, DECL_UID (outer)); + TREE_ADDRESSABLE (outer) = 1; + } + return true; + } + } + + return false; +} + +/* Create a new VAR_DECL and copy information from VAR to it. */ + +tree +copy_var_decl (tree var, tree name, tree type) +{ + tree copy = build_decl (VAR_DECL, name, type); + + TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var); + TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var); + DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var); + DECL_NO_TBAA_P (copy) = DECL_NO_TBAA_P (var); + DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var); + DECL_IGNORED_P (copy) = DECL_IGNORED_P (var); + DECL_CONTEXT (copy) = DECL_CONTEXT (var); + DECL_SOURCE_LOCATION (copy) = DECL_SOURCE_LOCATION (var); + TREE_USED (copy) = 1; + DECL_SEEN_IN_BIND_EXPR_P (copy) = 1; + + return copy; +} + +/* Construct a new automatic decl similar to VAR. */ + +static tree +omp_copy_decl_2 (tree var, tree name, tree type, omp_context *ctx) +{ + tree copy = copy_var_decl (var, name, type); + + DECL_CONTEXT (copy) = current_function_decl; + TREE_CHAIN (copy) = ctx->block_vars; + ctx->block_vars = copy; + + return copy; +} + +static tree +omp_copy_decl_1 (tree var, omp_context *ctx) +{ + return omp_copy_decl_2 (var, DECL_NAME (var), TREE_TYPE (var), ctx); +} + +/* Build tree nodes to access the field for VAR on the receiver side. */ + +static tree +build_receiver_ref (tree var, bool by_ref, omp_context *ctx) +{ + tree x, field = lookup_field (var, ctx); + + /* If the receiver record type was remapped in the child function, + remap the field into the new record type. */ + x = maybe_lookup_field (field, ctx); + if (x != NULL) + field = x; + + x = build_fold_indirect_ref (ctx->receiver_decl); + x = build3 (COMPONENT_REF, TREE_TYPE (field), x, field, NULL); + if (by_ref) + x = build_fold_indirect_ref (x); + + return x; +} + +/* Build tree nodes to access VAR in the scope outer to CTX. In the case + of a parallel, this is a component reference; for workshare constructs + this is some variable. */ + +static tree +build_outer_var_ref (tree var, omp_context *ctx) +{ + tree x; + + if (is_global_var (maybe_lookup_decl_in_outer_ctx (var, ctx))) + x = var; + else if (is_variable_sized (var)) + { + x = TREE_OPERAND (DECL_VALUE_EXPR (var), 0); + x = build_outer_var_ref (x, ctx); + x = build_fold_indirect_ref (x); + } + else if (is_taskreg_ctx (ctx)) + { + bool by_ref = use_pointer_for_field (var, NULL); + x = build_receiver_ref (var, by_ref, ctx); + } + else if (ctx->outer) + x = lookup_decl (var, ctx->outer); + else if (is_reference (var)) + /* This can happen with orphaned constructs. If var is reference, it is + possible it is shared and as such valid. */ + x = var; + else + gcc_unreachable (); + + if (is_reference (var)) + x = build_fold_indirect_ref (x); + + return x; +} + +/* Build tree nodes to access the field for VAR on the sender side. */ + +static tree +build_sender_ref (tree var, omp_context *ctx) +{ + tree field = lookup_sfield (var, ctx); + return build3 (COMPONENT_REF, TREE_TYPE (field), + ctx->sender_decl, field, NULL); +} + +/* Add a new field for VAR inside the structure CTX->SENDER_DECL. */ + +static void +install_var_field (tree var, bool by_ref, int mask, omp_context *ctx) +{ + tree field, type, sfield = NULL_TREE; + + gcc_assert ((mask & 1) == 0 + || !splay_tree_lookup (ctx->field_map, (splay_tree_key) var)); + gcc_assert ((mask & 2) == 0 || !ctx->sfield_map + || !splay_tree_lookup (ctx->sfield_map, (splay_tree_key) var)); + + type = TREE_TYPE (var); + if (by_ref) + type = build_pointer_type (type); + else if ((mask & 3) == 1 && is_reference (var)) + type = TREE_TYPE (type); + + field = build_decl (FIELD_DECL, DECL_NAME (var), type); + + /* Remember what variable this field was created for. This does have a + side effect of making dwarf2out ignore this member, so for helpful + debugging we clear it later in delete_omp_context. */ + DECL_ABSTRACT_ORIGIN (field) = var; + if (type == TREE_TYPE (var)) + { + DECL_ALIGN (field) = DECL_ALIGN (var); + DECL_USER_ALIGN (field) = DECL_USER_ALIGN (var); + TREE_THIS_VOLATILE (field) = TREE_THIS_VOLATILE (var); + } + else + DECL_ALIGN (field) = TYPE_ALIGN (type); + + if ((mask & 3) == 3) + { + insert_field_into_struct (ctx->record_type, field); + if (ctx->srecord_type) + { + sfield = build_decl (FIELD_DECL, DECL_NAME (var), type); + DECL_ABSTRACT_ORIGIN (sfield) = var; + DECL_ALIGN (sfield) = DECL_ALIGN (field); + DECL_USER_ALIGN (sfield) = DECL_USER_ALIGN (field); + TREE_THIS_VOLATILE (sfield) = TREE_THIS_VOLATILE (field); + insert_field_into_struct (ctx->srecord_type, sfield); + } + } + else + { + if (ctx->srecord_type == NULL_TREE) + { + tree t; + + ctx->srecord_type = lang_hooks.types.make_type (RECORD_TYPE); + ctx->sfield_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); + for (t = TYPE_FIELDS (ctx->record_type); t ; t = TREE_CHAIN (t)) + { + sfield = build_decl (FIELD_DECL, DECL_NAME (t), TREE_TYPE (t)); + DECL_ABSTRACT_ORIGIN (sfield) = DECL_ABSTRACT_ORIGIN (t); + insert_field_into_struct (ctx->srecord_type, sfield); + splay_tree_insert (ctx->sfield_map, + (splay_tree_key) DECL_ABSTRACT_ORIGIN (t), + (splay_tree_value) sfield); + } + } + sfield = field; + insert_field_into_struct ((mask & 1) ? ctx->record_type + : ctx->srecord_type, field); + } + + if (mask & 1) + splay_tree_insert (ctx->field_map, (splay_tree_key) var, + (splay_tree_value) field); + if ((mask & 2) && ctx->sfield_map) + splay_tree_insert (ctx->sfield_map, (splay_tree_key) var, + (splay_tree_value) sfield); +} + +static tree +install_var_local (tree var, omp_context *ctx) +{ + tree new_var = omp_copy_decl_1 (var, ctx); + insert_decl_map (&ctx->cb, var, new_var); + return new_var; +} + +/* Adjust the replacement for DECL in CTX for the new context. This means + copying the DECL_VALUE_EXPR, and fixing up the type. */ + +static void +fixup_remapped_decl (tree decl, omp_context *ctx, bool private_debug) +{ + tree new_decl, size; + + new_decl = lookup_decl (decl, ctx); + + TREE_TYPE (new_decl) = remap_type (TREE_TYPE (decl), &ctx->cb); + + if ((!TREE_CONSTANT (DECL_SIZE (new_decl)) || private_debug) + && DECL_HAS_VALUE_EXPR_P (decl)) + { + tree ve = DECL_VALUE_EXPR (decl); + walk_tree (&ve, copy_tree_body_r, &ctx->cb, NULL); + SET_DECL_VALUE_EXPR (new_decl, ve); + DECL_HAS_VALUE_EXPR_P (new_decl) = 1; + } + + if (!TREE_CONSTANT (DECL_SIZE (new_decl))) + { + size = remap_decl (DECL_SIZE (decl), &ctx->cb); + if (size == error_mark_node) + size = TYPE_SIZE (TREE_TYPE (new_decl)); + DECL_SIZE (new_decl) = size; + + size = remap_decl (DECL_SIZE_UNIT (decl), &ctx->cb); + if (size == error_mark_node) + size = TYPE_SIZE_UNIT (TREE_TYPE (new_decl)); + DECL_SIZE_UNIT (new_decl) = size; + } +} + +/* The callback for remap_decl. Search all containing contexts for a + mapping of the variable; this avoids having to duplicate the splay + tree ahead of time. We know a mapping doesn't already exist in the + given context. Create new mappings to implement default semantics. */ + +static tree +omp_copy_decl (tree var, copy_body_data *cb) +{ + omp_context *ctx = (omp_context *) cb; + tree new_var; + + if (TREE_CODE (var) == LABEL_DECL) + { + new_var = create_artificial_label (); + DECL_CONTEXT (new_var) = current_function_decl; + insert_decl_map (&ctx->cb, var, new_var); + return new_var; + } + + while (!is_taskreg_ctx (ctx)) + { + ctx = ctx->outer; + if (ctx == NULL) + return var; + new_var = maybe_lookup_decl (var, ctx); + if (new_var) + return new_var; + } + + if (is_global_var (var) || decl_function_context (var) != ctx->cb.src_fn) + return var; + + return error_mark_node; +} + + +/* Return the parallel region associated with STMT. */ + +/* Debugging dumps for parallel regions. */ +void dump_omp_region (FILE *, struct omp_region *, int); +void debug_omp_region (struct omp_region *); +void debug_all_omp_regions (void); + +/* Dump the parallel region tree rooted at REGION. */ + +void +dump_omp_region (FILE *file, struct omp_region *region, int indent) +{ + fprintf (file, "%*sbb %d: %s\n", indent, "", region->entry->index, + gimple_code_name[region->type]); + + if (region->inner) + dump_omp_region (file, region->inner, indent + 4); + + if (region->cont) + { + fprintf (file, "%*sbb %d: GIMPLE_OMP_CONTINUE\n", indent, "", + region->cont->index); + } + + if (region->exit) + fprintf (file, "%*sbb %d: GIMPLE_OMP_RETURN\n", indent, "", + region->exit->index); + else + fprintf (file, "%*s[no exit marker]\n", indent, ""); + + if (region->next) + dump_omp_region (file, region->next, indent); +} + +void +debug_omp_region (struct omp_region *region) +{ + dump_omp_region (stderr, region, 0); +} + +void +debug_all_omp_regions (void) +{ + dump_omp_region (stderr, root_omp_region, 0); +} + + +/* Create a new parallel region starting at STMT inside region PARENT. */ + +struct omp_region * +new_omp_region (basic_block bb, enum gimple_code type, + struct omp_region *parent) +{ + struct omp_region *region = XCNEW (struct omp_region); + + region->outer = parent; + region->entry = bb; + region->type = type; + + if (parent) + { + /* This is a nested region. Add it to the list of inner + regions in PARENT. */ + region->next = parent->inner; + parent->inner = region; + } + else + { + /* This is a toplevel region. Add it to the list of toplevel + regions in ROOT_OMP_REGION. */ + region->next = root_omp_region; + root_omp_region = region; + } + + return region; +} + +/* Release the memory associated with the region tree rooted at REGION. */ + +static void +free_omp_region_1 (struct omp_region *region) +{ + struct omp_region *i, *n; + + for (i = region->inner; i ; i = n) + { + n = i->next; + free_omp_region_1 (i); + } + + free (region); +} + +/* Release the memory for the entire omp region tree. */ + +void +free_omp_regions (void) +{ + struct omp_region *r, *n; + for (r = root_omp_region; r ; r = n) + { + n = r->next; + free_omp_region_1 (r); + } + root_omp_region = NULL; +} + + +/* Create a new context, with OUTER_CTX being the surrounding context. */ + +static omp_context * +new_omp_context (gimple stmt, omp_context *outer_ctx) +{ + omp_context *ctx = XCNEW (omp_context); + + splay_tree_insert (all_contexts, (splay_tree_key) stmt, + (splay_tree_value) ctx); + ctx->stmt = stmt; + + if (outer_ctx) + { + ctx->outer = outer_ctx; + ctx->cb = outer_ctx->cb; + ctx->cb.block = NULL; + ctx->depth = outer_ctx->depth + 1; + } + else + { + ctx->cb.src_fn = current_function_decl; + ctx->cb.dst_fn = current_function_decl; + ctx->cb.src_node = cgraph_node (current_function_decl); + ctx->cb.dst_node = ctx->cb.src_node; + ctx->cb.src_cfun = cfun; + ctx->cb.copy_decl = omp_copy_decl; + ctx->cb.eh_region = -1; + ctx->cb.transform_call_graph_edges = CB_CGE_MOVE; + ctx->depth = 1; + } + + ctx->cb.decl_map = pointer_map_create (); + + return ctx; +} + +static gimple_seq maybe_catch_exception (gimple_seq); + +/* Finalize task copyfn. */ + +static void +finalize_task_copyfn (gimple task_stmt) +{ + struct function *child_cfun; + tree child_fn, old_fn; + gimple_seq seq, new_seq; + gimple bind; + + child_fn = gimple_omp_task_copy_fn (task_stmt); + if (child_fn == NULL_TREE) + return; + + child_cfun = DECL_STRUCT_FUNCTION (child_fn); + + /* Inform the callgraph about the new function. */ + DECL_STRUCT_FUNCTION (child_fn)->curr_properties + = cfun->curr_properties; + + old_fn = current_function_decl; + push_cfun (child_cfun); + current_function_decl = child_fn; + bind = gimplify_body (&DECL_SAVED_TREE (child_fn), child_fn, false); + seq = gimple_seq_alloc (); + gimple_seq_add_stmt (&seq, bind); + new_seq = maybe_catch_exception (seq); + if (new_seq != seq) + { + bind = gimple_build_bind (NULL, new_seq, NULL); + seq = gimple_seq_alloc (); + gimple_seq_add_stmt (&seq, bind); + } + gimple_set_body (child_fn, seq); + pop_cfun (); + current_function_decl = old_fn; + + cgraph_add_new_function (child_fn, false); +} + +/* Destroy a omp_context data structures. Called through the splay tree + value delete callback. */ + +static void +delete_omp_context (splay_tree_value value) +{ + omp_context *ctx = (omp_context *) value; + + pointer_map_destroy (ctx->cb.decl_map); + + if (ctx->field_map) + splay_tree_delete (ctx->field_map); + if (ctx->sfield_map) + splay_tree_delete (ctx->sfield_map); + + /* We hijacked DECL_ABSTRACT_ORIGIN earlier. We need to clear it before + it produces corrupt debug information. */ + if (ctx->record_type) + { + tree t; + for (t = TYPE_FIELDS (ctx->record_type); t ; t = TREE_CHAIN (t)) + DECL_ABSTRACT_ORIGIN (t) = NULL; + } + if (ctx->srecord_type) + { + tree t; + for (t = TYPE_FIELDS (ctx->srecord_type); t ; t = TREE_CHAIN (t)) + DECL_ABSTRACT_ORIGIN (t) = NULL; + } + + if (is_task_ctx (ctx)) + finalize_task_copyfn (ctx->stmt); + + XDELETE (ctx); +} + +/* Fix up RECEIVER_DECL with a type that has been remapped to the child + context. */ + +static void +fixup_child_record_type (omp_context *ctx) +{ + tree f, type = ctx->record_type; + + /* ??? It isn't sufficient to just call remap_type here, because + variably_modified_type_p doesn't work the way we expect for + record types. Testing each field for whether it needs remapping + and creating a new record by hand works, however. */ + for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f)) + if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn)) + break; + if (f) + { + tree name, new_fields = NULL; + + type = lang_hooks.types.make_type (RECORD_TYPE); + name = DECL_NAME (TYPE_NAME (ctx->record_type)); + name = build_decl (TYPE_DECL, name, type); + TYPE_NAME (type) = name; + + for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f)) + { + tree new_f = copy_node (f); + DECL_CONTEXT (new_f) = type; + TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &ctx->cb); + TREE_CHAIN (new_f) = new_fields; + walk_tree (&DECL_SIZE (new_f), copy_tree_body_r, &ctx->cb, NULL); + walk_tree (&DECL_SIZE_UNIT (new_f), copy_tree_body_r, + &ctx->cb, NULL); + walk_tree (&DECL_FIELD_OFFSET (new_f), copy_tree_body_r, + &ctx->cb, NULL); + new_fields = new_f; + + /* Arrange to be able to look up the receiver field + given the sender field. */ + splay_tree_insert (ctx->field_map, (splay_tree_key) f, + (splay_tree_value) new_f); + } + TYPE_FIELDS (type) = nreverse (new_fields); + layout_type (type); + } + + TREE_TYPE (ctx->receiver_decl) = build_pointer_type (type); +} + +/* Instantiate decls as necessary in CTX to satisfy the data sharing + specified by CLAUSES. */ + +static void +scan_sharing_clauses (tree clauses, omp_context *ctx) +{ + tree c, decl; + bool scan_array_reductions = false; + + for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) + { + bool by_ref; + + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_PRIVATE: + decl = OMP_CLAUSE_DECL (c); + if (OMP_CLAUSE_PRIVATE_OUTER_REF (c)) + goto do_private; + else if (!is_variable_sized (decl)) + install_var_local (decl, ctx); + break; + + case OMP_CLAUSE_SHARED: + gcc_assert (is_taskreg_ctx (ctx)); + decl = OMP_CLAUSE_DECL (c); + gcc_assert (!COMPLETE_TYPE_P (TREE_TYPE (decl)) + || !is_variable_sized (decl)); + /* Global variables don't need to be copied, + the receiver side will use them directly. */ + if (is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx))) + break; + by_ref = use_pointer_for_field (decl, ctx); + if (! TREE_READONLY (decl) + || TREE_ADDRESSABLE (decl) + || by_ref + || is_reference (decl)) + { + install_var_field (decl, by_ref, 3, ctx); + install_var_local (decl, ctx); + break; + } + /* We don't need to copy const scalar vars back. */ + OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_FIRSTPRIVATE); + goto do_private; + + case OMP_CLAUSE_LASTPRIVATE: + /* Let the corresponding firstprivate clause create + the variable. */ + if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) + break; + /* FALLTHRU */ + + case OMP_CLAUSE_FIRSTPRIVATE: + case OMP_CLAUSE_REDUCTION: + decl = OMP_CLAUSE_DECL (c); + do_private: + if (is_variable_sized (decl)) + { + if (is_task_ctx (ctx)) + install_var_field (decl, false, 1, ctx); + break; + } + else if (is_taskreg_ctx (ctx)) + { + bool global + = is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx)); + by_ref = use_pointer_for_field (decl, NULL); + + if (is_task_ctx (ctx) + && (global || by_ref || is_reference (decl))) + { + install_var_field (decl, false, 1, ctx); + if (!global) + install_var_field (decl, by_ref, 2, ctx); + } + else if (!global) + install_var_field (decl, by_ref, 3, ctx); + } + install_var_local (decl, ctx); + break; + + case OMP_CLAUSE_COPYPRIVATE: + if (ctx->outer) + scan_omp_op (&OMP_CLAUSE_DECL (c), ctx->outer); + /* FALLTHRU */ + + case OMP_CLAUSE_COPYIN: + decl = OMP_CLAUSE_DECL (c); + by_ref = use_pointer_for_field (decl, NULL); + install_var_field (decl, by_ref, 3, ctx); + break; + + case OMP_CLAUSE_DEFAULT: + ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c); + break; + + case OMP_CLAUSE_IF: + case OMP_CLAUSE_NUM_THREADS: + case OMP_CLAUSE_SCHEDULE: + if (ctx->outer) + scan_omp_op (&OMP_CLAUSE_OPERAND (c, 0), ctx->outer); + break; + + case OMP_CLAUSE_NOWAIT: + case OMP_CLAUSE_ORDERED: + case OMP_CLAUSE_COLLAPSE: + case OMP_CLAUSE_UNTIED: + break; + + default: + gcc_unreachable (); + } + } + + for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) + { + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_LASTPRIVATE: + /* Let the corresponding firstprivate clause create + the variable. */ + if (OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c)) + scan_array_reductions = true; + if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) + break; + /* FALLTHRU */ + + case OMP_CLAUSE_PRIVATE: + case OMP_CLAUSE_FIRSTPRIVATE: + case OMP_CLAUSE_REDUCTION: + decl = OMP_CLAUSE_DECL (c); + if (is_variable_sized (decl)) + install_var_local (decl, ctx); + fixup_remapped_decl (decl, ctx, + OMP_CLAUSE_CODE (c) == OMP_CLAUSE_PRIVATE + && OMP_CLAUSE_PRIVATE_DEBUG (c)); + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION + && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) + scan_array_reductions = true; + break; + + case OMP_CLAUSE_SHARED: + decl = OMP_CLAUSE_DECL (c); + if (! is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx))) + fixup_remapped_decl (decl, ctx, false); + break; + + case OMP_CLAUSE_COPYPRIVATE: + case OMP_CLAUSE_COPYIN: + case OMP_CLAUSE_DEFAULT: + case OMP_CLAUSE_IF: + case OMP_CLAUSE_NUM_THREADS: + case OMP_CLAUSE_SCHEDULE: + case OMP_CLAUSE_NOWAIT: + case OMP_CLAUSE_ORDERED: + case OMP_CLAUSE_COLLAPSE: + case OMP_CLAUSE_UNTIED: + break; + + default: + gcc_unreachable (); + } + } + + if (scan_array_reductions) + for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION + && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) + { + scan_omp (OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c), ctx); + scan_omp (OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c), ctx); + } + else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE + && OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c)) + scan_omp (OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c), ctx); +} + +/* Create a new name for omp child function. Returns an identifier. */ + +static GTY(()) unsigned int tmp_ompfn_id_num; + +static tree +create_omp_child_function_name (bool task_copy) +{ + tree name = DECL_ASSEMBLER_NAME (current_function_decl); + size_t len = IDENTIFIER_LENGTH (name); + char *tmp_name, *prefix; + const char *suffix; + + suffix = task_copy ? "_omp_cpyfn" : "_omp_fn"; + prefix = XALLOCAVEC (char, len + strlen (suffix) + 1); + memcpy (prefix, IDENTIFIER_POINTER (name), len); + strcpy (prefix + len, suffix); +#ifndef NO_DOT_IN_LABEL + prefix[len] = '.'; +#elif !defined NO_DOLLAR_IN_LABEL + prefix[len] = '$'; +#endif + ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix, tmp_ompfn_id_num++); + return get_identifier (tmp_name); +} + +/* Build a decl for the omp child function. It'll not contain a body + yet, just the bare decl. */ + +static void +create_omp_child_function (omp_context *ctx, bool task_copy) +{ + tree decl, type, name, t; + + name = create_omp_child_function_name (task_copy); + if (task_copy) + type = build_function_type_list (void_type_node, ptr_type_node, + ptr_type_node, NULL_TREE); + else + type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); + + decl = build_decl (FUNCTION_DECL, name, type); + decl = lang_hooks.decls.pushdecl (decl); + + if (!task_copy) + ctx->cb.dst_fn = decl; + else + gimple_omp_task_set_copy_fn (ctx->stmt, decl); + + TREE_STATIC (decl) = 1; + TREE_USED (decl) = 1; + DECL_ARTIFICIAL (decl) = 1; + DECL_IGNORED_P (decl) = 0; + TREE_PUBLIC (decl) = 0; + DECL_UNINLINABLE (decl) = 1; + DECL_EXTERNAL (decl) = 0; + DECL_CONTEXT (decl) = NULL_TREE; + DECL_INITIAL (decl) = make_node (BLOCK); + + t = build_decl (RESULT_DECL, NULL_TREE, void_type_node); + DECL_ARTIFICIAL (t) = 1; + DECL_IGNORED_P (t) = 1; + DECL_RESULT (decl) = t; + + t = build_decl (PARM_DECL, get_identifier (".omp_data_i"), ptr_type_node); + DECL_ARTIFICIAL (t) = 1; + DECL_ARG_TYPE (t) = ptr_type_node; + DECL_CONTEXT (t) = current_function_decl; + TREE_USED (t) = 1; + DECL_ARGUMENTS (decl) = t; + if (!task_copy) + ctx->receiver_decl = t; + else + { + t = build_decl (PARM_DECL, get_identifier (".omp_data_o"), + ptr_type_node); + DECL_ARTIFICIAL (t) = 1; + DECL_ARG_TYPE (t) = ptr_type_node; + DECL_CONTEXT (t) = current_function_decl; + TREE_USED (t) = 1; + TREE_CHAIN (t) = DECL_ARGUMENTS (decl); + DECL_ARGUMENTS (decl) = t; + } + + /* Allocate memory for the function structure. The call to + allocate_struct_function clobbers CFUN, so we need to restore + it afterward. */ + push_struct_function (decl); + DECL_SOURCE_LOCATION (decl) = gimple_location (ctx->stmt); + cfun->function_end_locus = gimple_location (ctx->stmt); + pop_cfun (); +} + + +/* Scan an OpenMP parallel directive. */ + +static void +scan_omp_parallel (gimple_stmt_iterator *gsi, omp_context *outer_ctx) +{ + omp_context *ctx; + tree name; + gimple stmt = gsi_stmt (*gsi); + + /* Ignore parallel directives with empty bodies, unless there + are copyin clauses. */ + if (optimize > 0 + && empty_body_p (gimple_omp_body (stmt)) + && find_omp_clause (gimple_omp_parallel_clauses (stmt), + OMP_CLAUSE_COPYIN) == NULL) + { + gsi_replace (gsi, gimple_build_nop (), false); + return; + } + + ctx = new_omp_context (stmt, outer_ctx); + if (taskreg_nesting_level > 1) + ctx->is_nested = true; + ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); + ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED; + ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE); + name = create_tmp_var_name (".omp_data_s"); + name = build_decl (TYPE_DECL, name, ctx->record_type); + TYPE_NAME (ctx->record_type) = name; + create_omp_child_function (ctx, false); + gimple_omp_parallel_set_child_fn (stmt, ctx->cb.dst_fn); + + scan_sharing_clauses (gimple_omp_parallel_clauses (stmt), ctx); + scan_omp (gimple_omp_body (stmt), ctx); + + if (TYPE_FIELDS (ctx->record_type) == NULL) + ctx->record_type = ctx->receiver_decl = NULL; + else + { + layout_type (ctx->record_type); + fixup_child_record_type (ctx); + } +} + +/* Scan an OpenMP task directive. */ + +static void +scan_omp_task (gimple_stmt_iterator *gsi, omp_context *outer_ctx) +{ + omp_context *ctx; + tree name, t; + gimple stmt = gsi_stmt (*gsi); + + /* Ignore task directives with empty bodies. */ + if (optimize > 0 + && empty_body_p (gimple_omp_body (stmt))) + { + gsi_replace (gsi, gimple_build_nop (), false); + return; + } + + ctx = new_omp_context (stmt, outer_ctx); + if (taskreg_nesting_level > 1) + ctx->is_nested = true; + ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); + ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED; + ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE); + name = create_tmp_var_name (".omp_data_s"); + name = build_decl (TYPE_DECL, name, ctx->record_type); + TYPE_NAME (ctx->record_type) = name; + create_omp_child_function (ctx, false); + gimple_omp_task_set_child_fn (stmt, ctx->cb.dst_fn); + + scan_sharing_clauses (gimple_omp_task_clauses (stmt), ctx); + + if (ctx->srecord_type) + { + name = create_tmp_var_name (".omp_data_a"); + name = build_decl (TYPE_DECL, name, ctx->srecord_type); + TYPE_NAME (ctx->srecord_type) = name; + create_omp_child_function (ctx, true); + } + + scan_omp (gimple_omp_body (stmt), ctx); + + if (TYPE_FIELDS (ctx->record_type) == NULL) + { + ctx->record_type = ctx->receiver_decl = NULL; + t = build_int_cst (long_integer_type_node, 0); + gimple_omp_task_set_arg_size (stmt, t); + t = build_int_cst (long_integer_type_node, 1); + gimple_omp_task_set_arg_align (stmt, t); + } + else + { + tree *p, vla_fields = NULL_TREE, *q = &vla_fields; + /* Move VLA fields to the end. */ + p = &TYPE_FIELDS (ctx->record_type); + while (*p) + if (!TYPE_SIZE_UNIT (TREE_TYPE (*p)) + || ! TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (*p)))) + { + *q = *p; + *p = TREE_CHAIN (*p); + TREE_CHAIN (*q) = NULL_TREE; + q = &TREE_CHAIN (*q); + } + else + p = &TREE_CHAIN (*p); + *p = vla_fields; + layout_type (ctx->record_type); + fixup_child_record_type (ctx); + if (ctx->srecord_type) + layout_type (ctx->srecord_type); + t = fold_convert (long_integer_type_node, + TYPE_SIZE_UNIT (ctx->record_type)); + gimple_omp_task_set_arg_size (stmt, t); + t = build_int_cst (long_integer_type_node, + TYPE_ALIGN_UNIT (ctx->record_type)); + gimple_omp_task_set_arg_align (stmt, t); + } +} + + +/* Scan an OpenMP loop directive. */ + +static void +scan_omp_for (gimple stmt, omp_context *outer_ctx) +{ + omp_context *ctx; + size_t i; + + ctx = new_omp_context (stmt, outer_ctx); + + scan_sharing_clauses (gimple_omp_for_clauses (stmt), ctx); + + scan_omp (gimple_omp_for_pre_body (stmt), ctx); + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + scan_omp_op (gimple_omp_for_index_ptr (stmt, i), ctx); + scan_omp_op (gimple_omp_for_initial_ptr (stmt, i), ctx); + scan_omp_op (gimple_omp_for_final_ptr (stmt, i), ctx); + scan_omp_op (gimple_omp_for_incr_ptr (stmt, i), ctx); + } + scan_omp (gimple_omp_body (stmt), ctx); +} + +/* Scan an OpenMP sections directive. */ + +static void +scan_omp_sections (gimple stmt, omp_context *outer_ctx) +{ + omp_context *ctx; + + ctx = new_omp_context (stmt, outer_ctx); + scan_sharing_clauses (gimple_omp_sections_clauses (stmt), ctx); + scan_omp (gimple_omp_body (stmt), ctx); +} + +/* Scan an OpenMP single directive. */ + +static void +scan_omp_single (gimple stmt, omp_context *outer_ctx) +{ + omp_context *ctx; + tree name; + + ctx = new_omp_context (stmt, outer_ctx); + ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0); + ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE); + name = create_tmp_var_name (".omp_copy_s"); + name = build_decl (TYPE_DECL, name, ctx->record_type); + TYPE_NAME (ctx->record_type) = name; + + scan_sharing_clauses (gimple_omp_single_clauses (stmt), ctx); + scan_omp (gimple_omp_body (stmt), ctx); + + if (TYPE_FIELDS (ctx->record_type) == NULL) + ctx->record_type = NULL; + else + layout_type (ctx->record_type); +} + + +/* Check OpenMP nesting restrictions. */ +static void +check_omp_nesting_restrictions (gimple stmt, omp_context *ctx) +{ + switch (gimple_code (stmt)) + { + case GIMPLE_OMP_FOR: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + case GIMPLE_CALL: + for (; ctx != NULL; ctx = ctx->outer) + switch (gimple_code (ctx->stmt)) + { + case GIMPLE_OMP_FOR: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_TASK: + if (is_gimple_call (stmt)) + { + warning (0, "barrier region may not be closely nested inside " + "of work-sharing, critical, ordered, master or " + "explicit task region"); + return; + } + warning (0, "work-sharing region may not be closely nested inside " + "of work-sharing, critical, ordered, master or explicit " + "task region"); + return; + case GIMPLE_OMP_PARALLEL: + return; + default: + break; + } + break; + case GIMPLE_OMP_MASTER: + for (; ctx != NULL; ctx = ctx->outer) + switch (gimple_code (ctx->stmt)) + { + case GIMPLE_OMP_FOR: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_TASK: + warning (0, "master region may not be closely nested inside " + "of work-sharing or explicit task region"); + return; + case GIMPLE_OMP_PARALLEL: + return; + default: + break; + } + break; + case GIMPLE_OMP_ORDERED: + for (; ctx != NULL; ctx = ctx->outer) + switch (gimple_code (ctx->stmt)) + { + case GIMPLE_OMP_CRITICAL: + case GIMPLE_OMP_TASK: + warning (0, "ordered region may not be closely nested inside " + "of critical or explicit task region"); + return; + case GIMPLE_OMP_FOR: + if (find_omp_clause (gimple_omp_for_clauses (ctx->stmt), + OMP_CLAUSE_ORDERED) == NULL) + warning (0, "ordered region must be closely nested inside " + "a loop region with an ordered clause"); + return; + case GIMPLE_OMP_PARALLEL: + return; + default: + break; + } + break; + case GIMPLE_OMP_CRITICAL: + for (; ctx != NULL; ctx = ctx->outer) + if (gimple_code (ctx->stmt) == GIMPLE_OMP_CRITICAL + && (gimple_omp_critical_name (stmt) + == gimple_omp_critical_name (ctx->stmt))) + { + warning (0, "critical region may not be nested inside a critical " + "region with the same name"); + return; + } + break; + default: + break; + } +} + + +/* Helper function scan_omp. + + Callback for walk_tree or operators in walk_gimple_stmt used to + scan for OpenMP directives in TP. */ + +static tree +scan_omp_1_op (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + omp_context *ctx = (omp_context *) wi->info; + tree t = *tp; + + switch (TREE_CODE (t)) + { + case VAR_DECL: + case PARM_DECL: + case LABEL_DECL: + case RESULT_DECL: + if (ctx) + *tp = remap_decl (t, &ctx->cb); + break; + + default: + if (ctx && TYPE_P (t)) + *tp = remap_type (t, &ctx->cb); + else if (!DECL_P (t)) + *walk_subtrees = 1; + break; + } + + return NULL_TREE; +} + + +/* Helper function for scan_omp. + + Callback for walk_gimple_stmt used to scan for OpenMP directives in + the current statement in GSI. */ + +static tree +scan_omp_1_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p, + struct walk_stmt_info *wi) +{ + gimple stmt = gsi_stmt (*gsi); + omp_context *ctx = (omp_context *) wi->info; + + if (gimple_has_location (stmt)) + input_location = gimple_location (stmt); + + /* Check the OpenMP nesting restrictions. */ + if (ctx != NULL) + { + if (is_gimple_omp (stmt)) + check_omp_nesting_restrictions (stmt, ctx); + else if (is_gimple_call (stmt)) + { + tree fndecl = gimple_call_fndecl (stmt); + if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL + && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_GOMP_BARRIER) + check_omp_nesting_restrictions (stmt, ctx); + } + } + + *handled_ops_p = true; + + switch (gimple_code (stmt)) + { + case GIMPLE_OMP_PARALLEL: + taskreg_nesting_level++; + scan_omp_parallel (gsi, ctx); + taskreg_nesting_level--; + break; + + case GIMPLE_OMP_TASK: + taskreg_nesting_level++; + scan_omp_task (gsi, ctx); + taskreg_nesting_level--; + break; + + case GIMPLE_OMP_FOR: + scan_omp_for (stmt, ctx); + break; + + case GIMPLE_OMP_SECTIONS: + scan_omp_sections (stmt, ctx); + break; + + case GIMPLE_OMP_SINGLE: + scan_omp_single (stmt, ctx); + break; + + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_CRITICAL: + ctx = new_omp_context (stmt, ctx); + scan_omp (gimple_omp_body (stmt), ctx); + break; + + case GIMPLE_BIND: + { + tree var; + + *handled_ops_p = false; + if (ctx) + for (var = gimple_bind_vars (stmt); var ; var = TREE_CHAIN (var)) + insert_decl_map (&ctx->cb, var, var); + } + break; + default: + *handled_ops_p = false; + break; + } + + return NULL_TREE; +} + + +/* Scan all the statements starting at the current statement. CTX + contains context information about the OpenMP directives and + clauses found during the scan. */ + +static void +scan_omp (gimple_seq body, omp_context *ctx) +{ + location_t saved_location; + struct walk_stmt_info wi; + + memset (&wi, 0, sizeof (wi)); + wi.info = ctx; + wi.want_locations = true; + + saved_location = input_location; + walk_gimple_seq (body, scan_omp_1_stmt, scan_omp_1_op, &wi); + input_location = saved_location; +} + +/* Re-gimplification and code generation routines. */ + +/* Build a call to GOMP_barrier. */ + +static tree +build_omp_barrier (void) +{ + return build_call_expr (built_in_decls[BUILT_IN_GOMP_BARRIER], 0); +} + +/* If a context was created for STMT when it was scanned, return it. */ + +static omp_context * +maybe_lookup_ctx (gimple stmt) +{ + splay_tree_node n; + n = splay_tree_lookup (all_contexts, (splay_tree_key) stmt); + return n ? (omp_context *) n->value : NULL; +} + + +/* Find the mapping for DECL in CTX or the immediately enclosing + context that has a mapping for DECL. + + If CTX is a nested parallel directive, we may have to use the decl + mappings created in CTX's parent context. Suppose that we have the + following parallel nesting (variable UIDs showed for clarity): + + iD.1562 = 0; + #omp parallel shared(iD.1562) -> outer parallel + iD.1562 = iD.1562 + 1; + + #omp parallel shared (iD.1562) -> inner parallel + iD.1562 = iD.1562 - 1; + + Each parallel structure will create a distinct .omp_data_s structure + for copying iD.1562 in/out of the directive: + + outer parallel .omp_data_s.1.i -> iD.1562 + inner parallel .omp_data_s.2.i -> iD.1562 + + A shared variable mapping will produce a copy-out operation before + the parallel directive and a copy-in operation after it. So, in + this case we would have: + + iD.1562 = 0; + .omp_data_o.1.i = iD.1562; + #omp parallel shared(iD.1562) -> outer parallel + .omp_data_i.1 = &.omp_data_o.1 + .omp_data_i.1->i = .omp_data_i.1->i + 1; + + .omp_data_o.2.i = iD.1562; -> ** + #omp parallel shared(iD.1562) -> inner parallel + .omp_data_i.2 = &.omp_data_o.2 + .omp_data_i.2->i = .omp_data_i.2->i - 1; + + + ** This is a problem. The symbol iD.1562 cannot be referenced + inside the body of the outer parallel region. But since we are + emitting this copy operation while expanding the inner parallel + directive, we need to access the CTX structure of the outer + parallel directive to get the correct mapping: + + .omp_data_o.2.i = .omp_data_i.1->i + + Since there may be other workshare or parallel directives enclosing + the parallel directive, it may be necessary to walk up the context + parent chain. This is not a problem in general because nested + parallelism happens only rarely. */ + +static tree +lookup_decl_in_outer_ctx (tree decl, omp_context *ctx) +{ + tree t; + omp_context *up; + + for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer) + t = maybe_lookup_decl (decl, up); + + gcc_assert (!ctx->is_nested || t || is_global_var (decl)); + + return t ? t : decl; +} + + +/* Similar to lookup_decl_in_outer_ctx, but return DECL if not found + in outer contexts. */ + +static tree +maybe_lookup_decl_in_outer_ctx (tree decl, omp_context *ctx) +{ + tree t = NULL; + omp_context *up; + + for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer) + t = maybe_lookup_decl (decl, up); + + return t ? t : decl; +} + + +/* Construct the initialization value for reduction CLAUSE. */ + +tree +omp_reduction_init (tree clause, tree type) +{ + switch (OMP_CLAUSE_REDUCTION_CODE (clause)) + { + case PLUS_EXPR: + case MINUS_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case TRUTH_OR_EXPR: + case TRUTH_ORIF_EXPR: + case TRUTH_XOR_EXPR: + case NE_EXPR: + return fold_convert (type, integer_zero_node); + + case MULT_EXPR: + case TRUTH_AND_EXPR: + case TRUTH_ANDIF_EXPR: + case EQ_EXPR: + return fold_convert (type, integer_one_node); + + case BIT_AND_EXPR: + return fold_convert (type, integer_minus_one_node); + + case MAX_EXPR: + if (SCALAR_FLOAT_TYPE_P (type)) + { + REAL_VALUE_TYPE max, min; + if (HONOR_INFINITIES (TYPE_MODE (type))) + { + real_inf (&max); + real_arithmetic (&min, NEGATE_EXPR, &max, NULL); + } + else + real_maxval (&min, 1, TYPE_MODE (type)); + return build_real (type, min); + } + else + { + gcc_assert (INTEGRAL_TYPE_P (type)); + return TYPE_MIN_VALUE (type); + } + + case MIN_EXPR: + if (SCALAR_FLOAT_TYPE_P (type)) + { + REAL_VALUE_TYPE max; + if (HONOR_INFINITIES (TYPE_MODE (type))) + real_inf (&max); + else + real_maxval (&max, 0, TYPE_MODE (type)); + return build_real (type, max); + } + else + { + gcc_assert (INTEGRAL_TYPE_P (type)); + return TYPE_MAX_VALUE (type); + } + + default: + gcc_unreachable (); + } +} + +/* Generate code to implement the input clauses, FIRSTPRIVATE and COPYIN, + from the receiver (aka child) side and initializers for REFERENCE_TYPE + private variables. Initialization statements go in ILIST, while calls + to destructors go in DLIST. */ + +static void +lower_rec_input_clauses (tree clauses, gimple_seq *ilist, gimple_seq *dlist, + omp_context *ctx) +{ + gimple_stmt_iterator diter; + tree c, dtor, copyin_seq, x, ptr; + bool copyin_by_ref = false; + bool lastprivate_firstprivate = false; + int pass; + + *dlist = gimple_seq_alloc (); + diter = gsi_start (*dlist); + copyin_seq = NULL; + + /* Do all the fixed sized types in the first pass, and the variable sized + types in the second pass. This makes sure that the scalar arguments to + the variable sized types are processed before we use them in the + variable sized operations. */ + for (pass = 0; pass < 2; ++pass) + { + for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) + { + enum omp_clause_code c_kind = OMP_CLAUSE_CODE (c); + tree var, new_var; + bool by_ref; + + switch (c_kind) + { + case OMP_CLAUSE_PRIVATE: + if (OMP_CLAUSE_PRIVATE_DEBUG (c)) + continue; + break; + case OMP_CLAUSE_SHARED: + if (maybe_lookup_decl (OMP_CLAUSE_DECL (c), ctx) == NULL) + { + gcc_assert (is_global_var (OMP_CLAUSE_DECL (c))); + continue; + } + case OMP_CLAUSE_FIRSTPRIVATE: + case OMP_CLAUSE_COPYIN: + case OMP_CLAUSE_REDUCTION: + break; + case OMP_CLAUSE_LASTPRIVATE: + if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) + { + lastprivate_firstprivate = true; + if (pass != 0) + continue; + } + break; + default: + continue; + } + + new_var = var = OMP_CLAUSE_DECL (c); + if (c_kind != OMP_CLAUSE_COPYIN) + new_var = lookup_decl (var, ctx); + + if (c_kind == OMP_CLAUSE_SHARED || c_kind == OMP_CLAUSE_COPYIN) + { + if (pass != 0) + continue; + } + else if (is_variable_sized (var)) + { + /* For variable sized types, we need to allocate the + actual storage here. Call alloca and store the + result in the pointer decl that we created elsewhere. */ + if (pass == 0) + continue; + + if (c_kind != OMP_CLAUSE_FIRSTPRIVATE || !is_task_ctx (ctx)) + { + gimple stmt; + tree tmp; + + ptr = DECL_VALUE_EXPR (new_var); + gcc_assert (TREE_CODE (ptr) == INDIRECT_REF); + ptr = TREE_OPERAND (ptr, 0); + gcc_assert (DECL_P (ptr)); + x = TYPE_SIZE_UNIT (TREE_TYPE (new_var)); + + /* void *tmp = __builtin_alloca */ + stmt + = gimple_build_call (built_in_decls[BUILT_IN_ALLOCA], 1, x); + tmp = create_tmp_var_raw (ptr_type_node, NULL); + gimple_add_tmp_var (tmp); + gimple_call_set_lhs (stmt, tmp); + + gimple_seq_add_stmt (ilist, stmt); + + x = fold_convert (TREE_TYPE (ptr), tmp); + gimplify_assign (ptr, x, ilist); + } + } + else if (is_reference (var)) + { + /* For references that are being privatized for Fortran, + allocate new backing storage for the new pointer + variable. This allows us to avoid changing all the + code that expects a pointer to something that expects + a direct variable. Note that this doesn't apply to + C++, since reference types are disallowed in data + sharing clauses there, except for NRV optimized + return values. */ + if (pass == 0) + continue; + + x = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_var))); + if (c_kind == OMP_CLAUSE_FIRSTPRIVATE && is_task_ctx (ctx)) + { + x = build_receiver_ref (var, false, ctx); + x = build_fold_addr_expr (x); + } + else if (TREE_CONSTANT (x)) + { + const char *name = NULL; + if (DECL_NAME (var)) + name = IDENTIFIER_POINTER (DECL_NAME (new_var)); + + x = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (new_var)), + name); + gimple_add_tmp_var (x); + x = build_fold_addr_expr_with_type (x, TREE_TYPE (new_var)); + } + else + { + x = build_call_expr (built_in_decls[BUILT_IN_ALLOCA], 1, x); + x = fold_convert (TREE_TYPE (new_var), x); + } + + gimplify_assign (new_var, x, ilist); + + new_var = build_fold_indirect_ref (new_var); + } + else if (c_kind == OMP_CLAUSE_REDUCTION + && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) + { + if (pass == 0) + continue; + } + else if (pass != 0) + continue; + + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_SHARED: + /* Shared global vars are just accessed directly. */ + if (is_global_var (new_var)) + break; + /* Set up the DECL_VALUE_EXPR for shared variables now. This + needs to be delayed until after fixup_child_record_type so + that we get the correct type during the dereference. */ + by_ref = use_pointer_for_field (var, ctx); + x = build_receiver_ref (var, by_ref, ctx); + SET_DECL_VALUE_EXPR (new_var, x); + DECL_HAS_VALUE_EXPR_P (new_var) = 1; + + /* ??? If VAR is not passed by reference, and the variable + hasn't been initialized yet, then we'll get a warning for + the store into the omp_data_s structure. Ideally, we'd be + able to notice this and not store anything at all, but + we're generating code too early. Suppress the warning. */ + if (!by_ref) + TREE_NO_WARNING (var) = 1; + break; + + case OMP_CLAUSE_LASTPRIVATE: + if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) + break; + /* FALLTHRU */ + + case OMP_CLAUSE_PRIVATE: + if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_PRIVATE) + x = build_outer_var_ref (var, ctx); + else if (OMP_CLAUSE_PRIVATE_OUTER_REF (c)) + { + if (is_task_ctx (ctx)) + x = build_receiver_ref (var, false, ctx); + else + x = build_outer_var_ref (var, ctx); + } + else + x = NULL; + x = lang_hooks.decls.omp_clause_default_ctor (c, new_var, x); + if (x) + gimplify_and_add (x, ilist); + /* FALLTHRU */ + + do_dtor: + x = lang_hooks.decls.omp_clause_dtor (c, new_var); + if (x) + { + gimple_seq tseq = NULL; + + dtor = x; + gimplify_stmt (&dtor, &tseq); + gsi_insert_seq_before (&diter, tseq, GSI_SAME_STMT); + } + break; + + case OMP_CLAUSE_FIRSTPRIVATE: + if (is_task_ctx (ctx)) + { + if (is_reference (var) || is_variable_sized (var)) + goto do_dtor; + else if (is_global_var (maybe_lookup_decl_in_outer_ctx (var, + ctx)) + || use_pointer_for_field (var, NULL)) + { + x = build_receiver_ref (var, false, ctx); + SET_DECL_VALUE_EXPR (new_var, x); + DECL_HAS_VALUE_EXPR_P (new_var) = 1; + goto do_dtor; + } + } + x = build_outer_var_ref (var, ctx); + x = lang_hooks.decls.omp_clause_copy_ctor (c, new_var, x); + gimplify_and_add (x, ilist); + goto do_dtor; + break; + + case OMP_CLAUSE_COPYIN: + by_ref = use_pointer_for_field (var, NULL); + x = build_receiver_ref (var, by_ref, ctx); + x = lang_hooks.decls.omp_clause_assign_op (c, new_var, x); + append_to_statement_list (x, ©in_seq); + copyin_by_ref |= by_ref; + break; + + case OMP_CLAUSE_REDUCTION: + if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) + { + tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c); + x = build_outer_var_ref (var, ctx); + + if (is_reference (var)) + x = build_fold_addr_expr (x); + SET_DECL_VALUE_EXPR (placeholder, x); + DECL_HAS_VALUE_EXPR_P (placeholder) = 1; + lower_omp (OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c), ctx); + gimple_seq_add_seq (ilist, + OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c)); + OMP_CLAUSE_REDUCTION_GIMPLE_INIT (c) = NULL; + DECL_HAS_VALUE_EXPR_P (placeholder) = 0; + } + else + { + x = omp_reduction_init (c, TREE_TYPE (new_var)); + gcc_assert (TREE_CODE (TREE_TYPE (new_var)) != ARRAY_TYPE); + gimplify_assign (new_var, x, ilist); + } + break; + + default: + gcc_unreachable (); + } + } + } + + /* The copyin sequence is not to be executed by the main thread, since + that would result in self-copies. Perhaps not visible to scalars, + but it certainly is to C++ operator=. */ + if (copyin_seq) + { + x = build_call_expr (built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM], 0); + x = build2 (NE_EXPR, boolean_type_node, x, + build_int_cst (TREE_TYPE (x), 0)); + x = build3 (COND_EXPR, void_type_node, x, copyin_seq, NULL); + gimplify_and_add (x, ilist); + } + + /* If any copyin variable is passed by reference, we must ensure the + master thread doesn't modify it before it is copied over in all + threads. Similarly for variables in both firstprivate and + lastprivate clauses we need to ensure the lastprivate copying + happens after firstprivate copying in all threads. */ + if (copyin_by_ref || lastprivate_firstprivate) + gimplify_and_add (build_omp_barrier (), ilist); +} + + +/* Generate code to implement the LASTPRIVATE clauses. This is used for + both parallel and workshare constructs. PREDICATE may be NULL if it's + always true. */ + +static void +lower_lastprivate_clauses (tree clauses, tree predicate, gimple_seq *stmt_list, + omp_context *ctx) +{ + tree x, c, label = NULL; + bool par_clauses = false; + + /* Early exit if there are no lastprivate clauses. */ + clauses = find_omp_clause (clauses, OMP_CLAUSE_LASTPRIVATE); + if (clauses == NULL) + { + /* If this was a workshare clause, see if it had been combined + with its parallel. In that case, look for the clauses on the + parallel statement itself. */ + if (is_parallel_ctx (ctx)) + return; + + ctx = ctx->outer; + if (ctx == NULL || !is_parallel_ctx (ctx)) + return; + + clauses = find_omp_clause (gimple_omp_parallel_clauses (ctx->stmt), + OMP_CLAUSE_LASTPRIVATE); + if (clauses == NULL) + return; + par_clauses = true; + } + + if (predicate) + { + gimple stmt; + tree label_true, arm1, arm2; + + label = create_artificial_label (); + label_true = create_artificial_label (); + arm1 = TREE_OPERAND (predicate, 0); + arm2 = TREE_OPERAND (predicate, 1); + gimplify_expr (&arm1, stmt_list, NULL, is_gimple_val, fb_rvalue); + gimplify_expr (&arm2, stmt_list, NULL, is_gimple_val, fb_rvalue); + stmt = gimple_build_cond (TREE_CODE (predicate), arm1, arm2, + label_true, label); + gimple_seq_add_stmt (stmt_list, stmt); + gimple_seq_add_stmt (stmt_list, gimple_build_label (label_true)); + } + + for (c = clauses; c ;) + { + tree var, new_var; + + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE) + { + var = OMP_CLAUSE_DECL (c); + new_var = lookup_decl (var, ctx); + + if (OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c)) + { + lower_omp (OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c), ctx); + gimple_seq_add_seq (stmt_list, + OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c)); + } + OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (c) = NULL; + + x = build_outer_var_ref (var, ctx); + if (is_reference (var)) + new_var = build_fold_indirect_ref (new_var); + x = lang_hooks.decls.omp_clause_assign_op (c, x, new_var); + gimplify_and_add (x, stmt_list); + } + c = OMP_CLAUSE_CHAIN (c); + if (c == NULL && !par_clauses) + { + /* If this was a workshare clause, see if it had been combined + with its parallel. In that case, continue looking for the + clauses also on the parallel statement itself. */ + if (is_parallel_ctx (ctx)) + break; + + ctx = ctx->outer; + if (ctx == NULL || !is_parallel_ctx (ctx)) + break; + + c = find_omp_clause (gimple_omp_parallel_clauses (ctx->stmt), + OMP_CLAUSE_LASTPRIVATE); + par_clauses = true; + } + } + + if (label) + gimple_seq_add_stmt (stmt_list, gimple_build_label (label)); +} + + +/* Generate code to implement the REDUCTION clauses. */ + +static void +lower_reduction_clauses (tree clauses, gimple_seq *stmt_seqp, omp_context *ctx) +{ + gimple_seq sub_seq = NULL; + gimple stmt; + tree x, c; + int count = 0; + + /* First see if there is exactly one reduction clause. Use OMP_ATOMIC + update in that case, otherwise use a lock. */ + for (c = clauses; c && count < 2; c = OMP_CLAUSE_CHAIN (c)) + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION) + { + if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) + { + /* Never use OMP_ATOMIC for array reductions. */ + count = -1; + break; + } + count++; + } + + if (count == 0) + return; + + for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) + { + tree var, ref, new_var; + enum tree_code code; + + if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_REDUCTION) + continue; + + var = OMP_CLAUSE_DECL (c); + new_var = lookup_decl (var, ctx); + if (is_reference (var)) + new_var = build_fold_indirect_ref (new_var); + ref = build_outer_var_ref (var, ctx); + code = OMP_CLAUSE_REDUCTION_CODE (c); + + /* reduction(-:var) sums up the partial results, so it acts + identically to reduction(+:var). */ + if (code == MINUS_EXPR) + code = PLUS_EXPR; + + if (count == 1) + { + tree addr = build_fold_addr_expr (ref); + + addr = save_expr (addr); + ref = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (addr)), addr); + x = fold_build2 (code, TREE_TYPE (ref), ref, new_var); + x = build2 (OMP_ATOMIC, void_type_node, addr, x); + gimplify_and_add (x, stmt_seqp); + return; + } + + if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) + { + tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c); + + if (is_reference (var)) + ref = build_fold_addr_expr (ref); + SET_DECL_VALUE_EXPR (placeholder, ref); + DECL_HAS_VALUE_EXPR_P (placeholder) = 1; + lower_omp (OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c), ctx); + gimple_seq_add_seq (&sub_seq, OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c)); + OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (c) = NULL; + OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = NULL; + } + else + { + x = build2 (code, TREE_TYPE (ref), ref, new_var); + ref = build_outer_var_ref (var, ctx); + gimplify_assign (ref, x, &sub_seq); + } + } + + stmt = gimple_build_call (built_in_decls[BUILT_IN_GOMP_ATOMIC_START], 0); + gimple_seq_add_stmt (stmt_seqp, stmt); + + gimple_seq_add_seq (stmt_seqp, sub_seq); + + stmt = gimple_build_call (built_in_decls[BUILT_IN_GOMP_ATOMIC_END], 0); + gimple_seq_add_stmt (stmt_seqp, stmt); +} + + +/* Generate code to implement the COPYPRIVATE clauses. */ + +static void +lower_copyprivate_clauses (tree clauses, gimple_seq *slist, gimple_seq *rlist, + omp_context *ctx) +{ + tree c; + + for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) + { + tree var, ref, x; + bool by_ref; + + if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYPRIVATE) + continue; + + var = OMP_CLAUSE_DECL (c); + by_ref = use_pointer_for_field (var, NULL); + + ref = build_sender_ref (var, ctx); + x = lookup_decl_in_outer_ctx (var, ctx); + x = by_ref ? build_fold_addr_expr (x) : x; + gimplify_assign (ref, x, slist); + + ref = build_receiver_ref (var, by_ref, ctx); + if (is_reference (var)) + { + ref = build_fold_indirect_ref (ref); + var = build_fold_indirect_ref (var); + } + x = lang_hooks.decls.omp_clause_assign_op (c, var, ref); + gimplify_and_add (x, rlist); + } +} + + +/* Generate code to implement the clauses, FIRSTPRIVATE, COPYIN, LASTPRIVATE, + and REDUCTION from the sender (aka parent) side. */ + +static void +lower_send_clauses (tree clauses, gimple_seq *ilist, gimple_seq *olist, + omp_context *ctx) +{ + tree c; + + for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) + { + tree val, ref, x, var; + bool by_ref, do_in = false, do_out = false; + + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_PRIVATE: + if (OMP_CLAUSE_PRIVATE_OUTER_REF (c)) + break; + continue; + case OMP_CLAUSE_FIRSTPRIVATE: + case OMP_CLAUSE_COPYIN: + case OMP_CLAUSE_LASTPRIVATE: + case OMP_CLAUSE_REDUCTION: + break; + default: + continue; + } + + val = OMP_CLAUSE_DECL (c); + var = lookup_decl_in_outer_ctx (val, ctx); + + if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYIN + && is_global_var (var)) + continue; + if (is_variable_sized (val)) + continue; + by_ref = use_pointer_for_field (val, NULL); + + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_PRIVATE: + case OMP_CLAUSE_FIRSTPRIVATE: + case OMP_CLAUSE_COPYIN: + do_in = true; + break; + + case OMP_CLAUSE_LASTPRIVATE: + if (by_ref || is_reference (val)) + { + if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)) + continue; + do_in = true; + } + else + { + do_out = true; + if (lang_hooks.decls.omp_private_outer_ref (val)) + do_in = true; + } + break; + + case OMP_CLAUSE_REDUCTION: + do_in = true; + do_out = !(by_ref || is_reference (val)); + break; + + default: + gcc_unreachable (); + } + + if (do_in) + { + ref = build_sender_ref (val, ctx); + x = by_ref ? build_fold_addr_expr (var) : var; + gimplify_assign (ref, x, ilist); + if (is_task_ctx (ctx)) + DECL_ABSTRACT_ORIGIN (TREE_OPERAND (ref, 1)) = NULL; + } + + if (do_out) + { + ref = build_sender_ref (val, ctx); + gimplify_assign (var, ref, olist); + } + } +} + +/* Generate code to implement SHARED from the sender (aka parent) + side. This is trickier, since GIMPLE_OMP_PARALLEL_CLAUSES doesn't + list things that got automatically shared. */ + +static void +lower_send_shared_vars (gimple_seq *ilist, gimple_seq *olist, omp_context *ctx) +{ + tree var, ovar, nvar, f, x, record_type; + + if (ctx->record_type == NULL) + return; + + record_type = ctx->srecord_type ? ctx->srecord_type : ctx->record_type; + for (f = TYPE_FIELDS (record_type); f ; f = TREE_CHAIN (f)) + { + ovar = DECL_ABSTRACT_ORIGIN (f); + nvar = maybe_lookup_decl (ovar, ctx); + if (!nvar || !DECL_HAS_VALUE_EXPR_P (nvar)) + continue; + + /* If CTX is a nested parallel directive. Find the immediately + enclosing parallel or workshare construct that contains a + mapping for OVAR. */ + var = lookup_decl_in_outer_ctx (ovar, ctx); + + if (use_pointer_for_field (ovar, ctx)) + { + x = build_sender_ref (ovar, ctx); + var = build_fold_addr_expr (var); + gimplify_assign (x, var, ilist); + } + else + { + x = build_sender_ref (ovar, ctx); + gimplify_assign (x, var, ilist); + + if (!TREE_READONLY (var) + /* We don't need to receive a new reference to a result + or parm decl. In fact we may not store to it as we will + invalidate any pending RSO and generate wrong gimple + during inlining. */ + && !((TREE_CODE (var) == RESULT_DECL + || TREE_CODE (var) == PARM_DECL) + && DECL_BY_REFERENCE (var))) + { + x = build_sender_ref (ovar, ctx); + gimplify_assign (var, x, olist); + } + } + } +} + + +/* A convenience function to build an empty GIMPLE_COND with just the + condition. */ + +static gimple +gimple_build_cond_empty (tree cond) +{ + enum tree_code pred_code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &pred_code, &lhs, &rhs); + return gimple_build_cond (pred_code, lhs, rhs, NULL_TREE, NULL_TREE); +} + + +/* Build the function calls to GOMP_parallel_start etc to actually + generate the parallel operation. REGION is the parallel region + being expanded. BB is the block where to insert the code. WS_ARGS + will be set if this is a call to a combined parallel+workshare + construct, it contains the list of additional arguments needed by + the workshare construct. */ + +static void +expand_parallel_call (struct omp_region *region, basic_block bb, + gimple entry_stmt, tree ws_args) +{ + tree t, t1, t2, val, cond, c, clauses; + gimple_stmt_iterator gsi; + gimple stmt; + int start_ix; + + clauses = gimple_omp_parallel_clauses (entry_stmt); + + /* Determine what flavor of GOMP_parallel_start we will be + emitting. */ + start_ix = BUILT_IN_GOMP_PARALLEL_START; + if (is_combined_parallel (region)) + { + switch (region->inner->type) + { + case GIMPLE_OMP_FOR: + gcc_assert (region->inner->sched_kind != OMP_CLAUSE_SCHEDULE_AUTO); + start_ix = BUILT_IN_GOMP_PARALLEL_LOOP_STATIC_START + + (region->inner->sched_kind + == OMP_CLAUSE_SCHEDULE_RUNTIME + ? 3 : region->inner->sched_kind); + break; + case GIMPLE_OMP_SECTIONS: + start_ix = BUILT_IN_GOMP_PARALLEL_SECTIONS_START; + break; + default: + gcc_unreachable (); + } + } + + /* By default, the value of NUM_THREADS is zero (selected at run time) + and there is no conditional. */ + cond = NULL_TREE; + val = build_int_cst (unsigned_type_node, 0); + + c = find_omp_clause (clauses, OMP_CLAUSE_IF); + if (c) + cond = OMP_CLAUSE_IF_EXPR (c); + + c = find_omp_clause (clauses, OMP_CLAUSE_NUM_THREADS); + if (c) + val = OMP_CLAUSE_NUM_THREADS_EXPR (c); + + /* Ensure 'val' is of the correct type. */ + val = fold_convert (unsigned_type_node, val); + + /* If we found the clause 'if (cond)', build either + (cond != 0) or (cond ? val : 1u). */ + if (cond) + { + gimple_stmt_iterator gsi; + + cond = gimple_boolify (cond); + + if (integer_zerop (val)) + val = fold_build2 (EQ_EXPR, unsigned_type_node, cond, + build_int_cst (TREE_TYPE (cond), 0)); + else + { + basic_block cond_bb, then_bb, else_bb; + edge e, e_then, e_else; + tree tmp_then, tmp_else, tmp_join, tmp_var; + + tmp_var = create_tmp_var (TREE_TYPE (val), NULL); + if (gimple_in_ssa_p (cfun)) + { + tmp_then = make_ssa_name (tmp_var, NULL); + tmp_else = make_ssa_name (tmp_var, NULL); + tmp_join = make_ssa_name (tmp_var, NULL); + } + else + { + tmp_then = tmp_var; + tmp_else = tmp_var; + tmp_join = tmp_var; + } + + e = split_block (bb, NULL); + cond_bb = e->src; + bb = e->dest; + remove_edge (e); + + then_bb = create_empty_bb (cond_bb); + else_bb = create_empty_bb (then_bb); + set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb); + set_immediate_dominator (CDI_DOMINATORS, else_bb, cond_bb); + + stmt = gimple_build_cond_empty (cond); + gsi = gsi_start_bb (cond_bb); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + gsi = gsi_start_bb (then_bb); + stmt = gimple_build_assign (tmp_then, val); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + gsi = gsi_start_bb (else_bb); + stmt = gimple_build_assign + (tmp_else, build_int_cst (unsigned_type_node, 1)); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE); + make_edge (cond_bb, else_bb, EDGE_FALSE_VALUE); + e_then = make_edge (then_bb, bb, EDGE_FALLTHRU); + e_else = make_edge (else_bb, bb, EDGE_FALLTHRU); + + if (gimple_in_ssa_p (cfun)) + { + gimple phi = create_phi_node (tmp_join, bb); + SSA_NAME_DEF_STMT (tmp_join) = phi; + add_phi_arg (phi, tmp_then, e_then); + add_phi_arg (phi, tmp_else, e_else); + } + + val = tmp_join; + } + + gsi = gsi_start_bb (bb); + val = force_gimple_operand_gsi (&gsi, val, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + } + + gsi = gsi_last_bb (bb); + t = gimple_omp_parallel_data_arg (entry_stmt); + if (t == NULL) + t1 = null_pointer_node; + else + t1 = build_fold_addr_expr (t); + t2 = build_fold_addr_expr (gimple_omp_parallel_child_fn (entry_stmt)); + + if (ws_args) + { + tree args = tree_cons (NULL, t2, + tree_cons (NULL, t1, + tree_cons (NULL, val, ws_args))); + t = build_function_call_expr (built_in_decls[start_ix], args); + } + else + t = build_call_expr (built_in_decls[start_ix], 3, t2, t1, val); + + force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + + t = gimple_omp_parallel_data_arg (entry_stmt); + if (t == NULL) + t = null_pointer_node; + else + t = build_fold_addr_expr (t); + t = build_call_expr (gimple_omp_parallel_child_fn (entry_stmt), 1, t); + force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + + t = build_call_expr (built_in_decls[BUILT_IN_GOMP_PARALLEL_END], 0); + force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); +} + + +/* Build the function call to GOMP_task to actually + generate the task operation. BB is the block where to insert the code. */ + +static void +expand_task_call (basic_block bb, gimple entry_stmt) +{ + tree t, t1, t2, t3, flags, cond, c, clauses; + gimple_stmt_iterator gsi; + + clauses = gimple_omp_task_clauses (entry_stmt); + + c = find_omp_clause (clauses, OMP_CLAUSE_IF); + if (c) + cond = gimple_boolify (OMP_CLAUSE_IF_EXPR (c)); + else + cond = boolean_true_node; + + c = find_omp_clause (clauses, OMP_CLAUSE_UNTIED); + flags = build_int_cst (unsigned_type_node, (c ? 1 : 0)); + + gsi = gsi_last_bb (bb); + t = gimple_omp_task_data_arg (entry_stmt); + if (t == NULL) + t2 = null_pointer_node; + else + t2 = build_fold_addr_expr (t); + t1 = build_fold_addr_expr (gimple_omp_task_child_fn (entry_stmt)); + t = gimple_omp_task_copy_fn (entry_stmt); + if (t == NULL) + t3 = null_pointer_node; + else + t3 = build_fold_addr_expr (t); + + t = build_call_expr (built_in_decls[BUILT_IN_GOMP_TASK], 7, t1, t2, t3, + gimple_omp_task_arg_size (entry_stmt), + gimple_omp_task_arg_align (entry_stmt), cond, flags); + + force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); +} + + +/* If exceptions are enabled, wrap the statements in BODY in a MUST_NOT_THROW + catch handler and return it. This prevents programs from violating the + structured block semantics with throws. */ + +static gimple_seq +maybe_catch_exception (gimple_seq body) +{ + gimple f, t; + + if (!flag_exceptions) + return body; + + if (lang_protect_cleanup_actions) + t = lang_protect_cleanup_actions (); + else + t = gimple_build_call (built_in_decls[BUILT_IN_TRAP], 0); + + f = gimple_build_eh_filter (NULL, gimple_seq_alloc_with_stmt (t)); + gimple_eh_filter_set_must_not_throw (f, true); + + t = gimple_build_try (body, gimple_seq_alloc_with_stmt (f), + GIMPLE_TRY_CATCH); + + return gimple_seq_alloc_with_stmt (t); +} + +/* Chain all the DECLs in LIST by their TREE_CHAIN fields. */ + +static tree +list2chain (tree list) +{ + tree t; + + for (t = list; t; t = TREE_CHAIN (t)) + { + tree var = TREE_VALUE (t); + if (TREE_CHAIN (t)) + TREE_CHAIN (var) = TREE_VALUE (TREE_CHAIN (t)); + else + TREE_CHAIN (var) = NULL_TREE; + } + + return list ? TREE_VALUE (list) : NULL_TREE; +} + + +/* Remove barriers in REGION->EXIT's block. Note that this is only + valid for GIMPLE_OMP_PARALLEL regions. Since the end of a parallel region + is an implicit barrier, any workshare inside the GIMPLE_OMP_PARALLEL that + left a barrier at the end of the GIMPLE_OMP_PARALLEL region can now be + removed. */ + +static void +remove_exit_barrier (struct omp_region *region) +{ + gimple_stmt_iterator gsi; + basic_block exit_bb; + edge_iterator ei; + edge e; + gimple stmt; + int any_addressable_vars = -1; + + exit_bb = region->exit; + + /* If the parallel region doesn't return, we don't have REGION->EXIT + block at all. */ + if (! exit_bb) + return; + + /* The last insn in the block will be the parallel's GIMPLE_OMP_RETURN. The + workshare's GIMPLE_OMP_RETURN will be in a preceding block. The kinds of + statements that can appear in between are extremely limited -- no + memory operations at all. Here, we allow nothing at all, so the + only thing we allow to precede this GIMPLE_OMP_RETURN is a label. */ + gsi = gsi_last_bb (exit_bb); + gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN); + gsi_prev (&gsi); + if (!gsi_end_p (gsi) && gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL) + return; + + FOR_EACH_EDGE (e, ei, exit_bb->preds) + { + gsi = gsi_last_bb (e->src); + if (gsi_end_p (gsi)) + continue; + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) == GIMPLE_OMP_RETURN + && !gimple_omp_return_nowait_p (stmt)) + { + /* OpenMP 3.0 tasks unfortunately prevent this optimization + in many cases. If there could be tasks queued, the barrier + might be needed to let the tasks run before some local + variable of the parallel that the task uses as shared + runs out of scope. The task can be spawned either + from within current function (this would be easy to check) + or from some function it calls and gets passed an address + of such a variable. */ + if (any_addressable_vars < 0) + { + gimple parallel_stmt = last_stmt (region->entry); + tree child_fun = gimple_omp_parallel_child_fn (parallel_stmt); + tree local_decls = DECL_STRUCT_FUNCTION (child_fun)->local_decls; + tree block; + + any_addressable_vars = 0; + for (; local_decls; local_decls = TREE_CHAIN (local_decls)) + if (TREE_ADDRESSABLE (TREE_VALUE (local_decls))) + { + any_addressable_vars = 1; + break; + } + for (block = gimple_block (stmt); + !any_addressable_vars + && block + && TREE_CODE (block) == BLOCK; + block = BLOCK_SUPERCONTEXT (block)) + { + for (local_decls = BLOCK_VARS (block); + local_decls; + local_decls = TREE_CHAIN (local_decls)) + if (TREE_ADDRESSABLE (local_decls)) + { + any_addressable_vars = 1; + break; + } + if (block == gimple_block (parallel_stmt)) + break; + } + } + if (!any_addressable_vars) + gimple_omp_return_set_nowait (stmt); + } + } +} + +static void +remove_exit_barriers (struct omp_region *region) +{ + if (region->type == GIMPLE_OMP_PARALLEL) + remove_exit_barrier (region); + + if (region->inner) + { + region = region->inner; + remove_exit_barriers (region); + while (region->next) + { + region = region->next; + remove_exit_barriers (region); + } + } +} + +/* Optimize omp_get_thread_num () and omp_get_num_threads () + calls. These can't be declared as const functions, but + within one parallel body they are constant, so they can be + transformed there into __builtin_omp_get_{thread_num,num_threads} () + which are declared const. Similarly for task body, except + that in untied task omp_get_thread_num () can change at any task + scheduling point. */ + +static void +optimize_omp_library_calls (gimple entry_stmt) +{ + basic_block bb; + gimple_stmt_iterator gsi; + tree thr_num_id + = DECL_ASSEMBLER_NAME (built_in_decls [BUILT_IN_OMP_GET_THREAD_NUM]); + tree num_thr_id + = DECL_ASSEMBLER_NAME (built_in_decls [BUILT_IN_OMP_GET_NUM_THREADS]); + bool untied_task = (gimple_code (entry_stmt) == GIMPLE_OMP_TASK + && find_omp_clause (gimple_omp_task_clauses (entry_stmt), + OMP_CLAUSE_UNTIED) != NULL); + + FOR_EACH_BB (bb) + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple call = gsi_stmt (gsi); + tree decl; + + if (is_gimple_call (call) + && (decl = gimple_call_fndecl (call)) + && DECL_EXTERNAL (decl) + && TREE_PUBLIC (decl) + && DECL_INITIAL (decl) == NULL) + { + tree built_in; + + if (DECL_NAME (decl) == thr_num_id) + { + /* In #pragma omp task untied omp_get_thread_num () can change + during the execution of the task region. */ + if (untied_task) + continue; + built_in = built_in_decls [BUILT_IN_OMP_GET_THREAD_NUM]; + } + else if (DECL_NAME (decl) == num_thr_id) + built_in = built_in_decls [BUILT_IN_OMP_GET_NUM_THREADS]; + else + continue; + + if (DECL_ASSEMBLER_NAME (decl) != DECL_ASSEMBLER_NAME (built_in) + || gimple_call_num_args (call) != 0) + continue; + + if (flag_exceptions && !TREE_NOTHROW (decl)) + continue; + + if (TREE_CODE (TREE_TYPE (decl)) != FUNCTION_TYPE + || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (decl))) + != TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (built_in)))) + continue; + + gimple_call_set_fndecl (call, built_in); + } + } +} + +/* Expand the OpenMP parallel or task directive starting at REGION. */ + +static void +expand_omp_taskreg (struct omp_region *region) +{ + basic_block entry_bb, exit_bb, new_bb; + struct function *child_cfun; + tree child_fn, block, t, ws_args, *tp; + gimple_stmt_iterator gsi; + gimple entry_stmt, stmt; + edge e; + + entry_stmt = last_stmt (region->entry); + child_fn = gimple_omp_taskreg_child_fn (entry_stmt); + child_cfun = DECL_STRUCT_FUNCTION (child_fn); + /* If this function has been already instrumented, make sure + the child function isn't instrumented again. */ + child_cfun->after_tree_profile = cfun->after_tree_profile; + + entry_bb = region->entry; + exit_bb = region->exit; + + if (is_combined_parallel (region)) + ws_args = region->ws_args; + else + ws_args = NULL_TREE; + + if (child_cfun->cfg) + { + /* Due to inlining, it may happen that we have already outlined + the region, in which case all we need to do is make the + sub-graph unreachable and emit the parallel call. */ + edge entry_succ_e, exit_succ_e; + gimple_stmt_iterator gsi; + + entry_succ_e = single_succ_edge (entry_bb); + + gsi = gsi_last_bb (entry_bb); + gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_PARALLEL + || gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_TASK); + gsi_remove (&gsi, true); + + new_bb = entry_bb; + if (exit_bb) + { + exit_succ_e = single_succ_edge (exit_bb); + make_edge (new_bb, exit_succ_e->dest, EDGE_FALLTHRU); + } + remove_edge_and_dominated_blocks (entry_succ_e); + } + else + { + /* If the parallel region needs data sent from the parent + function, then the very first statement (except possible + tree profile counter updates) of the parallel body + is a copy assignment .OMP_DATA_I = &.OMP_DATA_O. Since + &.OMP_DATA_O is passed as an argument to the child function, + we need to replace it with the argument as seen by the child + function. + + In most cases, this will end up being the identity assignment + .OMP_DATA_I = .OMP_DATA_I. However, if the parallel body had + a function call that has been inlined, the original PARM_DECL + .OMP_DATA_I may have been converted into a different local + variable. In which case, we need to keep the assignment. */ + if (gimple_omp_taskreg_data_arg (entry_stmt)) + { + basic_block entry_succ_bb = single_succ (entry_bb); + gimple_stmt_iterator gsi; + tree arg, narg; + gimple parcopy_stmt = NULL; + + for (gsi = gsi_start_bb (entry_succ_bb); ; gsi_next (&gsi)) + { + gimple stmt; + + gcc_assert (!gsi_end_p (gsi)); + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_ASSIGN) + continue; + + if (gimple_num_ops (stmt) == 2) + { + tree arg = gimple_assign_rhs1 (stmt); + + /* We're ignore the subcode because we're + effectively doing a STRIP_NOPS. */ + + if (TREE_CODE (arg) == ADDR_EXPR + && TREE_OPERAND (arg, 0) + == gimple_omp_taskreg_data_arg (entry_stmt)) + { + parcopy_stmt = stmt; + break; + } + } + } + + gcc_assert (parcopy_stmt != NULL); + arg = DECL_ARGUMENTS (child_fn); + + if (!gimple_in_ssa_p (cfun)) + { + if (gimple_assign_lhs (parcopy_stmt) == arg) + gsi_remove (&gsi, true); + else + { + /* ?? Is setting the subcode really necessary ?? */ + gimple_omp_set_subcode (parcopy_stmt, TREE_CODE (arg)); + gimple_assign_set_rhs1 (parcopy_stmt, arg); + } + } + else + { + /* If we are in ssa form, we must load the value from the default + definition of the argument. That should not be defined now, + since the argument is not used uninitialized. */ + gcc_assert (gimple_default_def (cfun, arg) == NULL); + narg = make_ssa_name (arg, gimple_build_nop ()); + set_default_def (arg, narg); + /* ?? Is setting the subcode really necessary ?? */ + gimple_omp_set_subcode (parcopy_stmt, TREE_CODE (narg)); + gimple_assign_set_rhs1 (parcopy_stmt, narg); + update_stmt (parcopy_stmt); + } + } + + /* Declare local variables needed in CHILD_CFUN. */ + block = DECL_INITIAL (child_fn); + BLOCK_VARS (block) = list2chain (child_cfun->local_decls); + /* The gimplifier could record temporaries in parallel/task block + rather than in containing function's local_decls chain, + which would mean cgraph missed finalizing them. Do it now. */ + for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) + if (TREE_CODE (t) == VAR_DECL + && TREE_STATIC (t) + && !DECL_EXTERNAL (t)) + varpool_finalize_decl (t); + DECL_SAVED_TREE (child_fn) = NULL; + gimple_set_body (child_fn, bb_seq (single_succ (entry_bb))); + TREE_USED (block) = 1; + + /* Reset DECL_CONTEXT on function arguments. */ + for (t = DECL_ARGUMENTS (child_fn); t; t = TREE_CHAIN (t)) + DECL_CONTEXT (t) = child_fn; + + /* Split ENTRY_BB at GIMPLE_OMP_PARALLEL or GIMPLE_OMP_TASK, + so that it can be moved to the child function. */ + gsi = gsi_last_bb (entry_bb); + stmt = gsi_stmt (gsi); + gcc_assert (stmt && (gimple_code (stmt) == GIMPLE_OMP_PARALLEL + || gimple_code (stmt) == GIMPLE_OMP_TASK)); + gsi_remove (&gsi, true); + e = split_block (entry_bb, stmt); + entry_bb = e->dest; + single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU; + + /* Convert GIMPLE_OMP_RETURN into a RETURN_EXPR. */ + if (exit_bb) + { + gsi = gsi_last_bb (exit_bb); + gcc_assert (!gsi_end_p (gsi) + && gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_RETURN); + stmt = gimple_build_return (NULL); + gsi_insert_after (&gsi, stmt, GSI_SAME_STMT); + gsi_remove (&gsi, true); + } + + /* Move the parallel region into CHILD_CFUN. */ + + if (gimple_in_ssa_p (cfun)) + { + push_cfun (child_cfun); + init_tree_ssa (child_cfun); + init_ssa_operands (); + cfun->gimple_df->in_ssa_p = true; + pop_cfun (); + block = NULL_TREE; + } + else + block = gimple_block (entry_stmt); + + new_bb = move_sese_region_to_fn (child_cfun, entry_bb, exit_bb, block); + if (exit_bb) + single_succ_edge (new_bb)->flags = EDGE_FALLTHRU; + + /* Remove non-local VAR_DECLs from child_cfun->local_decls list. */ + for (tp = &child_cfun->local_decls; *tp; ) + if (DECL_CONTEXT (TREE_VALUE (*tp)) != cfun->decl) + tp = &TREE_CHAIN (*tp); + else + *tp = TREE_CHAIN (*tp); + + /* Inform the callgraph about the new function. */ + DECL_STRUCT_FUNCTION (child_fn)->curr_properties + = cfun->curr_properties; + cgraph_add_new_function (child_fn, true); + + /* Fix the callgraph edges for child_cfun. Those for cfun will be + fixed in a following pass. */ + push_cfun (child_cfun); + if (optimize) + optimize_omp_library_calls (entry_stmt); + rebuild_cgraph_edges (); + + /* Some EH regions might become dead, see PR34608. If + pass_cleanup_cfg isn't the first pass to happen with the + new child, these dead EH edges might cause problems. + Clean them up now. */ + if (flag_exceptions) + { + basic_block bb; + tree save_current = current_function_decl; + bool changed = false; + + current_function_decl = child_fn; + FOR_EACH_BB (bb) + changed |= gimple_purge_dead_eh_edges (bb); + if (changed) + cleanup_tree_cfg (); + current_function_decl = save_current; + } + pop_cfun (); + } + + /* Emit a library call to launch the children threads. */ + if (gimple_code (entry_stmt) == GIMPLE_OMP_PARALLEL) + expand_parallel_call (region, new_bb, entry_stmt, ws_args); + else + expand_task_call (new_bb, entry_stmt); + update_ssa (TODO_update_ssa_only_virtuals); +} + + +/* A subroutine of expand_omp_for. Generate code for a parallel + loop with any schedule. Given parameters: + + for (V = N1; V cond N2; V += STEP) BODY; + + where COND is "<" or ">", we generate pseudocode + + more = GOMP_loop_foo_start (N1, N2, STEP, CHUNK, &istart0, &iend0); + if (more) goto L0; else goto L3; + L0: + V = istart0; + iend = iend0; + L1: + BODY; + V += STEP; + if (V cond iend) goto L1; else goto L2; + L2: + if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3; + L3: + + If this is a combined omp parallel loop, instead of the call to + GOMP_loop_foo_start, we call GOMP_loop_foo_next. + + For collapsed loops, given parameters: + collapse(3) + for (V1 = N11; V1 cond1 N12; V1 += STEP1) + for (V2 = N21; V2 cond2 N22; V2 += STEP2) + for (V3 = N31; V3 cond3 N32; V3 += STEP3) + BODY; + + we generate pseudocode + + if (cond3 is <) + adj = STEP3 - 1; + else + adj = STEP3 + 1; + count3 = (adj + N32 - N31) / STEP3; + if (cond2 is <) + adj = STEP2 - 1; + else + adj = STEP2 + 1; + count2 = (adj + N22 - N21) / STEP2; + if (cond1 is <) + adj = STEP1 - 1; + else + adj = STEP1 + 1; + count1 = (adj + N12 - N11) / STEP1; + count = count1 * count2 * count3; + more = GOMP_loop_foo_start (0, count, 1, CHUNK, &istart0, &iend0); + if (more) goto L0; else goto L3; + L0: + V = istart0; + T = V; + V3 = N31 + (T % count3) * STEP3; + T = T / count3; + V2 = N21 + (T % count2) * STEP2; + T = T / count2; + V1 = N11 + T * STEP1; + iend = iend0; + L1: + BODY; + V += 1; + if (V < iend) goto L10; else goto L2; + L10: + V3 += STEP3; + if (V3 cond3 N32) goto L1; else goto L11; + L11: + V3 = N31; + V2 += STEP2; + if (V2 cond2 N22) goto L1; else goto L12; + L12: + V2 = N21; + V1 += STEP1; + goto L1; + L2: + if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3; + L3: + + */ + +static void +expand_omp_for_generic (struct omp_region *region, + struct omp_for_data *fd, + enum built_in_function start_fn, + enum built_in_function next_fn) +{ + tree type, istart0, iend0, iend; + tree t, vmain, vback, bias = NULL_TREE; + basic_block entry_bb, cont_bb, exit_bb, l0_bb, l1_bb, collapse_bb; + basic_block l2_bb = NULL, l3_bb = NULL; + gimple_stmt_iterator gsi; + gimple stmt; + bool in_combined_parallel = is_combined_parallel (region); + bool broken_loop = region->cont == NULL; + edge e, ne; + tree *counts = NULL; + int i; + + gcc_assert (!broken_loop || !in_combined_parallel); + gcc_assert (fd->iter_type == long_integer_type_node + || !in_combined_parallel); + + type = TREE_TYPE (fd->loop.v); + istart0 = create_tmp_var (fd->iter_type, ".istart0"); + iend0 = create_tmp_var (fd->iter_type, ".iend0"); + TREE_ADDRESSABLE (istart0) = 1; + TREE_ADDRESSABLE (iend0) = 1; + if (gimple_in_ssa_p (cfun)) + { + add_referenced_var (istart0); + add_referenced_var (iend0); + } + + /* See if we need to bias by LLONG_MIN. */ + if (fd->iter_type == long_long_unsigned_type_node + && TREE_CODE (type) == INTEGER_TYPE + && !TYPE_UNSIGNED (type)) + { + tree n1, n2; + + if (fd->loop.cond_code == LT_EXPR) + { + n1 = fd->loop.n1; + n2 = fold_build2 (PLUS_EXPR, type, fd->loop.n2, fd->loop.step); + } + else + { + n1 = fold_build2 (MINUS_EXPR, type, fd->loop.n2, fd->loop.step); + n2 = fd->loop.n1; + } + if (TREE_CODE (n1) != INTEGER_CST + || TREE_CODE (n2) != INTEGER_CST + || ((tree_int_cst_sgn (n1) < 0) ^ (tree_int_cst_sgn (n2) < 0))) + bias = fold_convert (fd->iter_type, TYPE_MIN_VALUE (type)); + } + + entry_bb = region->entry; + cont_bb = region->cont; + collapse_bb = NULL; + gcc_assert (EDGE_COUNT (entry_bb->succs) == 2); + gcc_assert (broken_loop + || BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest); + l0_bb = split_edge (FALLTHRU_EDGE (entry_bb)); + l1_bb = single_succ (l0_bb); + if (!broken_loop) + { + l2_bb = create_empty_bb (cont_bb); + gcc_assert (BRANCH_EDGE (cont_bb)->dest == l1_bb); + gcc_assert (EDGE_COUNT (cont_bb->succs) == 2); + } + else + l2_bb = NULL; + l3_bb = BRANCH_EDGE (entry_bb)->dest; + exit_bb = region->exit; + + gsi = gsi_last_bb (entry_bb); + + gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR); + if (fd->collapse > 1) + { + /* collapsed loops need work for expansion in SSA form. */ + gcc_assert (!gimple_in_ssa_p (cfun)); + counts = (tree *) alloca (fd->collapse * sizeof (tree)); + for (i = 0; i < fd->collapse; i++) + { + tree itype = TREE_TYPE (fd->loops[i].v); + + if (POINTER_TYPE_P (itype)) + itype = lang_hooks.types.type_for_size (TYPE_PRECISION (itype), 0); + t = build_int_cst (itype, (fd->loops[i].cond_code == LT_EXPR + ? -1 : 1)); + t = fold_build2 (PLUS_EXPR, itype, + fold_convert (itype, fd->loops[i].step), t); + t = fold_build2 (PLUS_EXPR, itype, t, + fold_convert (itype, fd->loops[i].n2)); + t = fold_build2 (MINUS_EXPR, itype, t, + fold_convert (itype, fd->loops[i].n1)); + if (TYPE_UNSIGNED (itype) && fd->loops[i].cond_code == GT_EXPR) + t = fold_build2 (TRUNC_DIV_EXPR, itype, + fold_build1 (NEGATE_EXPR, itype, t), + fold_build1 (NEGATE_EXPR, itype, + fold_convert (itype, + fd->loops[i].step))); + else + t = fold_build2 (TRUNC_DIV_EXPR, itype, t, + fold_convert (itype, fd->loops[i].step)); + t = fold_convert (type, t); + if (TREE_CODE (t) == INTEGER_CST) + counts[i] = t; + else + { + counts[i] = create_tmp_var (type, ".count"); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + true, GSI_SAME_STMT); + stmt = gimple_build_assign (counts[i], t); + gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); + } + if (SSA_VAR_P (fd->loop.n2)) + { + if (i == 0) + t = counts[0]; + else + { + t = fold_build2 (MULT_EXPR, type, fd->loop.n2, counts[i]); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + true, GSI_SAME_STMT); + } + stmt = gimple_build_assign (fd->loop.n2, t); + gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); + } + } + } + if (in_combined_parallel) + { + /* In a combined parallel loop, emit a call to + GOMP_loop_foo_next. */ + t = build_call_expr (built_in_decls[next_fn], 2, + build_fold_addr_expr (istart0), + build_fold_addr_expr (iend0)); + } + else + { + tree t0, t1, t2, t3, t4; + /* If this is not a combined parallel loop, emit a call to + GOMP_loop_foo_start in ENTRY_BB. */ + t4 = build_fold_addr_expr (iend0); + t3 = build_fold_addr_expr (istart0); + t2 = fold_convert (fd->iter_type, fd->loop.step); + if (POINTER_TYPE_P (type) + && TYPE_PRECISION (type) != TYPE_PRECISION (fd->iter_type)) + { + /* Avoid casting pointers to integer of a different size. */ + tree itype + = lang_hooks.types.type_for_size (TYPE_PRECISION (type), 0); + t1 = fold_convert (fd->iter_type, fold_convert (itype, fd->loop.n2)); + t0 = fold_convert (fd->iter_type, fold_convert (itype, fd->loop.n1)); + } + else + { + t1 = fold_convert (fd->iter_type, fd->loop.n2); + t0 = fold_convert (fd->iter_type, fd->loop.n1); + } + if (bias) + { + t1 = fold_build2 (PLUS_EXPR, fd->iter_type, t1, bias); + t0 = fold_build2 (PLUS_EXPR, fd->iter_type, t0, bias); + } + if (fd->iter_type == long_integer_type_node) + { + if (fd->chunk_size) + { + t = fold_convert (fd->iter_type, fd->chunk_size); + t = build_call_expr (built_in_decls[start_fn], 6, + t0, t1, t2, t, t3, t4); + } + else + t = build_call_expr (built_in_decls[start_fn], 5, + t0, t1, t2, t3, t4); + } + else + { + tree t5; + tree c_bool_type; + + /* The GOMP_loop_ull_*start functions have additional boolean + argument, true for < loops and false for > loops. + In Fortran, the C bool type can be different from + boolean_type_node. */ + c_bool_type = TREE_TYPE (TREE_TYPE (built_in_decls[start_fn])); + t5 = build_int_cst (c_bool_type, + fd->loop.cond_code == LT_EXPR ? 1 : 0); + if (fd->chunk_size) + { + t = fold_convert (fd->iter_type, fd->chunk_size); + t = build_call_expr (built_in_decls[start_fn], 7, + t5, t0, t1, t2, t, t3, t4); + } + else + t = build_call_expr (built_in_decls[start_fn], 6, + t5, t0, t1, t2, t3, t4); + } + } + if (TREE_TYPE (t) != boolean_type_node) + t = fold_build2 (NE_EXPR, boolean_type_node, + t, build_int_cst (TREE_TYPE (t), 0)); + t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + true, GSI_SAME_STMT); + gsi_insert_after (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT); + + /* Remove the GIMPLE_OMP_FOR statement. */ + gsi_remove (&gsi, true); + + /* Iteration setup for sequential loop goes in L0_BB. */ + gsi = gsi_start_bb (l0_bb); + if (bias) + t = fold_convert (type, fold_build2 (MINUS_EXPR, fd->iter_type, + istart0, bias)); + else + t = fold_convert (type, istart0); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (fd->loop.v, t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + if (bias) + t = fold_convert (type, fold_build2 (MINUS_EXPR, fd->iter_type, + iend0, bias)); + else + t = fold_convert (type, iend0); + iend = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + if (fd->collapse > 1) + { + tree tem = create_tmp_var (type, ".tem"); + + stmt = gimple_build_assign (tem, fd->loop.v); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + for (i = fd->collapse - 1; i >= 0; i--) + { + tree vtype = TREE_TYPE (fd->loops[i].v), itype; + itype = vtype; + if (POINTER_TYPE_P (vtype)) + itype = lang_hooks.types.type_for_size (TYPE_PRECISION (vtype), 0); + t = fold_build2 (TRUNC_MOD_EXPR, type, tem, counts[i]); + t = fold_convert (itype, t); + t = fold_build2 (MULT_EXPR, itype, t, fd->loops[i].step); + if (POINTER_TYPE_P (vtype)) + t = fold_build2 (POINTER_PLUS_EXPR, vtype, + fd->loops[i].n1, fold_convert (sizetype, t)); + else + t = fold_build2 (PLUS_EXPR, itype, fd->loops[i].n1, t); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (fd->loops[i].v, t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + if (i != 0) + { + t = fold_build2 (TRUNC_DIV_EXPR, type, tem, counts[i]); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (tem, t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + } + } + } + + if (!broken_loop) + { + /* Code to control the increment and predicate for the sequential + loop goes in the CONT_BB. */ + gsi = gsi_last_bb (cont_bb); + stmt = gsi_stmt (gsi); + gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE); + vmain = gimple_omp_continue_control_use (stmt); + vback = gimple_omp_continue_control_def (stmt); + + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, vmain, + fold_convert (sizetype, fd->loop.step)); + else + t = fold_build2 (PLUS_EXPR, type, vmain, fd->loop.step); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + true, GSI_SAME_STMT); + stmt = gimple_build_assign (vback, t); + gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); + + t = build2 (fd->loop.cond_code, boolean_type_node, vback, iend); + stmt = gimple_build_cond_empty (t); + gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); + + /* Remove GIMPLE_OMP_CONTINUE. */ + gsi_remove (&gsi, true); + + if (fd->collapse > 1) + { + basic_block last_bb, bb; + + last_bb = cont_bb; + for (i = fd->collapse - 1; i >= 0; i--) + { + tree vtype = TREE_TYPE (fd->loops[i].v); + + bb = create_empty_bb (last_bb); + gsi = gsi_start_bb (bb); + + if (i < fd->collapse - 1) + { + e = make_edge (last_bb, bb, EDGE_FALSE_VALUE); + e->probability = REG_BR_PROB_BASE / 8; + + t = fd->loops[i + 1].n1; + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (fd->loops[i + 1].v, t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + } + else + collapse_bb = bb; + + set_immediate_dominator (CDI_DOMINATORS, bb, last_bb); + + if (POINTER_TYPE_P (vtype)) + t = fold_build2 (POINTER_PLUS_EXPR, vtype, + fd->loops[i].v, + fold_convert (sizetype, fd->loops[i].step)); + else + t = fold_build2 (PLUS_EXPR, vtype, fd->loops[i].v, + fd->loops[i].step); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (fd->loops[i].v, t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + if (i > 0) + { + t = fd->loops[i].n2; + t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + t = fold_build2 (fd->loops[i].cond_code, boolean_type_node, + fd->loops[i].v, t); + stmt = gimple_build_cond_empty (t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + e = make_edge (bb, l1_bb, EDGE_TRUE_VALUE); + e->probability = REG_BR_PROB_BASE * 7 / 8; + } + else + make_edge (bb, l1_bb, EDGE_FALLTHRU); + last_bb = bb; + } + } + + /* Emit code to get the next parallel iteration in L2_BB. */ + gsi = gsi_start_bb (l2_bb); + + t = build_call_expr (built_in_decls[next_fn], 2, + build_fold_addr_expr (istart0), + build_fold_addr_expr (iend0)); + t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + if (TREE_TYPE (t) != boolean_type_node) + t = fold_build2 (NE_EXPR, boolean_type_node, + t, build_int_cst (TREE_TYPE (t), 0)); + stmt = gimple_build_cond_empty (t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + } + + /* Add the loop cleanup function. */ + gsi = gsi_last_bb (exit_bb); + if (gimple_omp_return_nowait_p (gsi_stmt (gsi))) + t = built_in_decls[BUILT_IN_GOMP_LOOP_END_NOWAIT]; + else + t = built_in_decls[BUILT_IN_GOMP_LOOP_END]; + stmt = gimple_build_call (t, 0); + gsi_insert_after (&gsi, stmt, GSI_SAME_STMT); + gsi_remove (&gsi, true); + + /* Connect the new blocks. */ + find_edge (entry_bb, l0_bb)->flags = EDGE_TRUE_VALUE; + find_edge (entry_bb, l3_bb)->flags = EDGE_FALSE_VALUE; + + if (!broken_loop) + { + gimple_seq phis; + + e = find_edge (cont_bb, l3_bb); + ne = make_edge (l2_bb, l3_bb, EDGE_FALSE_VALUE); + + phis = phi_nodes (l3_bb); + for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, ne), + PHI_ARG_DEF_FROM_EDGE (phi, e)); + } + remove_edge (e); + + make_edge (cont_bb, l2_bb, EDGE_FALSE_VALUE); + if (fd->collapse > 1) + { + e = find_edge (cont_bb, l1_bb); + remove_edge (e); + e = make_edge (cont_bb, collapse_bb, EDGE_TRUE_VALUE); + } + else + { + e = find_edge (cont_bb, l1_bb); + e->flags = EDGE_TRUE_VALUE; + } + e->probability = REG_BR_PROB_BASE * 7 / 8; + find_edge (cont_bb, l2_bb)->probability = REG_BR_PROB_BASE / 8; + make_edge (l2_bb, l0_bb, EDGE_TRUE_VALUE); + + set_immediate_dominator (CDI_DOMINATORS, l2_bb, + recompute_dominator (CDI_DOMINATORS, l2_bb)); + set_immediate_dominator (CDI_DOMINATORS, l3_bb, + recompute_dominator (CDI_DOMINATORS, l3_bb)); + set_immediate_dominator (CDI_DOMINATORS, l0_bb, + recompute_dominator (CDI_DOMINATORS, l0_bb)); + set_immediate_dominator (CDI_DOMINATORS, l1_bb, + recompute_dominator (CDI_DOMINATORS, l1_bb)); + } +} + + +/* A subroutine of expand_omp_for. Generate code for a parallel + loop with static schedule and no specified chunk size. Given + parameters: + + for (V = N1; V cond N2; V += STEP) BODY; + + where COND is "<" or ">", we generate pseudocode + + if (cond is <) + adj = STEP - 1; + else + adj = STEP + 1; + if ((__typeof (V)) -1 > 0 && cond is >) + n = -(adj + N2 - N1) / -STEP; + else + n = (adj + N2 - N1) / STEP; + q = n / nthreads; + q += (q * nthreads != n); + s0 = q * threadid; + e0 = min(s0 + q, n); + V = s0 * STEP + N1; + if (s0 >= e0) goto L2; else goto L0; + L0: + e = e0 * STEP + N1; + L1: + BODY; + V += STEP; + if (V cond e) goto L1; + L2: +*/ + +static void +expand_omp_for_static_nochunk (struct omp_region *region, + struct omp_for_data *fd) +{ + tree n, q, s0, e0, e, t, nthreads, threadid; + tree type, itype, vmain, vback; + basic_block entry_bb, exit_bb, seq_start_bb, body_bb, cont_bb; + basic_block fin_bb; + gimple_stmt_iterator gsi; + gimple stmt; + + itype = type = TREE_TYPE (fd->loop.v); + if (POINTER_TYPE_P (type)) + itype = lang_hooks.types.type_for_size (TYPE_PRECISION (type), 0); + + entry_bb = region->entry; + cont_bb = region->cont; + gcc_assert (EDGE_COUNT (entry_bb->succs) == 2); + gcc_assert (BRANCH_EDGE (entry_bb)->dest == FALLTHRU_EDGE (cont_bb)->dest); + seq_start_bb = split_edge (FALLTHRU_EDGE (entry_bb)); + body_bb = single_succ (seq_start_bb); + gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb); + gcc_assert (EDGE_COUNT (cont_bb->succs) == 2); + fin_bb = FALLTHRU_EDGE (cont_bb)->dest; + exit_bb = region->exit; + + /* Iteration space partitioning goes in ENTRY_BB. */ + gsi = gsi_last_bb (entry_bb); + gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_FOR); + + t = build_call_expr (built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS], 0); + t = fold_convert (itype, t); + nthreads = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + true, GSI_SAME_STMT); + + t = build_call_expr (built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM], 0); + t = fold_convert (itype, t); + threadid = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + true, GSI_SAME_STMT); + + fd->loop.n1 + = force_gimple_operand_gsi (&gsi, fold_convert (type, fd->loop.n1), + true, NULL_TREE, true, GSI_SAME_STMT); + fd->loop.n2 + = force_gimple_operand_gsi (&gsi, fold_convert (itype, fd->loop.n2), + true, NULL_TREE, true, GSI_SAME_STMT); + fd->loop.step + = force_gimple_operand_gsi (&gsi, fold_convert (itype, fd->loop.step), + true, NULL_TREE, true, GSI_SAME_STMT); + + t = build_int_cst (itype, (fd->loop.cond_code == LT_EXPR ? -1 : 1)); + t = fold_build2 (PLUS_EXPR, itype, fd->loop.step, t); + t = fold_build2 (PLUS_EXPR, itype, t, fd->loop.n2); + t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, fd->loop.n1)); + if (TYPE_UNSIGNED (itype) && fd->loop.cond_code == GT_EXPR) + t = fold_build2 (TRUNC_DIV_EXPR, itype, + fold_build1 (NEGATE_EXPR, itype, t), + fold_build1 (NEGATE_EXPR, itype, fd->loop.step)); + else + t = fold_build2 (TRUNC_DIV_EXPR, itype, t, fd->loop.step); + t = fold_convert (itype, t); + n = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT); + + t = fold_build2 (TRUNC_DIV_EXPR, itype, n, nthreads); + q = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT); + + t = fold_build2 (MULT_EXPR, itype, q, nthreads); + t = fold_build2 (NE_EXPR, itype, t, n); + t = fold_build2 (PLUS_EXPR, itype, q, t); + q = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT); + + t = build2 (MULT_EXPR, itype, q, threadid); + s0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT); + + t = fold_build2 (PLUS_EXPR, itype, s0, q); + t = fold_build2 (MIN_EXPR, itype, t, n); + e0 = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, true, GSI_SAME_STMT); + + t = build2 (GE_EXPR, boolean_type_node, s0, e0); + gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT); + + /* Remove the GIMPLE_OMP_FOR statement. */ + gsi_remove (&gsi, true); + + /* Setup code for sequential iteration goes in SEQ_START_BB. */ + gsi = gsi_start_bb (seq_start_bb); + + t = fold_convert (itype, s0); + t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step); + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, fd->loop.n1, + fold_convert (sizetype, t)); + else + t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (fd->loop.v, t); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + t = fold_convert (itype, e0); + t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step); + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, fd->loop.n1, + fold_convert (sizetype, t)); + else + t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1); + e = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + + /* The code controlling the sequential loop replaces the + GIMPLE_OMP_CONTINUE. */ + gsi = gsi_last_bb (cont_bb); + stmt = gsi_stmt (gsi); + gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE); + vmain = gimple_omp_continue_control_use (stmt); + vback = gimple_omp_continue_control_def (stmt); + + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, vmain, + fold_convert (sizetype, fd->loop.step)); + else + t = fold_build2 (PLUS_EXPR, type, vmain, fd->loop.step); + t = force_gimple_operand_gsi (&gsi, t, false, NULL_TREE, + true, GSI_SAME_STMT); + stmt = gimple_build_assign (vback, t); + gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); + + t = build2 (fd->loop.cond_code, boolean_type_node, vback, e); + gsi_insert_before (&gsi, gimple_build_cond_empty (t), GSI_SAME_STMT); + + /* Remove the GIMPLE_OMP_CONTINUE statement. */ + gsi_remove (&gsi, true); + + /* Replace the GIMPLE_OMP_RETURN with a barrier, or nothing. */ + gsi = gsi_last_bb (exit_bb); + if (!gimple_omp_return_nowait_p (gsi_stmt (gsi))) + force_gimple_operand_gsi (&gsi, build_omp_barrier (), false, NULL_TREE, + false, GSI_SAME_STMT); + gsi_remove (&gsi, true); + + /* Connect all the blocks. */ + find_edge (entry_bb, seq_start_bb)->flags = EDGE_FALSE_VALUE; + find_edge (entry_bb, fin_bb)->flags = EDGE_TRUE_VALUE; + + find_edge (cont_bb, body_bb)->flags = EDGE_TRUE_VALUE; + find_edge (cont_bb, fin_bb)->flags = EDGE_FALSE_VALUE; + + set_immediate_dominator (CDI_DOMINATORS, seq_start_bb, entry_bb); + set_immediate_dominator (CDI_DOMINATORS, body_bb, + recompute_dominator (CDI_DOMINATORS, body_bb)); + set_immediate_dominator (CDI_DOMINATORS, fin_bb, + recompute_dominator (CDI_DOMINATORS, fin_bb)); +} + + +/* A subroutine of expand_omp_for. Generate code for a parallel + loop with static schedule and a specified chunk size. Given + parameters: + + for (V = N1; V cond N2; V += STEP) BODY; + + where COND is "<" or ">", we generate pseudocode + + if (cond is <) + adj = STEP - 1; + else + adj = STEP + 1; + if ((__typeof (V)) -1 > 0 && cond is >) + n = -(adj + N2 - N1) / -STEP; + else + n = (adj + N2 - N1) / STEP; + trip = 0; + V = threadid * CHUNK * STEP + N1; -- this extra definition of V is + here so that V is defined + if the loop is not entered + L0: + s0 = (trip * nthreads + threadid) * CHUNK; + e0 = min(s0 + CHUNK, n); + if (s0 < n) goto L1; else goto L4; + L1: + V = s0 * STEP + N1; + e = e0 * STEP + N1; + L2: + BODY; + V += STEP; + if (V cond e) goto L2; else goto L3; + L3: + trip += 1; + goto L0; + L4: +*/ + +static void +expand_omp_for_static_chunk (struct omp_region *region, struct omp_for_data *fd) +{ + tree n, s0, e0, e, t; + tree trip_var, trip_init, trip_main, trip_back, nthreads, threadid; + tree type, itype, v_main, v_back, v_extra; + basic_block entry_bb, exit_bb, body_bb, seq_start_bb, iter_part_bb; + basic_block trip_update_bb, cont_bb, fin_bb; + gimple_stmt_iterator si; + gimple stmt; + edge se; + + itype = type = TREE_TYPE (fd->loop.v); + if (POINTER_TYPE_P (type)) + itype = lang_hooks.types.type_for_size (TYPE_PRECISION (type), 0); + + entry_bb = region->entry; + se = split_block (entry_bb, last_stmt (entry_bb)); + entry_bb = se->src; + iter_part_bb = se->dest; + cont_bb = region->cont; + gcc_assert (EDGE_COUNT (iter_part_bb->succs) == 2); + gcc_assert (BRANCH_EDGE (iter_part_bb)->dest + == FALLTHRU_EDGE (cont_bb)->dest); + seq_start_bb = split_edge (FALLTHRU_EDGE (iter_part_bb)); + body_bb = single_succ (seq_start_bb); + gcc_assert (BRANCH_EDGE (cont_bb)->dest == body_bb); + gcc_assert (EDGE_COUNT (cont_bb->succs) == 2); + fin_bb = FALLTHRU_EDGE (cont_bb)->dest; + trip_update_bb = split_edge (FALLTHRU_EDGE (cont_bb)); + exit_bb = region->exit; + + /* Trip and adjustment setup goes in ENTRY_BB. */ + si = gsi_last_bb (entry_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_FOR); + + t = build_call_expr (built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS], 0); + t = fold_convert (itype, t); + nthreads = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + true, GSI_SAME_STMT); + + t = build_call_expr (built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM], 0); + t = fold_convert (itype, t); + threadid = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + true, GSI_SAME_STMT); + + fd->loop.n1 + = force_gimple_operand_gsi (&si, fold_convert (type, fd->loop.n1), + true, NULL_TREE, true, GSI_SAME_STMT); + fd->loop.n2 + = force_gimple_operand_gsi (&si, fold_convert (itype, fd->loop.n2), + true, NULL_TREE, true, GSI_SAME_STMT); + fd->loop.step + = force_gimple_operand_gsi (&si, fold_convert (itype, fd->loop.step), + true, NULL_TREE, true, GSI_SAME_STMT); + fd->chunk_size + = force_gimple_operand_gsi (&si, fold_convert (itype, fd->chunk_size), + true, NULL_TREE, true, GSI_SAME_STMT); + + t = build_int_cst (itype, (fd->loop.cond_code == LT_EXPR ? -1 : 1)); + t = fold_build2 (PLUS_EXPR, itype, fd->loop.step, t); + t = fold_build2 (PLUS_EXPR, itype, t, fd->loop.n2); + t = fold_build2 (MINUS_EXPR, itype, t, fold_convert (itype, fd->loop.n1)); + if (TYPE_UNSIGNED (itype) && fd->loop.cond_code == GT_EXPR) + t = fold_build2 (TRUNC_DIV_EXPR, itype, + fold_build1 (NEGATE_EXPR, itype, t), + fold_build1 (NEGATE_EXPR, itype, fd->loop.step)); + else + t = fold_build2 (TRUNC_DIV_EXPR, itype, t, fd->loop.step); + t = fold_convert (itype, t); + n = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + true, GSI_SAME_STMT); + + trip_var = create_tmp_var (itype, ".trip"); + if (gimple_in_ssa_p (cfun)) + { + add_referenced_var (trip_var); + trip_init = make_ssa_name (trip_var, NULL); + trip_main = make_ssa_name (trip_var, NULL); + trip_back = make_ssa_name (trip_var, NULL); + } + else + { + trip_init = trip_var; + trip_main = trip_var; + trip_back = trip_var; + } + + stmt = gimple_build_assign (trip_init, build_int_cst (itype, 0)); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + + t = fold_build2 (MULT_EXPR, itype, threadid, fd->chunk_size); + t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step); + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, fd->loop.n1, + fold_convert (sizetype, t)); + else + t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1); + v_extra = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + true, GSI_SAME_STMT); + + /* Remove the GIMPLE_OMP_FOR. */ + gsi_remove (&si, true); + + /* Iteration space partitioning goes in ITER_PART_BB. */ + si = gsi_last_bb (iter_part_bb); + + t = fold_build2 (MULT_EXPR, itype, trip_main, nthreads); + t = fold_build2 (PLUS_EXPR, itype, t, threadid); + t = fold_build2 (MULT_EXPR, itype, t, fd->chunk_size); + s0 = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + + t = fold_build2 (PLUS_EXPR, itype, s0, fd->chunk_size); + t = fold_build2 (MIN_EXPR, itype, t, n); + e0 = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + + t = build2 (LT_EXPR, boolean_type_node, s0, n); + gsi_insert_after (&si, gimple_build_cond_empty (t), GSI_CONTINUE_LINKING); + + /* Setup code for sequential iteration goes in SEQ_START_BB. */ + si = gsi_start_bb (seq_start_bb); + + t = fold_convert (itype, s0); + t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step); + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, fd->loop.n1, + fold_convert (sizetype, t)); + else + t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1); + t = force_gimple_operand_gsi (&si, t, false, NULL_TREE, + false, GSI_CONTINUE_LINKING); + stmt = gimple_build_assign (fd->loop.v, t); + gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING); + + t = fold_convert (itype, e0); + t = fold_build2 (MULT_EXPR, itype, t, fd->loop.step); + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, fd->loop.n1, + fold_convert (sizetype, t)); + else + t = fold_build2 (PLUS_EXPR, type, t, fd->loop.n1); + e = force_gimple_operand_gsi (&si, t, true, NULL_TREE, + false, GSI_CONTINUE_LINKING); + + /* The code controlling the sequential loop goes in CONT_BB, + replacing the GIMPLE_OMP_CONTINUE. */ + si = gsi_last_bb (cont_bb); + stmt = gsi_stmt (si); + gcc_assert (gimple_code (stmt) == GIMPLE_OMP_CONTINUE); + v_main = gimple_omp_continue_control_use (stmt); + v_back = gimple_omp_continue_control_def (stmt); + + if (POINTER_TYPE_P (type)) + t = fold_build2 (POINTER_PLUS_EXPR, type, v_main, + fold_convert (sizetype, fd->loop.step)); + else + t = fold_build2 (PLUS_EXPR, type, v_main, fd->loop.step); + stmt = gimple_build_assign (v_back, t); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + + t = build2 (fd->loop.cond_code, boolean_type_node, v_back, e); + gsi_insert_before (&si, gimple_build_cond_empty (t), GSI_SAME_STMT); + + /* Remove GIMPLE_OMP_CONTINUE. */ + gsi_remove (&si, true); + + /* Trip update code goes into TRIP_UPDATE_BB. */ + si = gsi_start_bb (trip_update_bb); + + t = build_int_cst (itype, 1); + t = build2 (PLUS_EXPR, itype, trip_main, t); + stmt = gimple_build_assign (trip_back, t); + gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING); + + /* Replace the GIMPLE_OMP_RETURN with a barrier, or nothing. */ + si = gsi_last_bb (exit_bb); + if (!gimple_omp_return_nowait_p (gsi_stmt (si))) + force_gimple_operand_gsi (&si, build_omp_barrier (), false, NULL_TREE, + false, GSI_SAME_STMT); + gsi_remove (&si, true); + + /* Connect the new blocks. */ + find_edge (iter_part_bb, seq_start_bb)->flags = EDGE_TRUE_VALUE; + find_edge (iter_part_bb, fin_bb)->flags = EDGE_FALSE_VALUE; + + find_edge (cont_bb, body_bb)->flags = EDGE_TRUE_VALUE; + find_edge (cont_bb, trip_update_bb)->flags = EDGE_FALSE_VALUE; + + redirect_edge_and_branch (single_succ_edge (trip_update_bb), iter_part_bb); + + if (gimple_in_ssa_p (cfun)) + { + gimple_stmt_iterator psi; + gimple phi; + edge re, ene; + edge_var_map_vector head; + edge_var_map *vm; + size_t i; + + /* When we redirect the edge from trip_update_bb to iter_part_bb, we + remove arguments of the phi nodes in fin_bb. We need to create + appropriate phi nodes in iter_part_bb instead. */ + se = single_pred_edge (fin_bb); + re = single_succ_edge (trip_update_bb); + head = redirect_edge_var_map_vector (re); + ene = single_succ_edge (entry_bb); + + psi = gsi_start_phis (fin_bb); + for (i = 0; !gsi_end_p (psi) && VEC_iterate (edge_var_map, head, i, vm); + gsi_next (&psi), ++i) + { + gimple nphi; + + phi = gsi_stmt (psi); + t = gimple_phi_result (phi); + gcc_assert (t == redirect_edge_var_map_result (vm)); + nphi = create_phi_node (t, iter_part_bb); + SSA_NAME_DEF_STMT (t) = nphi; + + t = PHI_ARG_DEF_FROM_EDGE (phi, se); + /* A special case -- fd->loop.v is not yet computed in + iter_part_bb, we need to use v_extra instead. */ + if (t == fd->loop.v) + t = v_extra; + add_phi_arg (nphi, t, ene); + add_phi_arg (nphi, redirect_edge_var_map_def (vm), re); + } + gcc_assert (!gsi_end_p (psi) && i == VEC_length (edge_var_map, head)); + redirect_edge_var_map_clear (re); + while (1) + { + psi = gsi_start_phis (fin_bb); + if (gsi_end_p (psi)) + break; + remove_phi_node (&psi, false); + } + + /* Make phi node for trip. */ + phi = create_phi_node (trip_main, iter_part_bb); + SSA_NAME_DEF_STMT (trip_main) = phi; + add_phi_arg (phi, trip_back, single_succ_edge (trip_update_bb)); + add_phi_arg (phi, trip_init, single_succ_edge (entry_bb)); + } + + set_immediate_dominator (CDI_DOMINATORS, trip_update_bb, cont_bb); + set_immediate_dominator (CDI_DOMINATORS, iter_part_bb, + recompute_dominator (CDI_DOMINATORS, iter_part_bb)); + set_immediate_dominator (CDI_DOMINATORS, fin_bb, + recompute_dominator (CDI_DOMINATORS, fin_bb)); + set_immediate_dominator (CDI_DOMINATORS, seq_start_bb, + recompute_dominator (CDI_DOMINATORS, seq_start_bb)); + set_immediate_dominator (CDI_DOMINATORS, body_bb, + recompute_dominator (CDI_DOMINATORS, body_bb)); +} + + +/* Expand the OpenMP loop defined by REGION. */ + +static void +expand_omp_for (struct omp_region *region) +{ + struct omp_for_data fd; + struct omp_for_data_loop *loops; + + loops + = (struct omp_for_data_loop *) + alloca (gimple_omp_for_collapse (last_stmt (region->entry)) + * sizeof (struct omp_for_data_loop)); + extract_omp_for_data (last_stmt (region->entry), &fd, loops); + region->sched_kind = fd.sched_kind; + + gcc_assert (EDGE_COUNT (region->entry->succs) == 2); + BRANCH_EDGE (region->entry)->flags &= ~EDGE_ABNORMAL; + FALLTHRU_EDGE (region->entry)->flags &= ~EDGE_ABNORMAL; + if (region->cont) + { + gcc_assert (EDGE_COUNT (region->cont->succs) == 2); + BRANCH_EDGE (region->cont)->flags &= ~EDGE_ABNORMAL; + FALLTHRU_EDGE (region->cont)->flags &= ~EDGE_ABNORMAL; + } + + if (fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC + && !fd.have_ordered + && fd.collapse == 1 + && region->cont != NULL) + { + if (fd.chunk_size == NULL) + expand_omp_for_static_nochunk (region, &fd); + else + expand_omp_for_static_chunk (region, &fd); + } + else + { + int fn_index, start_ix, next_ix; + + gcc_assert (fd.sched_kind != OMP_CLAUSE_SCHEDULE_AUTO); + fn_index = (fd.sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME) + ? 