X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=gcc%2Ftree-complex.c;fp=gcc%2Ftree-complex.c;h=5a3cb74d391ea46b3f7e202404fce333d79b2f97;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/tree-complex.c b/gcc/tree-complex.c new file mode 100644 index 00000000..5a3cb74d --- /dev/null +++ b/gcc/tree-complex.c @@ -0,0 +1,1686 @@ +/* Lower complex number operations to scalar operations. + Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "rtl.h" +#include "real.h" +#include "flags.h" +#include "tree-flow.h" +#include "gimple.h" +#include "tree-iterator.h" +#include "tree-pass.h" +#include "tree-ssa-propagate.h" +#include "diagnostic.h" + + +/* For each complex ssa name, a lattice value. We're interested in finding + out whether a complex number is degenerate in some way, having only real + or only complex parts. */ + +typedef enum +{ + UNINITIALIZED = 0, + ONLY_REAL = 1, + ONLY_IMAG = 2, + VARYING = 3 +} complex_lattice_t; + +#define PAIR(a, b) ((a) << 2 | (b)) + +DEF_VEC_I(complex_lattice_t); +DEF_VEC_ALLOC_I(complex_lattice_t, heap); + +static VEC(complex_lattice_t, heap) *complex_lattice_values; + +/* For each complex variable, a pair of variables for the components exists in + the hashtable. */ +static htab_t complex_variable_components; + +/* For each complex SSA_NAME, a pair of ssa names for the components. */ +static VEC(tree, heap) *complex_ssa_name_components; + +/* Lookup UID in the complex_variable_components hashtable and return the + associated tree. */ +static tree +cvc_lookup (unsigned int uid) +{ + struct int_tree_map *h, in; + in.uid = uid; + h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid); + return h ? h->to : NULL; +} + +/* Insert the pair UID, TO into the complex_variable_components hashtable. */ + +static void +cvc_insert (unsigned int uid, tree to) +{ + struct int_tree_map *h; + void **loc; + + h = XNEW (struct int_tree_map); + h->uid = uid; + h->to = to; + loc = htab_find_slot_with_hash (complex_variable_components, h, + uid, INSERT); + *(struct int_tree_map **) loc = h; +} + +/* Return true if T is not a zero constant. In the case of real values, + we're only interested in +0.0. */ + +static int +some_nonzerop (tree t) +{ + int zerop = false; + + if (TREE_CODE (t) == REAL_CST) + zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0); + else if (TREE_CODE (t) == FIXED_CST) + zerop = fixed_zerop (t); + else if (TREE_CODE (t) == INTEGER_CST) + zerop = integer_zerop