3 : fd.sched_kind; + fn_index += fd.have_ordered * 4; + start_ix = BUILT_IN_GOMP_LOOP_STATIC_START + fn_index; + next_ix = BUILT_IN_GOMP_LOOP_STATIC_NEXT + fn_index; + if (fd.iter_type == long_long_unsigned_type_node) + { + start_ix += BUILT_IN_GOMP_LOOP_ULL_STATIC_START + - BUILT_IN_GOMP_LOOP_STATIC_START; + next_ix += BUILT_IN_GOMP_LOOP_ULL_STATIC_NEXT + - BUILT_IN_GOMP_LOOP_STATIC_NEXT; + } + expand_omp_for_generic (region, &fd, start_ix, next_ix); + } + + update_ssa (TODO_update_ssa_only_virtuals); +} + + +/* Expand code for an OpenMP sections directive. In pseudo code, we generate + + v = GOMP_sections_start (n); + L0: + switch (v) + { + case 0: + goto L2; + case 1: + section 1; + goto L1; + case 2: + ... + case n: + ... + default: + abort (); + } + L1: + v = GOMP_sections_next (); + goto L0; + L2: + reduction; + + If this is a combined parallel sections, replace the call to + GOMP_sections_start with call to GOMP_sections_next. */ + +static void +expand_omp_sections (struct omp_region *region) +{ + tree t, u, vin = NULL, vmain, vnext, l1, l2; + VEC (tree,heap) *label_vec; + unsigned len; + basic_block entry_bb, l0_bb, l1_bb, l2_bb, default_bb; + gimple_stmt_iterator si, switch_si; + gimple sections_stmt, stmt, cont; + edge_iterator ei; + edge e; + struct omp_region *inner; + unsigned i, casei; + bool exit_reachable = region->cont != NULL; + + gcc_assert (exit_reachable == (region->exit != NULL)); + entry_bb = region->entry; + l0_bb = single_succ (entry_bb); + l1_bb = region->cont; + l2_bb = region->exit; + if (exit_reachable) + { + if (single_pred (l2_bb) == l0_bb) + l2 = gimple_block_label (l2_bb); + else + { + /* This can happen if there are reductions. */ + len = EDGE_COUNT (l0_bb->succs); + gcc_assert (len > 0); + e = EDGE_SUCC (l0_bb, len - 1); + si = gsi_last_bb (e->dest); + l2 = NULL_TREE; + if (gsi_end_p (si) + || gimple_code (gsi_stmt (si)) != GIMPLE_OMP_SECTION) + l2 = gimple_block_label (e->dest); + else + FOR_EACH_EDGE (e, ei, l0_bb->succs) + { + si = gsi_last_bb (e->dest); + if (gsi_end_p (si) + || gimple_code (gsi_stmt (si)) != GIMPLE_OMP_SECTION) + { + l2 = gimple_block_label (e->dest); + break; + } + } + } + default_bb = create_empty_bb (l1_bb->prev_bb); + l1 = gimple_block_label (l1_bb); + } + else + { + default_bb = create_empty_bb (l0_bb); + l1 = NULL_TREE; + l2 = gimple_block_label (default_bb); + } + + /* We will build a switch() with enough cases for all the + GIMPLE_OMP_SECTION regions, a '0' case to handle the end of more work + and a default case to abort if something goes wrong. */ + len = EDGE_COUNT (l0_bb->succs); + + /* Use VEC_quick_push on label_vec throughout, since we know the size + in advance. */ + label_vec = VEC_alloc (tree, heap, len); + + /* The call to GOMP_sections_start goes in ENTRY_BB, replacing the + GIMPLE_OMP_SECTIONS statement. */ + si = gsi_last_bb (entry_bb); + sections_stmt = gsi_stmt (si); + gcc_assert (gimple_code (sections_stmt) == GIMPLE_OMP_SECTIONS); + vin = gimple_omp_sections_control (sections_stmt); + if (!is_combined_parallel (region)) + { + /* If we are not inside a combined parallel+sections region, + call GOMP_sections_start. */ + t = build_int_cst (unsigned_type_node, + exit_reachable ? len - 1 : len); + u = built_in_decls[BUILT_IN_GOMP_SECTIONS_START]; + stmt = gimple_build_call (u, 1, t); + } + else + { + /* Otherwise, call GOMP_sections_next. */ + u = built_in_decls[BUILT_IN_GOMP_SECTIONS_NEXT]; + stmt = gimple_build_call (u, 0); + } + gimple_call_set_lhs (stmt, vin); + gsi_insert_after (&si, stmt, GSI_SAME_STMT); + gsi_remove (&si, true); + + /* The switch() statement replacing GIMPLE_OMP_SECTIONS_SWITCH goes in + L0_BB. */ + switch_si = gsi_last_bb (l0_bb); + gcc_assert (gimple_code (gsi_stmt (switch_si)) == GIMPLE_OMP_SECTIONS_SWITCH); + if (exit_reachable) + { + cont = last_stmt (l1_bb); + gcc_assert (gimple_code (cont) == GIMPLE_OMP_CONTINUE); + vmain = gimple_omp_continue_control_use (cont); + vnext = gimple_omp_continue_control_def (cont); + } + else + { + vmain = vin; + vnext = NULL_TREE; + } + + i = 0; + if (exit_reachable) + { + t = build3 (CASE_LABEL_EXPR, void_type_node, + build_int_cst (unsigned_type_node, 0), NULL, l2); + VEC_quick_push (tree, label_vec, t); + i++; + } + + /* Convert each GIMPLE_OMP_SECTION into a CASE_LABEL_EXPR. */ + for (inner = region->inner, casei = 1; + inner; + inner = inner->next, i++, casei++) + { + basic_block s_entry_bb, s_exit_bb; + + /* Skip optional reduction region. */ + if (inner->type == GIMPLE_OMP_ATOMIC_LOAD) + { + --i; + --casei; + continue; + } + + s_entry_bb = inner->entry; + s_exit_bb = inner->exit; + + t = gimple_block_label (s_entry_bb); + u = build_int_cst (unsigned_type_node, casei); + u = build3 (CASE_LABEL_EXPR, void_type_node, u, NULL, t); + VEC_quick_push (tree, label_vec, u); + + si = gsi_last_bb (s_entry_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SECTION); + gcc_assert (i < len || gimple_omp_section_last_p (gsi_stmt (si))); + gsi_remove (&si, true); + single_succ_edge (s_entry_bb)->flags = EDGE_FALLTHRU; + + if (s_exit_bb == NULL) + continue; + + si = gsi_last_bb (s_exit_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_RETURN); + gsi_remove (&si, true); + + single_succ_edge (s_exit_bb)->flags = EDGE_FALLTHRU; + } + + /* Error handling code goes in DEFAULT_BB. */ + t = gimple_block_label (default_bb); + u = build3 (CASE_LABEL_EXPR, void_type_node, NULL, NULL, t); + make_edge (l0_bb, default_bb, 0); + + stmt = gimple_build_switch_vec (vmain, u, label_vec); + gsi_insert_after (&switch_si, stmt, GSI_SAME_STMT); + gsi_remove (&switch_si, true); + VEC_free (tree, heap, label_vec); + + si = gsi_start_bb (default_bb); + stmt = gimple_build_call (built_in_decls[BUILT_IN_TRAP], 0); + gsi_insert_after (&si, stmt, GSI_CONTINUE_LINKING); + + if (exit_reachable) + { + /* Code to get the next section goes in L1_BB. */ + si = gsi_last_bb (l1_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_CONTINUE); + + stmt = gimple_build_call (built_in_decls[BUILT_IN_GOMP_SECTIONS_NEXT], 0); + gimple_call_set_lhs (stmt, vnext); + gsi_insert_after (&si, stmt, GSI_SAME_STMT); + gsi_remove (&si, true); + + single_succ_edge (l1_bb)->flags = EDGE_FALLTHRU; + + /* Cleanup function replaces GIMPLE_OMP_RETURN in EXIT_BB. */ + si = gsi_last_bb (l2_bb); + if (gimple_omp_return_nowait_p (gsi_stmt (si))) + t = built_in_decls[BUILT_IN_GOMP_SECTIONS_END_NOWAIT]; + else + t = built_in_decls[BUILT_IN_GOMP_SECTIONS_END]; + stmt = gimple_build_call (t, 0); + gsi_insert_after (&si, stmt, GSI_SAME_STMT); + gsi_remove (&si, true); + } + + set_immediate_dominator (CDI_DOMINATORS, default_bb, l0_bb); +} + + +/* Expand code for an OpenMP single directive. We've already expanded + much of the code, here we simply place the GOMP_barrier call. */ + +static void +expand_omp_single (struct omp_region *region) +{ + basic_block entry_bb, exit_bb; + gimple_stmt_iterator si; + bool need_barrier = false; + + entry_bb = region->entry; + exit_bb = region->exit; + + si = gsi_last_bb (entry_bb); + /* The terminal barrier at the end of a GOMP_single_copy sequence cannot + be removed. We need to ensure that the thread that entered the single + does not exit before the data is copied out by the other threads. */ + if (find_omp_clause (gimple_omp_single_clauses (gsi_stmt (si)), + OMP_CLAUSE_COPYPRIVATE)) + need_barrier = true; + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SINGLE); + gsi_remove (&si, true); + single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU; + + si = gsi_last_bb (exit_bb); + if (!gimple_omp_return_nowait_p (gsi_stmt (si)) || need_barrier) + force_gimple_operand_gsi (&si, build_omp_barrier (), false, NULL_TREE, + false, GSI_SAME_STMT); + gsi_remove (&si, true); + single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU; +} + + +/* Generic expansion for OpenMP synchronization directives: master, + ordered and critical. All we need to do here is remove the entry + and exit markers for REGION. */ + +static void +expand_omp_synch (struct omp_region *region) +{ + basic_block entry_bb, exit_bb; + gimple_stmt_iterator si; + + entry_bb = region->entry; + exit_bb = region->exit; + + si = gsi_last_bb (entry_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_SINGLE + || gimple_code (gsi_stmt (si)) == GIMPLE_OMP_MASTER + || gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ORDERED + || gimple_code (gsi_stmt (si)) == GIMPLE_OMP_CRITICAL); + gsi_remove (&si, true); + single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU; + + if (exit_bb) + { + si = gsi_last_bb (exit_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_RETURN); + gsi_remove (&si, true); + single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU; + } +} + +/* A subroutine of expand_omp_atomic. Attempt to implement the atomic + operation as a __sync_fetch_and_op builtin. INDEX is log2 of the + size of the data type, and thus usable to find the index of the builtin + decl. Returns false if the expression is not of the proper form. */ + +static bool +expand_omp_atomic_fetch_op (basic_block load_bb, + tree addr, tree loaded_val, + tree stored_val, int index) +{ + enum built_in_function base; + tree decl, itype, call; + enum insn_code *optab; + tree rhs; + basic_block store_bb = single_succ (load_bb); + gimple_stmt_iterator gsi; + gimple stmt; + + /* We expect to find the following sequences: + + load_bb: + GIMPLE_OMP_ATOMIC_LOAD (tmp, mem) + + store_bb: + val = tmp OP something; (or: something OP tmp) + GIMPLE_OMP_STORE (val) + + ???FIXME: Allow a more flexible sequence. + Perhaps use data flow to pick the statements. + + */ + + gsi = gsi_after_labels (store_bb); + stmt = gsi_stmt (gsi); + if (!is_gimple_assign (stmt)) + return false; + gsi_next (&gsi); + if (gimple_code (gsi_stmt (gsi)) != GIMPLE_OMP_ATOMIC_STORE) + return false; + + if (!operand_equal_p (gimple_assign_lhs (stmt), stored_val, 0)) + return false; + + /* Check for one of the supported fetch-op operations. */ + switch (gimple_assign_rhs_code (stmt)) + { + case PLUS_EXPR: + case POINTER_PLUS_EXPR: + base = BUILT_IN_FETCH_AND_ADD_N; + optab = sync_add_optab; + break; + case MINUS_EXPR: + base = BUILT_IN_FETCH_AND_SUB_N; + optab = sync_add_optab; + break; + case BIT_AND_EXPR: + base = BUILT_IN_FETCH_AND_AND_N; + optab = sync_and_optab; + break; + case BIT_IOR_EXPR: + base = BUILT_IN_FETCH_AND_OR_N; + optab = sync_ior_optab; + break; + case BIT_XOR_EXPR: + base = BUILT_IN_FETCH_AND_XOR_N; + optab = sync_xor_optab; + break; + default: + return false; + } + /* Make sure the expression is of the proper form. */ + if (operand_equal_p (gimple_assign_rhs1 (stmt), loaded_val, 0)) + rhs = gimple_assign_rhs2 (stmt); + else if (commutative_tree_code (gimple_assign_rhs_code (stmt)) + && operand_equal_p (gimple_assign_rhs2 (stmt), loaded_val, 0)) + rhs = gimple_assign_rhs1 (stmt); + else + return false; + + decl = built_in_decls[base + index + 1]; + itype = TREE_TYPE (TREE_TYPE (decl)); + + if (optab[TYPE_MODE (itype)] == CODE_FOR_nothing) + return false; + + gsi = gsi_last_bb (load_bb); + gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_LOAD); + call = build_call_expr (decl, 2, addr, fold_convert (itype, rhs)); + call = fold_convert (void_type_node, call); + force_gimple_operand_gsi (&gsi, call, true, NULL_TREE, true, GSI_SAME_STMT); + gsi_remove (&gsi, true); + + gsi = gsi_last_bb (store_bb); + gcc_assert (gimple_code (gsi_stmt (gsi)) == GIMPLE_OMP_ATOMIC_STORE); + gsi_remove (&gsi, true); + gsi = gsi_last_bb (store_bb); + gsi_remove (&gsi, true); + + if (gimple_in_ssa_p (cfun)) + update_ssa (TODO_update_ssa_no_phi); + + return true; +} + +/* A subroutine of expand_omp_atomic. Implement the atomic operation as: + + oldval = *addr; + repeat: + newval = rhs; // with oldval replacing *addr in rhs + oldval = __sync_val_compare_and_swap (addr, oldval, newval); + if (oldval != newval) + goto repeat; + + INDEX is log2 of the size of the data type, and thus usable to find the + index of the builtin decl. */ + +static bool +expand_omp_atomic_pipeline (basic_block load_bb, basic_block store_bb, + tree addr, tree loaded_val, tree stored_val, + int index) +{ + tree loadedi, storedi, initial, new_storedi, old_vali; + tree type, itype, cmpxchg, iaddr; + gimple_stmt_iterator si; + basic_block loop_header = single_succ (load_bb); + gimple phi, stmt; + edge e; + + cmpxchg = built_in_decls[BUILT_IN_VAL_COMPARE_AND_SWAP_N + index + 1]; + type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr))); + itype = TREE_TYPE (TREE_TYPE (cmpxchg)); + + if (sync_compare_and_swap[TYPE_MODE (itype)] == CODE_FOR_nothing) + return false; + + /* Load the initial value, replacing the GIMPLE_OMP_ATOMIC_LOAD. */ + si = gsi_last_bb (load_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_LOAD); + + /* For floating-point values, we'll need to view-convert them to integers + so that we can perform the atomic compare and swap. Simplify the + following code by always setting up the "i"ntegral variables. */ + if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) + { + tree iaddr_val; + + iaddr = create_tmp_var (build_pointer_type (itype), NULL); + iaddr_val + = force_gimple_operand_gsi (&si, + fold_convert (TREE_TYPE (iaddr), addr), + false, NULL_TREE, true, GSI_SAME_STMT); + stmt = gimple_build_assign (iaddr, iaddr_val); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + DECL_NO_TBAA_P (iaddr) = 1; + DECL_POINTER_ALIAS_SET (iaddr) = 0; + loadedi = create_tmp_var (itype, NULL); + if (gimple_in_ssa_p (cfun)) + { + add_referenced_var (iaddr); + add_referenced_var (loadedi); + loadedi = make_ssa_name (loadedi, NULL); + } + } + else + { + iaddr = addr; + loadedi = loaded_val; + } + + initial = force_gimple_operand_gsi (&si, build_fold_indirect_ref (iaddr), + true, NULL_TREE, true, GSI_SAME_STMT); + + /* Move the value to the LOADEDI temporary. */ + if (gimple_in_ssa_p (cfun)) + { + gcc_assert (gimple_seq_empty_p (phi_nodes (loop_header))); + phi = create_phi_node (loadedi, loop_header); + SSA_NAME_DEF_STMT (loadedi) = phi; + SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (load_bb)), + initial); + } + else + gsi_insert_before (&si, + gimple_build_assign (loadedi, initial), + GSI_SAME_STMT); + if (loadedi != loaded_val) + { + gimple_stmt_iterator gsi2; + tree x; + + x = build1 (VIEW_CONVERT_EXPR, type, loadedi); + gsi2 = gsi_start_bb (loop_header); + if (gimple_in_ssa_p (cfun)) + { + gimple stmt; + x = force_gimple_operand_gsi (&gsi2, x, true, NULL_TREE, + true, GSI_SAME_STMT); + stmt = gimple_build_assign (loaded_val, x); + gsi_insert_before (&gsi2, stmt, GSI_SAME_STMT); + } + else + { + x = build2 (MODIFY_EXPR, TREE_TYPE (loaded_val), loaded_val, x); + force_gimple_operand_gsi (&gsi2, x, true, NULL_TREE, + true, GSI_SAME_STMT); + } + } + gsi_remove (&si, true); + + si = gsi_last_bb (store_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_STORE); + + if (iaddr == addr) + storedi = stored_val; + else + storedi = + force_gimple_operand_gsi (&si, + build1 (VIEW_CONVERT_EXPR, itype, + stored_val), true, NULL_TREE, true, + GSI_SAME_STMT); + + /* Build the compare&swap statement. */ + new_storedi = build_call_expr (cmpxchg, 3, iaddr, loadedi, storedi); + new_storedi = force_gimple_operand_gsi (&si, + fold_convert (itype, new_storedi), + true, NULL_TREE, + true, GSI_SAME_STMT); + + if (gimple_in_ssa_p (cfun)) + old_vali = loadedi; + else + { + old_vali = create_tmp_var (itype, NULL); + if (gimple_in_ssa_p (cfun)) + add_referenced_var (old_vali); + stmt = gimple_build_assign (old_vali, loadedi); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + + stmt = gimple_build_assign (loadedi, new_storedi); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + } + + /* Note that we always perform the comparison as an integer, even for + floating point. This allows the atomic operation to properly + succeed even with NaNs and -0.0. */ + stmt = gimple_build_cond_empty + (build2 (NE_EXPR, boolean_type_node, + new_storedi, old_vali)); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + + /* Update cfg. */ + e = single_succ_edge (store_bb); + e->flags &= ~EDGE_FALLTHRU; + e->flags |= EDGE_FALSE_VALUE; + + e = make_edge (store_bb, loop_header, EDGE_TRUE_VALUE); + + /* Copy the new value to loadedi (we already did that before the condition + if we are not in SSA). */ + if (gimple_in_ssa_p (cfun)) + { + phi = gimple_seq_first_stmt (phi_nodes (loop_header)); + SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e), new_storedi); + } + + /* Remove GIMPLE_OMP_ATOMIC_STORE. */ + gsi_remove (&si, true); + + if (gimple_in_ssa_p (cfun)) + update_ssa (TODO_update_ssa_no_phi); + + return true; +} + +/* A subroutine of expand_omp_atomic. Implement the atomic operation as: + + GOMP_atomic_start (); + *addr = rhs; + GOMP_atomic_end (); + + The result is not globally atomic, but works so long as all parallel + references are within #pragma omp atomic directives. According to + responses received from omp@openmp.org, appears to be within spec. + Which makes sense, since that's how several other compilers handle + this situation as well. + LOADED_VAL and ADDR are the operands of GIMPLE_OMP_ATOMIC_LOAD we're + expanding. STORED_VAL is the operand of the matching + GIMPLE_OMP_ATOMIC_STORE. + + We replace + GIMPLE_OMP_ATOMIC_LOAD (loaded_val, addr) with + loaded_val = *addr; + + and replace + GIMPLE_OMP_ATOMIC_ATORE (stored_val) with + *addr = stored_val; +*/ + +static bool +expand_omp_atomic_mutex (basic_block load_bb, basic_block store_bb, + tree addr, tree loaded_val, tree stored_val) +{ + gimple_stmt_iterator si; + gimple stmt; + tree t; + + si = gsi_last_bb (load_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_LOAD); + + t = built_in_decls[BUILT_IN_GOMP_ATOMIC_START]; + t = build_function_call_expr (t, 0); + force_gimple_operand_gsi (&si, t, true, NULL_TREE, true, GSI_SAME_STMT); + + stmt = gimple_build_assign (loaded_val, build_fold_indirect_ref (addr)); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + gsi_remove (&si, true); + + si = gsi_last_bb (store_bb); + gcc_assert (gimple_code (gsi_stmt (si)) == GIMPLE_OMP_ATOMIC_STORE); + + stmt = gimple_build_assign (build_fold_indirect_ref (unshare_expr (addr)), + stored_val); + gsi_insert_before (&si, stmt, GSI_SAME_STMT); + + t = built_in_decls[BUILT_IN_GOMP_ATOMIC_END]; + t = build_function_call_expr (t, 0); + force_gimple_operand_gsi (&si, t, true, NULL_TREE, true, GSI_SAME_STMT); + gsi_remove (&si, true); + + if (gimple_in_ssa_p (cfun)) + update_ssa (TODO_update_ssa_no_phi); + return true; +} + +/* Expand an GIMPLE_OMP_ATOMIC statement. We try to expand + using expand_omp_atomic_fetch_op. If it failed, we try to + call expand_omp_atomic_pipeline, and if it fails too, the + ultimate fallback is wrapping the operation in a mutex + (expand_omp_atomic_mutex). REGION is the atomic region built + by build_omp_regions_1(). */ + +static void +expand_omp_atomic (struct omp_region *region) +{ + basic_block load_bb = region->entry, store_bb = region->exit; + gimple load = last_stmt (load_bb), store = last_stmt (store_bb); + tree loaded_val = gimple_omp_atomic_load_lhs (load); + tree addr = gimple_omp_atomic_load_rhs (load); + tree stored_val = gimple_omp_atomic_store_val (store); + tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr))); + HOST_WIDE_INT index; + + /* Make sure the type is one of the supported sizes. */ + index = tree_low_cst (TYPE_SIZE_UNIT (type), 1); + index = exact_log2 (index); + if (index >= 0 && index <= 4) + { + unsigned int align = TYPE_ALIGN_UNIT (type); + + /* __sync builtins require strict data alignment. */ + if (exact_log2 (align) >= index) + { + /* When possible, use specialized atomic update functions. */ + if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)) + && store_bb == single_succ (load_bb)) + { + if (expand_omp_atomic_fetch_op (load_bb, addr, + loaded_val, stored_val, index)) + return; + } + + /* If we don't have specialized __sync builtins, try and implement + as a compare and swap loop. */ + if (expand_omp_atomic_pipeline (load_bb, store_bb, addr, + loaded_val, stored_val, index)) + return; + } + } + + /* The ultimate fallback is wrapping the operation in a mutex. */ + expand_omp_atomic_mutex (load_bb, store_bb, addr, loaded_val, stored_val); +} + + +/* Expand the parallel region tree rooted at REGION. Expansion + proceeds in depth-first order. Innermost regions are expanded + first. This way, parallel regions that require a new function to + be created (e.g., GIMPLE_OMP_PARALLEL) can be expanded without having any + internal dependencies in their body. */ + +static void +expand_omp (struct omp_region *region) +{ + while (region) + { + location_t saved_location; + + /* First, determine whether this is a combined parallel+workshare + region. */ + if (region->type == GIMPLE_OMP_PARALLEL) + determine_parallel_type (region); + + if (region->inner) + expand_omp (region->inner); + + saved_location = input_location; + if (gimple_has_location (last_stmt (region->entry))) + input_location = gimple_location (last_stmt (region->entry)); + + switch (region->type) + { + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + expand_omp_taskreg (region); + break; + + case GIMPLE_OMP_FOR: + expand_omp_for (region); + break; + + case GIMPLE_OMP_SECTIONS: + expand_omp_sections (region); + break; + + case GIMPLE_OMP_SECTION: + /* Individual omp sections are handled together with their + parent GIMPLE_OMP_SECTIONS region. */ + break; + + case GIMPLE_OMP_SINGLE: + expand_omp_single (region); + break; + + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_CRITICAL: + expand_omp_synch (region); + break; + + case GIMPLE_OMP_ATOMIC_LOAD: + expand_omp_atomic (region); + break; + + default: + gcc_unreachable (); + } + + input_location = saved_location; + region = region->next; + } +} + + +/* Helper for build_omp_regions. Scan the dominator tree starting at + block BB. PARENT is the region that contains BB. If SINGLE_TREE is + true, the function ends once a single tree is built (otherwise, whole + forest of OMP constructs may be built). */ + +static void +build_omp_regions_1 (basic_block bb, struct omp_region *parent, + bool single_tree) +{ + gimple_stmt_iterator gsi; + gimple stmt; + basic_block son; + + gsi = gsi_last_bb (bb); + if (!gsi_end_p (gsi) && is_gimple_omp (gsi_stmt (gsi))) + { + struct omp_region *region; + enum gimple_code code; + + stmt = gsi_stmt (gsi); + code = gimple_code (stmt); + if (code == GIMPLE_OMP_RETURN) + { + /* STMT is the return point out of region PARENT. Mark it + as the exit point and make PARENT the immediately + enclosing region. */ + gcc_assert (parent); + region = parent; + region->exit = bb; + parent = parent->outer; + } + else if (code == GIMPLE_OMP_ATOMIC_STORE) + { + /* GIMPLE_OMP_ATOMIC_STORE is analoguous to + GIMPLE_OMP_RETURN, but matches with + GIMPLE_OMP_ATOMIC_LOAD. */ + gcc_assert (parent); + gcc_assert (parent->type == GIMPLE_OMP_ATOMIC_LOAD); + region = parent; + region->exit = bb; + parent = parent->outer; + } + + else if (code == GIMPLE_OMP_CONTINUE) + { + gcc_assert (parent); + parent->cont = bb; + } + else if (code == GIMPLE_OMP_SECTIONS_SWITCH) + { + /* GIMPLE_OMP_SECTIONS_SWITCH is part of + GIMPLE_OMP_SECTIONS, and we do nothing for it. */ + ; + } + else + { + /* Otherwise, this directive becomes the parent for a new + region. */ + region = new_omp_region (bb, code, parent); + parent = region; + } + } + + if (single_tree && !parent) + return; + + for (son = first_dom_son (CDI_DOMINATORS, bb); + son; + son = next_dom_son (CDI_DOMINATORS, son)) + build_omp_regions_1 (son, parent, single_tree); +} + +/* Builds the tree of OMP regions rooted at ROOT, storing it to + root_omp_region. */ + +static void +build_omp_regions_root (basic_block root) +{ + gcc_assert (root_omp_region == NULL); + build_omp_regions_1 (root, NULL, true); + gcc_assert (root_omp_region != NULL); +} + +/* Expands omp construct (and its subconstructs) starting in HEAD. */ + +void +omp_expand_local (basic_block head) +{ + build_omp_regions_root (head); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nOMP region tree\n\n"); + dump_omp_region (dump_file, root_omp_region, 0); + fprintf (dump_file, "\n"); + } + + remove_exit_barriers (root_omp_region); + expand_omp (root_omp_region); + + free_omp_regions (); +} + +/* Scan the CFG and build a tree of OMP regions. Return the root of + the OMP region tree. */ + +static void +build_omp_regions (void) +{ + gcc_assert (root_omp_region == NULL); + calculate_dominance_info (CDI_DOMINATORS); + build_omp_regions_1 (ENTRY_BLOCK_PTR, NULL, false); +} + +/* Main entry point for expanding OMP-GIMPLE into runtime calls. */ + +static unsigned int +execute_expand_omp (void) +{ + build_omp_regions (); + + if (!root_omp_region) + return 0; + + if (dump_file) + { + fprintf (dump_file, "\nOMP region tree\n\n"); + dump_omp_region (dump_file, root_omp_region, 0); + fprintf (dump_file, "\n"); + } + + remove_exit_barriers (root_omp_region); + + expand_omp (root_omp_region); + + cleanup_tree_cfg (); + + free_omp_regions (); + + return 0; +} + +/* OMP expansion -- the default pass, run before creation of SSA form. */ + +static bool +gate_expand_omp (void) +{ + return (flag_openmp != 0 && errorcount == 0); +} + +struct gimple_opt_pass pass_expand_omp = +{ + { + GIMPLE_PASS, + "ompexp", /* name */ + gate_expand_omp, /* gate */ + execute_expand_omp, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_gimple_any, /* properties_required */ + PROP_gimple_lomp, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func /* todo_flags_finish */ + } +}; + +/* Routines to lower OpenMP directives into OMP-GIMPLE. */ + +/* Lower the OpenMP sections directive in the current statement in GSI_P. + CTX is the enclosing OMP context for the current statement. */ + +static void +lower_omp_sections (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree block, control; + gimple_stmt_iterator tgsi; + unsigned i, len; + gimple stmt, new_stmt, bind, t; + gimple_seq ilist, dlist, olist, new_body, body; + struct gimplify_ctx gctx; + + stmt = gsi_stmt (*gsi_p); + + push_gimplify_context (&gctx); + + dlist = NULL; + ilist = NULL; + lower_rec_input_clauses (gimple_omp_sections_clauses (stmt), + &ilist, &dlist, ctx); + + tgsi = gsi_start (gimple_omp_body (stmt)); + for (len = 0; !gsi_end_p (tgsi); len++, gsi_next (&tgsi)) + continue; + + tgsi = gsi_start (gimple_omp_body (stmt)); + body = NULL; + for (i = 0; i < len; i++, gsi_next (&tgsi)) + { + omp_context *sctx; + gimple sec_start; + + sec_start = gsi_stmt (tgsi); + sctx = maybe_lookup_ctx (sec_start); + gcc_assert (sctx); + + gimple_seq_add_stmt (&body, sec_start); + + lower_omp (gimple_omp_body (sec_start), sctx); + gimple_seq_add_seq (&body, gimple_omp_body (sec_start)); + gimple_omp_set_body (sec_start, NULL); + + if (i == len - 1) + { + gimple_seq l = NULL; + lower_lastprivate_clauses (gimple_omp_sections_clauses (stmt), NULL, + &l, ctx); + gimple_seq_add_seq (&body, l); + gimple_omp_section_set_last (sec_start); + } + + gimple_seq_add_stmt (&body, gimple_build_omp_return (false)); + } + + block = make_node (BLOCK); + bind = gimple_build_bind (NULL, body, block); + + olist = NULL; + lower_reduction_clauses (gimple_omp_sections_clauses (stmt), &olist, ctx); + + block = make_node (BLOCK); + new_stmt = gimple_build_bind (NULL, NULL, block); + + pop_gimplify_context (new_stmt); + gimple_bind_append_vars (new_stmt, ctx->block_vars); + BLOCK_VARS (block) = gimple_bind_vars (bind); + if (BLOCK_VARS (block)) + TREE_USED (block) = 1; + + new_body = NULL; + gimple_seq_add_seq (&new_body, ilist); + gimple_seq_add_stmt (&new_body, stmt); + gimple_seq_add_stmt (&new_body, gimple_build_omp_sections_switch ()); + gimple_seq_add_stmt (&new_body, bind); + + control = create_tmp_var (unsigned_type_node, ".section"); + t = gimple_build_omp_continue (control, control); + gimple_omp_sections_set_control (stmt, control); + gimple_seq_add_stmt (&new_body, t); + + gimple_seq_add_seq (&new_body, olist); + gimple_seq_add_seq (&new_body, dlist); + + new_body = maybe_catch_exception (new_body); + + t = gimple_build_omp_return + (!!find_omp_clause (gimple_omp_sections_clauses (stmt), + OMP_CLAUSE_NOWAIT)); + gimple_seq_add_stmt (&new_body, t); + + gimple_bind_set_body (new_stmt, new_body); + gimple_omp_set_body (stmt, NULL); + + gsi_replace (gsi_p, new_stmt, true); +} + + +/* A subroutine of lower_omp_single. Expand the simple form of + a GIMPLE_OMP_SINGLE, without a copyprivate clause: + + if (GOMP_single_start ()) + BODY; + [ GOMP_barrier (); ] -> unless 'nowait' is present. + + FIXME. It may be better to delay expanding the logic of this until + pass_expand_omp. The expanded logic may make the job more difficult + to a synchronization analysis pass. */ + +static void +lower_omp_single_simple (gimple single_stmt, gimple_seq *pre_p) +{ + tree tlabel = create_artificial_label (); + tree flabel = create_artificial_label (); + gimple call, cond; + tree lhs, decl; + + decl = built_in_decls[BUILT_IN_GOMP_SINGLE_START]; + lhs = create_tmp_var (TREE_TYPE (TREE_TYPE (decl)), NULL); + call = gimple_build_call (decl, 0); + gimple_call_set_lhs (call, lhs); + gimple_seq_add_stmt (pre_p, call); + + cond = gimple_build_cond (EQ_EXPR, lhs, + fold_convert (TREE_TYPE (lhs), boolean_true_node), + tlabel, flabel); + gimple_seq_add_stmt (pre_p, cond); + gimple_seq_add_stmt (pre_p, gimple_build_label (tlabel)); + gimple_seq_add_seq (pre_p, gimple_omp_body (single_stmt)); + gimple_seq_add_stmt (pre_p, gimple_build_label (flabel)); +} + + +/* A subroutine of lower_omp_single. Expand the simple form of + a GIMPLE_OMP_SINGLE, with a copyprivate clause: + + #pragma omp single copyprivate (a, b, c) + + Create a new structure to hold copies of 'a', 'b' and 'c' and emit: + + { + if ((copyout_p = GOMP_single_copy_start ()) == NULL) + { + BODY; + copyout.a = a; + copyout.b = b; + copyout.c = c; + GOMP_single_copy_end (©out); + } + else + { + a = copyout_p->a; + b = copyout_p->b; + c = copyout_p->c; + } + GOMP_barrier (); + } + + FIXME. It may be better to delay expanding the logic of this until + pass_expand_omp. The expanded logic may make the job more difficult + to a synchronization analysis pass. */ + +static void +lower_omp_single_copy (gimple single_stmt, gimple_seq *pre_p, omp_context *ctx) +{ + tree ptr_type, t, l0, l1, l2; + gimple_seq copyin_seq; + + ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_copy_o"); + + ptr_type = build_pointer_type (ctx->record_type); + ctx->receiver_decl = create_tmp_var (ptr_type, ".omp_copy_i"); + + l0 = create_artificial_label (); + l1 = create_artificial_label (); + l2 = create_artificial_label (); + + t = build_call_expr (built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_START], 0); + t = fold_convert (ptr_type, t); + gimplify_assign (ctx->receiver_decl, t, pre_p); + + t = build2 (EQ_EXPR, boolean_type_node, ctx->receiver_decl, + build_int_cst (ptr_type, 0)); + t = build3 (COND_EXPR, void_type_node, t, + build_and_jump (&l0), build_and_jump (&l1)); + gimplify_and_add (t, pre_p); + + gimple_seq_add_stmt (pre_p, gimple_build_label (l0)); + + gimple_seq_add_seq (pre_p, gimple_omp_body (single_stmt)); + + copyin_seq = NULL; + lower_copyprivate_clauses (gimple_omp_single_clauses (single_stmt), pre_p, + ©in_seq, ctx); + + t = build_fold_addr_expr (ctx->sender_decl); + t = build_call_expr (built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_END], 1, t); + gimplify_and_add (t, pre_p); + + t = build_and_jump (&l2); + gimplify_and_add (t, pre_p); + + gimple_seq_add_stmt (pre_p, gimple_build_label (l1)); + + gimple_seq_add_seq (pre_p, copyin_seq); + + gimple_seq_add_stmt (pre_p, gimple_build_label (l2)); +} + + +/* Expand code for an OpenMP single directive. */ + +static void +lower_omp_single (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree block; + gimple t, bind, single_stmt = gsi_stmt (*gsi_p); + gimple_seq bind_body, dlist; + struct gimplify_ctx gctx; + + push_gimplify_context (&gctx); + + bind_body = NULL; + lower_rec_input_clauses (gimple_omp_single_clauses (single_stmt), + &bind_body, &dlist, ctx); + lower_omp (gimple_omp_body (single_stmt), ctx); + + gimple_seq_add_stmt (&bind_body, single_stmt); + + if (ctx->record_type) + lower_omp_single_copy (single_stmt, &bind_body, ctx); + else + lower_omp_single_simple (single_stmt, &bind_body); + + gimple_omp_set_body (single_stmt, NULL); + + gimple_seq_add_seq (&bind_body, dlist); + + bind_body = maybe_catch_exception (bind_body); + + t = gimple_build_omp_return + (!!find_omp_clause (gimple_omp_single_clauses (single_stmt), + OMP_CLAUSE_NOWAIT)); + gimple_seq_add_stmt (&bind_body, t); + + block = make_node (BLOCK); + bind = gimple_build_bind (NULL, bind_body, block); + + pop_gimplify_context (bind); + + gimple_bind_append_vars (bind, ctx->block_vars); + BLOCK_VARS (block) = ctx->block_vars; + gsi_replace (gsi_p, bind, true); + if (BLOCK_VARS (block)) + TREE_USED (block) = 1; +} + + +/* Expand code for an OpenMP master directive. */ + +static void +lower_omp_master (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree block, lab = NULL, x; + gimple stmt = gsi_stmt (*gsi_p), bind; + gimple_seq tseq; + struct gimplify_ctx gctx; + + push_gimplify_context (&gctx); + + block = make_node (BLOCK); + bind = gimple_build_bind (NULL, gimple_seq_alloc_with_stmt (stmt), + block); + + x = build_call_expr (built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM], 0); + x = build2 (EQ_EXPR, boolean_type_node, x, integer_zero_node); + x = build3 (COND_EXPR, void_type_node, x, NULL, build_and_jump (&lab)); + tseq = NULL; + gimplify_and_add (x, &tseq); + gimple_bind_add_seq (bind, tseq); + + lower_omp (gimple_omp_body (stmt), ctx); + gimple_omp_set_body (stmt, maybe_catch_exception (gimple_omp_body (stmt))); + gimple_bind_add_seq (bind, gimple_omp_body (stmt)); + gimple_omp_set_body (stmt, NULL); + + gimple_bind_add_stmt (bind, gimple_build_label (lab)); + + gimple_bind_add_stmt (bind, gimple_build_omp_return (true)); + + pop_gimplify_context (bind); + + gimple_bind_append_vars (bind, ctx->block_vars); + BLOCK_VARS (block) = ctx->block_vars; + gsi_replace (gsi_p, bind, true); +} + + +/* Expand code for an OpenMP ordered directive. */ + +static void +lower_omp_ordered (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree block; + gimple stmt = gsi_stmt (*gsi_p), bind, x; + struct gimplify_ctx gctx; + + push_gimplify_context (&gctx); + + block = make_node (BLOCK); + bind = gimple_build_bind (NULL, gimple_seq_alloc_with_stmt (stmt), + block); + + x = gimple_build_call (built_in_decls[BUILT_IN_GOMP_ORDERED_START], 0); + gimple_bind_add_stmt (bind, x); + + lower_omp (gimple_omp_body (stmt), ctx); + gimple_omp_set_body (stmt, maybe_catch_exception (gimple_omp_body (stmt))); + gimple_bind_add_seq (bind, gimple_omp_body (stmt)); + gimple_omp_set_body (stmt, NULL); + + x = gimple_build_call (built_in_decls[BUILT_IN_GOMP_ORDERED_END], 0); + gimple_bind_add_stmt (bind, x); + + gimple_bind_add_stmt (bind, gimple_build_omp_return (true)); + + pop_gimplify_context (bind); + + gimple_bind_append_vars (bind, ctx->block_vars); + BLOCK_VARS (block) = gimple_bind_vars (bind); + gsi_replace (gsi_p, bind, true); +} + + +/* Gimplify a GIMPLE_OMP_CRITICAL statement. This is a relatively simple + substitution of a couple of function calls. But in the NAMED case, + requires that languages coordinate a symbol name. It is therefore + best put here in common code. */ + +static GTY((param1_is (tree), param2_is (tree))) + splay_tree critical_name_mutexes; + +static void +lower_omp_critical (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree block; + tree name, lock, unlock; + gimple stmt = gsi_stmt (*gsi_p), bind; + gimple_seq tbody; + struct gimplify_ctx gctx; + + name = gimple_omp_critical_name (stmt); + if (name) + { + tree decl; + splay_tree_node n; + + if (!critical_name_mutexes) + critical_name_mutexes + = splay_tree_new_ggc (splay_tree_compare_pointers); + + n = splay_tree_lookup (critical_name_mutexes, (splay_tree_key) name); + if (n == NULL) + { + char *new_str; + + decl = create_tmp_var_raw (ptr_type_node, NULL); + + new_str = ACONCAT ((".gomp_critical_user_", + IDENTIFIER_POINTER (name), NULL)); + DECL_NAME (decl) = get_identifier (new_str); + TREE_PUBLIC (decl) = 1; + TREE_STATIC (decl) = 1; + DECL_COMMON (decl) = 1; + DECL_ARTIFICIAL (decl) = 1; + DECL_IGNORED_P (decl) = 1; + varpool_finalize_decl (decl); + + splay_tree_insert (critical_name_mutexes, (splay_tree_key) name, + (splay_tree_value) decl); + } + else + decl = (tree) n->value; + + lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_START]; + lock = build_call_expr (lock, 1, build_fold_addr_expr (decl)); + + unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_END]; + unlock = build_call_expr (unlock, 1, build_fold_addr_expr (decl)); + } + else + { + lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_START]; + lock = build_call_expr (lock, 0); + + unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_END]; + unlock = build_call_expr (unlock, 0); + } + + push_gimplify_context (&gctx); + + block = make_node (BLOCK); + bind = gimple_build_bind (NULL, gimple_seq_alloc_with_stmt (stmt), block); + + tbody = gimple_bind_body (bind); + gimplify_and_add (lock, &tbody); + gimple_bind_set_body (bind, tbody); + + lower_omp (gimple_omp_body (stmt), ctx); + gimple_omp_set_body (stmt, maybe_catch_exception (gimple_omp_body (stmt))); + gimple_bind_add_seq (bind, gimple_omp_body (stmt)); + gimple_omp_set_body (stmt, NULL); + + tbody = gimple_bind_body (bind); + gimplify_and_add (unlock, &tbody); + gimple_bind_set_body (bind, tbody); + + gimple_bind_add_stmt (bind, gimple_build_omp_return (true)); + + pop_gimplify_context (bind); + gimple_bind_append_vars (bind, ctx->block_vars); + BLOCK_VARS (block) = gimple_bind_vars (bind); + gsi_replace (gsi_p, bind, true); +} + + +/* A subroutine of lower_omp_for. Generate code to emit the predicate + for a lastprivate clause. Given a loop control predicate of (V + cond N2), we gate the clause on (!(V cond N2)). The lowered form + is appended to *DLIST, iterator initialization is appended to + *BODY_P. */ + +static void +lower_omp_for_lastprivate (struct omp_for_data *fd, gimple_seq *body_p, + gimple_seq *dlist, struct omp_context *ctx) +{ + tree clauses, cond, vinit; + enum tree_code cond_code; + gimple_seq stmts; + + cond_code = fd->loop.cond_code; + cond_code = cond_code == LT_EXPR ? GE_EXPR : LE_EXPR; + + /* When possible, use a strict equality expression. This can let VRP + type optimizations deduce the value and remove a copy. */ + if (host_integerp (fd->loop.step, 0)) + { + HOST_WIDE_INT step = TREE_INT_CST_LOW (fd->loop.step); + if (step == 1 || step == -1) + cond_code = EQ_EXPR; + } + + cond = build2 (cond_code, boolean_type_node, fd->loop.v, fd->loop.n2); + + clauses = gimple_omp_for_clauses (fd->for_stmt); + stmts = NULL; + lower_lastprivate_clauses (clauses, cond, &stmts, ctx); + if (!gimple_seq_empty_p (stmts)) + { + gimple_seq_add_seq (&stmts, *dlist); + *dlist = stmts; + + /* Optimize: v = 0; is usually cheaper than v = some_other_constant. */ + vinit = fd->loop.n1; + if (cond_code == EQ_EXPR + && host_integerp (fd->loop.n2, 0) + && ! integer_zerop (fd->loop.n2)) + vinit = build_int_cst (TREE_TYPE (fd->loop.v), 0); + + /* Initialize the iterator variable, so that threads that don't execute + any iterations don't execute the lastprivate clauses by accident. */ + gimplify_assign (fd->loop.v, vinit, body_p); + } +} + + +/* Lower code for an OpenMP loop directive. */ + +static void +lower_omp_for (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree *rhs_p, block; + struct omp_for_data fd; + gimple stmt = gsi_stmt (*gsi_p), new_stmt; + gimple_seq omp_for_body, body, dlist, ilist; + size_t i; + struct gimplify_ctx gctx; + + push_gimplify_context (&gctx); + + lower_omp (gimple_omp_for_pre_body (stmt), ctx); + lower_omp (gimple_omp_body (stmt), ctx); + + block = make_node (BLOCK); + new_stmt = gimple_build_bind (NULL, NULL, block); + + /* Move declaration of temporaries in the loop body before we make + it go away. */ + omp_for_body = gimple_omp_body (stmt); + if (!gimple_seq_empty_p (omp_for_body) + && gimple_code (gimple_seq_first_stmt (omp_for_body)) == GIMPLE_BIND) + { + tree vars = gimple_bind_vars (gimple_seq_first_stmt (omp_for_body)); + gimple_bind_append_vars (new_stmt, vars); + } + + /* The pre-body and input clauses go before the lowered GIMPLE_OMP_FOR. */ + ilist = NULL; + dlist = NULL; + body = NULL; + lower_rec_input_clauses (gimple_omp_for_clauses (stmt), &body, &dlist, ctx); + gimple_seq_add_seq (&body, gimple_omp_for_pre_body (stmt)); + + /* Lower the header expressions. At this point, we can assume that + the header is of the form: + + #pragma omp for (V = VAL1; V {<|>|<=|>=} VAL2; V = V [+-] VAL3) + + We just need to make sure that VAL1, VAL2 and VAL3 are lowered + using the .omp_data_s mapping, if needed. */ + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + rhs_p = gimple_omp_for_initial_ptr (stmt, i); + if (!is_gimple_min_invariant (*rhs_p)) + *rhs_p = get_formal_tmp_var (*rhs_p, &body); + + rhs_p = gimple_omp_for_final_ptr (stmt, i); + if (!is_gimple_min_invariant (*rhs_p)) + *rhs_p = get_formal_tmp_var (*rhs_p, &body); + + rhs_p = &TREE_OPERAND (gimple_omp_for_incr (stmt, i), 1); + if (!is_gimple_min_invariant (*rhs_p)) + *rhs_p = get_formal_tmp_var (*rhs_p, &body); + } + + /* Once lowered, extract the bounds and clauses. */ + extract_omp_for_data (stmt, &fd, NULL); + + lower_omp_for_lastprivate (&fd, &body, &dlist, ctx); + + gimple_seq_add_stmt (&body, stmt); + gimple_seq_add_seq (&body, gimple_omp_body (stmt)); + + gimple_seq_add_stmt (&body, gimple_build_omp_continue (fd.loop.v, + fd.loop.v)); + + /* After the loop, add exit clauses. */ + lower_reduction_clauses (gimple_omp_for_clauses (stmt), &body, ctx); + gimple_seq_add_seq (&body, dlist); + + body = maybe_catch_exception (body); + + /* Region exit marker goes at the end of the loop body. */ + gimple_seq_add_stmt (&body, gimple_build_omp_return (fd.have_nowait)); + + pop_gimplify_context (new_stmt); + + gimple_bind_append_vars (new_stmt, ctx->block_vars); + BLOCK_VARS (block) = gimple_bind_vars (new_stmt); + if (BLOCK_VARS (block)) + TREE_USED (block) = 1; + + gimple_bind_set_body (new_stmt, body); + gimple_omp_set_body (stmt, NULL); + gimple_omp_for_set_pre_body (stmt, NULL); + gsi_replace (gsi_p, new_stmt, true); +} + +/* Callback for walk_stmts. Check if the current statement only contains + GIMPLE_OMP_FOR or GIMPLE_OMP_PARALLEL. */ + +static tree +check_combined_parallel (gimple_stmt_iterator *gsi_p, + bool *handled_ops_p, + struct walk_stmt_info *wi) +{ + int *info = (int *) wi->info; + gimple stmt = gsi_stmt (*gsi_p); + + *handled_ops_p = true; + switch (gimple_code (stmt)) + { + WALK_SUBSTMTS; + + case GIMPLE_OMP_FOR: + case GIMPLE_OMP_SECTIONS: + *info = *info == 0 ? 1 : -1; + break; + default: + *info = -1; + break; + } + return NULL; +} + +struct omp_taskcopy_context +{ + /* This field must be at the beginning, as we do "inheritance": Some + callback functions for tree-inline.c (e.g., omp_copy_decl) + receive a copy_body_data pointer that is up-casted to an + omp_context pointer. */ + copy_body_data cb; + omp_context *ctx; +}; + +static tree +task_copyfn_copy_decl (tree var, copy_body_data *cb) +{ + struct omp_taskcopy_context *tcctx = (struct omp_taskcopy_context *) cb; + + if (splay_tree_lookup (tcctx->ctx->sfield_map, (splay_tree_key) var)) + return create_tmp_var (TREE_TYPE (var), NULL); + + return var; +} + +static tree +task_copyfn_remap_type (struct omp_taskcopy_context *tcctx, tree orig_type) +{ + tree name, new_fields = NULL, type, f; + + type = lang_hooks.types.make_type (RECORD_TYPE); + name = DECL_NAME (TYPE_NAME (orig_type)); + name = build_decl (TYPE_DECL, name, type); + TYPE_NAME (type) = name; + + for (f = TYPE_FIELDS (orig_type); f ; f = TREE_CHAIN (f)) + { + tree new_f = copy_node (f); + DECL_CONTEXT (new_f) = type; + TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &tcctx->cb); + TREE_CHAIN (new_f) = new_fields; + walk_tree (&DECL_SIZE (new_f), copy_tree_body_r, &tcctx->cb, NULL); + walk_tree (&DECL_SIZE_UNIT (new_f), copy_tree_body_r, &tcctx->cb, NULL); + walk_tree (&DECL_FIELD_OFFSET (new_f), copy_tree_body_r, + &tcctx->cb, NULL); + new_fields = new_f; + *pointer_map_insert (tcctx->cb.decl_map, f) = new_f; + } + TYPE_FIELDS (type) = nreverse (new_fields); + layout_type (type); + return type; +} + +/* Create task copyfn. */ + +static void +create_task_copyfn (gimple task_stmt, omp_context *ctx) +{ + struct function *child_cfun; + tree child_fn, t, c, src, dst, f, sf, arg, sarg, decl; + tree record_type, srecord_type, bind, list; + bool record_needs_remap = false, srecord_needs_remap = false; + splay_tree_node n; + struct omp_taskcopy_context tcctx; + struct gimplify_ctx gctx; + + child_fn = gimple_omp_task_copy_fn (task_stmt); + child_cfun = DECL_STRUCT_FUNCTION (child_fn); + gcc_assert (child_cfun->cfg == NULL); + child_cfun->dont_save_pending_sizes_p = 1; + DECL_SAVED_TREE (child_fn) = alloc_stmt_list (); + + /* Reset DECL_CONTEXT on function arguments. */ + for (t = DECL_ARGUMENTS (child_fn); t; t = TREE_CHAIN (t)) + DECL_CONTEXT (t) = child_fn; + + /* Populate the function. */ + push_gimplify_context (&gctx); + current_function_decl = child_fn; + + bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL); + TREE_SIDE_EFFECTS (bind) = 1; + list = NULL; + DECL_SAVED_TREE (child_fn) = bind; + DECL_SOURCE_LOCATION (child_fn) = gimple_location (task_stmt); + + /* Remap src and dst argument types if needed. */ + record_type = ctx->record_type; + srecord_type = ctx->srecord_type; + for (f = TYPE_FIELDS (record_type); f ; f = TREE_CHAIN (f)) + if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn)) + { + record_needs_remap = true; + break; + } + for (f = TYPE_FIELDS (srecord_type); f ; f = TREE_CHAIN (f)) + if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn)) + { + srecord_needs_remap = true; + break; + } + + if (record_needs_remap || srecord_needs_remap) + { + memset (&tcctx, '\0', sizeof (tcctx)); + tcctx.cb.src_fn = ctx->cb.src_fn; + tcctx.cb.dst_fn = child_fn; + tcctx.cb.src_node = cgraph_node (tcctx.cb.src_fn); + tcctx.cb.dst_node = tcctx.cb.src_node; + tcctx.cb.src_cfun = ctx->cb.src_cfun; + tcctx.cb.copy_decl = task_copyfn_copy_decl; + tcctx.cb.eh_region = -1; + tcctx.cb.transform_call_graph_edges = CB_CGE_MOVE; + tcctx.cb.decl_map = pointer_map_create (); + tcctx.ctx = ctx; + + if (record_needs_remap) + record_type = task_copyfn_remap_type (&tcctx, record_type); + if (srecord_needs_remap) + srecord_type = task_copyfn_remap_type (&tcctx, srecord_type); + } + else + tcctx.cb.decl_map = NULL; + + push_cfun (child_cfun); + + arg = DECL_ARGUMENTS (child_fn); + TREE_TYPE (arg) = build_pointer_type (record_type); + sarg = TREE_CHAIN (arg); + TREE_TYPE (sarg) = build_pointer_type (srecord_type); + + /* First pass: initialize temporaries used in record_type and srecord_type + sizes and field offsets. */ + if (tcctx.cb.decl_map) + for (c = gimple_omp_task_clauses (task_stmt); c; c = OMP_CLAUSE_CHAIN (c)) + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE) + { + tree *p; + + decl = OMP_CLAUSE_DECL (c); + p = (tree *) pointer_map_contains (tcctx.cb.decl_map, decl); + if (p == NULL) + continue; + n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl); + sf = (tree) n->value; + sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf); + src = build_fold_indirect_ref (sarg); + src = build3 (COMPONENT_REF, TREE_TYPE (sf), src, sf, NULL); + t = build2 (MODIFY_EXPR, TREE_TYPE (*p), *p, src); + append_to_statement_list (t, &list); + } + + /* Second pass: copy shared var pointers and copy construct non-VLA + firstprivate vars. */ + for (c = gimple_omp_task_clauses (task_stmt); c; c = OMP_CLAUSE_CHAIN (c)) + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_SHARED: + decl = OMP_CLAUSE_DECL (c); + n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl); + if (n == NULL) + break; + f = (tree) n->value; + if (tcctx.cb.decl_map) + f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f); + n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl); + sf = (tree) n->value; + if (tcctx.cb.decl_map) + sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf); + src = build_fold_indirect_ref (sarg); + src = build3 (COMPONENT_REF, TREE_TYPE (sf), src, sf, NULL); + dst = build_fold_indirect_ref (arg); + dst = build3 (COMPONENT_REF, TREE_TYPE (f), dst, f, NULL); + t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src); + append_to_statement_list (t, &list); + break; + case OMP_CLAUSE_FIRSTPRIVATE: + decl = OMP_CLAUSE_DECL (c); + if (is_variable_sized (decl)) + break; + n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl); + if (n == NULL) + break; + f = (tree) n->value; + if (tcctx.cb.decl_map) + f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f); + n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl); + if (n != NULL) + { + sf = (tree) n->value; + if (tcctx.cb.decl_map) + sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf); + src = build_fold_indirect_ref (sarg); + src = build3 (COMPONENT_REF, TREE_TYPE (sf), src, sf, NULL); + if (use_pointer_for_field (decl, NULL) || is_reference (decl)) + src = build_fold_indirect_ref (src); + } + else + src = decl; + dst = build_fold_indirect_ref (arg); + dst = build3 (COMPONENT_REF, TREE_TYPE (f), dst, f, NULL); + t = lang_hooks.decls.omp_clause_copy_ctor (c, dst, src); + append_to_statement_list (t, &list); + break; + case OMP_CLAUSE_PRIVATE: + if (! OMP_CLAUSE_PRIVATE_OUTER_REF (c)) + break; + decl = OMP_CLAUSE_DECL (c); + n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl); + f = (tree) n->value; + if (tcctx.cb.decl_map) + f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f); + n = splay_tree_lookup (ctx->sfield_map, (splay_tree_key) decl); + if (n != NULL) + { + sf = (tree) n->value; + if (tcctx.cb.decl_map) + sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf); + src = build_fold_indirect_ref (sarg); + src = build3 (COMPONENT_REF, TREE_TYPE (sf), src, sf, NULL); + if (use_pointer_for_field (decl, NULL)) + src = build_fold_indirect_ref (src); + } + else + src = decl; + dst = build_fold_indirect_ref (arg); + dst = build3 (COMPONENT_REF, TREE_TYPE (f), dst, f, NULL); + t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src); + append_to_statement_list (t, &list); + break; + default: + break; + } + + /* Last pass: handle VLA firstprivates. */ + if (tcctx.cb.decl_map) + for (c = gimple_omp_task_clauses (task_stmt); c; c = OMP_CLAUSE_CHAIN (c)) + if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE) + { + tree ind, ptr, df; + + decl = OMP_CLAUSE_DECL (c); + if (!is_variable_sized (decl)) + continue; + n = splay_tree_lookup (ctx->field_map, (splay_tree_key) decl); + if (n == NULL) + continue; + f = (tree) n->value; + f = *(tree *) pointer_map_contains (tcctx.cb.decl_map, f); + gcc_assert (DECL_HAS_VALUE_EXPR_P (decl)); + ind = DECL_VALUE_EXPR (decl); + gcc_assert (TREE_CODE (ind) == INDIRECT_REF); + gcc_assert (DECL_P (TREE_OPERAND (ind, 0))); + n = splay_tree_lookup (ctx->sfield_map, + (splay_tree_key) TREE_OPERAND (ind, 0)); + sf = (tree) n->value; + sf = *(tree *) pointer_map_contains (tcctx.cb.decl_map, sf); + src = build_fold_indirect_ref (sarg); + src = build3 (COMPONENT_REF, TREE_TYPE (sf), src, sf, NULL); + src = build_fold_indirect_ref (src); + dst = build_fold_indirect_ref (arg); + dst = build3 (COMPONENT_REF, TREE_TYPE (f), dst, f, NULL); + t = lang_hooks.decls.omp_clause_copy_ctor (c, dst, src); + append_to_statement_list (t, &list); + n = splay_tree_lookup (ctx->field_map, + (splay_tree_key) TREE_OPERAND (ind, 0)); + df = (tree) n->value; + df = *(tree *) pointer_map_contains (tcctx.cb.decl_map, df); + ptr = build_fold_indirect_ref (arg); + ptr = build3 (COMPONENT_REF, TREE_TYPE (df), ptr, df, NULL); + t = build2 (MODIFY_EXPR, TREE_TYPE (ptr), ptr, + build_fold_addr_expr (dst)); + append_to_statement_list (t, &list); + } + + t = build1 (RETURN_EXPR, void_type_node, NULL); + append_to_statement_list (t, &list); + + if (tcctx.cb.decl_map) + pointer_map_destroy (tcctx.cb.decl_map); + pop_gimplify_context (NULL); + BIND_EXPR_BODY (bind) = list; + pop_cfun (); + current_function_decl = ctx->cb.src_fn; +} + +/* Lower the OpenMP parallel or task directive in the current statement + in GSI_P. CTX holds context information for the directive. */ + +static void +lower_omp_taskreg (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + tree clauses; + tree child_fn, t; + gimple stmt = gsi_stmt (*gsi_p); + gimple par_bind, bind; + gimple_seq par_body, olist, ilist, par_olist, par_ilist, new_body; + struct gimplify_ctx gctx; + + clauses = gimple_omp_taskreg_clauses (stmt); + par_bind = gimple_seq_first_stmt (gimple_omp_body (stmt)); + par_body = gimple_bind_body (par_bind); + child_fn = ctx->cb.dst_fn; + if (gimple_code (stmt) == GIMPLE_OMP_PARALLEL + && !gimple_omp_parallel_combined_p (stmt)) + { + struct walk_stmt_info wi; + int ws_num = 0; + + memset (&wi, 0, sizeof (wi)); + wi.info = &ws_num; + wi.val_only = true; + walk_gimple_seq (par_body, check_combined_parallel, NULL, &wi); + if (ws_num == 1) + gimple_omp_parallel_set_combined_p (stmt, true); + } + if (ctx->srecord_type) + create_task_copyfn (stmt, ctx); + + push_gimplify_context (&gctx); + + par_olist = NULL; + par_ilist = NULL; + lower_rec_input_clauses (clauses, &par_ilist, &par_olist, ctx); + lower_omp (par_body, ctx); + if (gimple_code (stmt) == GIMPLE_OMP_PARALLEL) + lower_reduction_clauses (clauses, &par_olist, ctx); + + /* Declare all the variables created by mapping and the variables + declared in the scope of the parallel body. */ + record_vars_into (ctx->block_vars, child_fn); + record_vars_into (gimple_bind_vars (par_bind), child_fn); + + if (ctx->record_type) + { + ctx->sender_decl + = create_tmp_var (ctx->srecord_type ? ctx->srecord_type + : ctx->record_type, ".omp_data_o"); + gimple_omp_taskreg_set_data_arg (stmt, ctx->sender_decl); + } + + olist = NULL; + ilist = NULL; + lower_send_clauses (clauses, &ilist, &olist, ctx); + lower_send_shared_vars (&ilist, &olist, ctx); + + /* Once all the expansions are done, sequence all the different + fragments inside gimple_omp_body. */ + + new_body = NULL; + + if (ctx->record_type) + { + t = build_fold_addr_expr (ctx->sender_decl); + /* fixup_child_record_type might have changed receiver_decl's type. */ + t = fold_convert (TREE_TYPE (ctx->receiver_decl), t); + gimple_seq_add_stmt (&new_body, + gimple_build_assign (ctx->receiver_decl, t)); + } + + gimple_seq_add_seq (&new_body, par_ilist); + gimple_seq_add_seq (&new_body, par_body); + gimple_seq_add_seq (&new_body, par_olist); + new_body = maybe_catch_exception (new_body); + gimple_seq_add_stmt (&new_body, gimple_build_omp_return (false)); + gimple_omp_set_body (stmt, new_body); + + bind = gimple_build_bind (NULL, NULL, gimple_bind_block (par_bind)); + gimple_bind_add_stmt (bind, stmt); + if (ilist || olist) + { + gimple_seq_add_stmt (&ilist, bind); + gimple_seq_add_seq (&ilist, olist); + bind = gimple_build_bind (NULL, ilist, NULL); + } + + gsi_replace (gsi_p, bind, true); + + pop_gimplify_context (NULL); +} + +/* Callback for lower_omp_1. Return non-NULL if *tp needs to be + regimplified. If DATA is non-NULL, lower_omp_1 is outside + of OpenMP context, but with task_shared_vars set. */ + +static tree +lower_omp_regimplify_p (tree *tp, int *walk_subtrees, + void *data) +{ + tree t = *tp; + + /* Any variable with DECL_VALUE_EXPR needs to be regimplified. */ + if (TREE_CODE (t) == VAR_DECL && data == NULL && DECL_HAS_VALUE_EXPR_P (t)) + return t; + + if (task_shared_vars + && DECL_P (t) + && bitmap_bit_p (task_shared_vars, DECL_UID (t))) + return t; + + /* If a global variable has been privatized, TREE_CONSTANT on + ADDR_EXPR might be wrong. */ + if (data == NULL && TREE_CODE (t) == ADDR_EXPR) + recompute_tree_invariant_for_addr_expr (t); + + *walk_subtrees = !TYPE_P (t) && !DECL_P (t); + return NULL_TREE; +} + +static void +lower_omp_1 (gimple_stmt_iterator *gsi_p, omp_context *ctx) +{ + gimple stmt = gsi_stmt (*gsi_p); + struct walk_stmt_info wi; + + if (gimple_has_location (stmt)) + input_location = gimple_location (stmt); + + if (task_shared_vars) + memset (&wi, '\0', sizeof (wi)); + + /* If we have issued syntax errors, avoid doing any heavy lifting. + Just replace the OpenMP directives with a NOP to avoid + confusing RTL expansion. */ + if (errorcount && is_gimple_omp (stmt)) + { + gsi_replace (gsi_p, gimple_build_nop (), true); + return; + } + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + if ((ctx || task_shared_vars) + && (walk_tree (gimple_cond_lhs_ptr (stmt), lower_omp_regimplify_p, + ctx ? NULL : &wi, NULL) + || walk_tree (gimple_cond_rhs_ptr (stmt), lower_omp_regimplify_p, + ctx ? NULL : &wi, NULL))) + gimple_regimplify_operands (stmt, gsi_p); + break; + case GIMPLE_CATCH: + lower_omp (gimple_catch_handler (stmt), ctx); + break; + case GIMPLE_EH_FILTER: + lower_omp (gimple_eh_filter_failure (stmt), ctx); + break; + case GIMPLE_TRY: + lower_omp (gimple_try_eval (stmt), ctx); + lower_omp (gimple_try_cleanup (stmt), ctx); + break; + case GIMPLE_BIND: + lower_omp (gimple_bind_body (stmt), ctx); + break; + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + ctx = maybe_lookup_ctx (stmt); + lower_omp_taskreg (gsi_p, ctx); + break; + case GIMPLE_OMP_FOR: + ctx = maybe_lookup_ctx (stmt); + gcc_assert (ctx); + lower_omp_for (gsi_p, ctx); + break; + case GIMPLE_OMP_SECTIONS: + ctx = maybe_lookup_ctx (stmt); + gcc_assert (ctx); + lower_omp_sections (gsi_p, ctx); + break; + case GIMPLE_OMP_SINGLE: + ctx = maybe_lookup_ctx (stmt); + gcc_assert (ctx); + lower_omp_single (gsi_p, ctx); + break; + case GIMPLE_OMP_MASTER: + ctx = maybe_lookup_ctx (stmt); + gcc_assert (ctx); + lower_omp_master (gsi_p, ctx); + break; + case GIMPLE_OMP_ORDERED: + ctx = maybe_lookup_ctx (stmt); + gcc_assert (ctx); + lower_omp_ordered (gsi_p, ctx); + break; + case GIMPLE_OMP_CRITICAL: + ctx = maybe_lookup_ctx (stmt); + gcc_assert (ctx); + lower_omp_critical (gsi_p, ctx); + break; + case GIMPLE_OMP_ATOMIC_LOAD: + if ((ctx || task_shared_vars) + && walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), + lower_omp_regimplify_p, ctx ? NULL : &wi, NULL)) + gimple_regimplify_operands (stmt, gsi_p); + break; + default: + if ((ctx || task_shared_vars) + && walk_gimple_op (stmt, lower_omp_regimplify_p, + ctx ? NULL : &wi)) + gimple_regimplify_operands (stmt, gsi_p); + break; + } +} + +static void +lower_omp (gimple_seq body, omp_context *ctx) +{ + location_t saved_location = input_location; + gimple_stmt_iterator gsi = gsi_start (body); + for (gsi = gsi_start (body); !gsi_end_p (gsi); gsi_next (&gsi)) + lower_omp_1 (&gsi, ctx); + input_location = saved_location; +} + +/* Main entry point. */ + +static unsigned int +execute_lower_omp (void) +{ + gimple_seq body; + + all_contexts = splay_tree_new (splay_tree_compare_pointers, 0, + delete_omp_context); + + body = gimple_body (current_function_decl); + scan_omp (body, NULL); + gcc_assert (taskreg_nesting_level == 0); + + if (all_contexts->root) + { + struct gimplify_ctx gctx; + + if (task_shared_vars) + push_gimplify_context (&gctx); + lower_omp (body, NULL); + if (task_shared_vars) + pop_gimplify_context (NULL); + } + + if (all_contexts) + { + splay_tree_delete (all_contexts); + all_contexts = NULL; + } + BITMAP_FREE (task_shared_vars); + return 0; +} + +static bool +gate_lower_omp (void) +{ + return flag_openmp != 0; +} + +struct gimple_opt_pass pass_lower_omp = +{ + { + GIMPLE_PASS, + "omplower", /* name */ + gate_lower_omp, /* gate */ + execute_lower_omp, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_gimple_any, /* properties_required */ + PROP_gimple_lomp, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func /* todo_flags_finish */ + } +}; + +/* The following is a utility to diagnose OpenMP structured block violations. + It is not part of the "omplower" pass, as that's invoked too late. It + should be invoked by the respective front ends after gimplification. */ + +static splay_tree all_labels; + +/* Check for mismatched contexts and generate an error if needed. Return + true if an error is detected. */ + +static bool +diagnose_sb_0 (gimple_stmt_iterator *gsi_p, + gimple branch_ctx, gimple label_ctx) +{ + if (label_ctx == branch_ctx) + return false; + + + /* + Previously we kept track of the label's entire context in diagnose_sb_[12] + so we could traverse it and issue a correct "exit" or "enter" error + message upon a structured block violation. + + We built the context by building a list with tree_cons'ing, but there is + no easy counterpart in gimple tuples. It seems like far too much work + for issuing exit/enter error messages. If someone really misses the + distinct error message... patches welcome. + */ + +#if 0 + /* Try to avoid confusing the user by producing and error message + with correct "exit" or "enter" verbiage. We prefer "exit" + unless we can show that LABEL_CTX is nested within BRANCH_CTX. */ + if (branch_ctx == NULL) + exit_p = false; + else + { + while (label_ctx) + { + if (TREE_VALUE (label_ctx) == branch_ctx) + { + exit_p = false; + break; + } + label_ctx = TREE_CHAIN (label_ctx); + } + } + + if (exit_p) + error ("invalid exit from OpenMP structured block"); + else + error ("invalid entry to OpenMP structured block"); +#endif + + /* If it's obvious we have an invalid entry, be specific about the error. */ + if (branch_ctx == NULL) + error ("invalid entry to OpenMP structured block"); + else + /* Otherwise, be vague and lazy, but efficient. */ + error ("invalid branch to/from an OpenMP structured block"); + + gsi_replace (gsi_p, gimple_build_nop (), false); + return true; +} + +/* Pass 1: Create a minimal tree of OpenMP structured blocks, and record + where each label is found. */ + +static tree +diagnose_sb_1 (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, + struct walk_stmt_info *wi) +{ + gimple context = (gimple) wi->info; + gimple inner_context; + gimple stmt = gsi_stmt (*gsi_p); + + *handled_ops_p = true; + + switch (gimple_code (stmt)) + { + WALK_SUBSTMTS; + + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_CRITICAL: + /* The minimal context here is just the current OMP construct. */ + inner_context = stmt; + wi->info = inner_context; + walk_gimple_seq (gimple_omp_body (stmt), diagnose_sb_1, NULL, wi); + wi->info = context; + break; + + case GIMPLE_OMP_FOR: + inner_context = stmt; + wi->info = inner_context; + /* gimple_omp_for_{index,initial,final} are all DECLs; no need to + walk them. */ + walk_gimple_seq (gimple_omp_for_pre_body (stmt), + diagnose_sb_1, NULL, wi); + walk_gimple_seq (gimple_omp_body (stmt), diagnose_sb_1, NULL, wi); + wi->info = context; + break; + + case GIMPLE_LABEL: + splay_tree_insert (all_labels, (splay_tree_key) gimple_label_label (stmt), + (splay_tree_value) context); + break; + + default: + break; + } + + return NULL_TREE; +} + +/* Pass 2: Check each branch and see if its context differs from that of + the destination label's context. */ + +static tree +diagnose_sb_2 (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, + struct walk_stmt_info *wi) +{ + gimple context = (gimple) wi->info; + splay_tree_node n; + gimple stmt = gsi_stmt (*gsi_p); + + *handled_ops_p = true; + + switch (gimple_code (stmt)) + { + WALK_SUBSTMTS; + + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_CRITICAL: + wi->info = stmt; + walk_gimple_seq (gimple_omp_body (stmt), diagnose_sb_2, NULL, wi); + wi->info = context; + break; + + case GIMPLE_OMP_FOR: + wi->info = stmt; + /* gimple_omp_for_{index,initial,final} are all DECLs; no need to + walk them. */ + walk_gimple_seq (gimple_omp_for_pre_body (stmt), + diagnose_sb_2, NULL, wi); + walk_gimple_seq (gimple_omp_body (stmt), diagnose_sb_2, NULL, wi); + wi->info = context; + break; + + case GIMPLE_COND: + { + tree lab = gimple_cond_true_label (stmt); + if (lab) + { + n = splay_tree_lookup (all_labels, + (splay_tree_key) lab); + diagnose_sb_0 (gsi_p, context, + n ? (gimple) n->value : NULL); + } + lab = gimple_cond_false_label (stmt); + if (lab) + { + n = splay_tree_lookup (all_labels, + (splay_tree_key) lab); + diagnose_sb_0 (gsi_p, context, + n ? (gimple) n->value : NULL); + } + } + break; + + case GIMPLE_GOTO: + { + tree lab = gimple_goto_dest (stmt); + if (TREE_CODE (lab) != LABEL_DECL) + break; + + n = splay_tree_lookup (all_labels, (splay_tree_key) lab); + diagnose_sb_0 (gsi_p, context, n ? (gimple) n->value : NULL); + } + break; + + case GIMPLE_SWITCH: + { + unsigned int i; + for (i = 0; i < gimple_switch_num_labels (stmt); ++i) + { + tree lab = CASE_LABEL (gimple_switch_label (stmt, i)); + n = splay_tree_lookup (all_labels, (splay_tree_key) lab); + if (n && diagnose_sb_0 (gsi_p, context, (gimple) n->value)) + break; + } + } + break; + + case GIMPLE_RETURN: + diagnose_sb_0 (gsi_p, context, NULL); + break; + + default: + break; + } + + return NULL_TREE; +} + +void +diagnose_omp_structured_block_errors (tree fndecl) +{ + tree save_current = current_function_decl; + struct walk_stmt_info wi; + struct function *old_cfun = cfun; + gimple_seq body = gimple_body (fndecl); + + current_function_decl = fndecl; + set_cfun (DECL_STRUCT_FUNCTION (fndecl)); + + all_labels = splay_tree_new (splay_tree_compare_pointers, 0, 0); + + memset (&wi, 0, sizeof (wi)); + walk_gimple_seq (body, diagnose_sb_1, NULL, &wi); + + memset (&wi, 0, sizeof (wi)); + wi.want_locations = true; + walk_gimple_seq (body, diagnose_sb_2, NULL, &wi); + + splay_tree_delete (all_labels); + all_labels = NULL; + + set_cfun (old_cfun); + current_function_decl = save_current; +} + +#include "gt-omp-low.h"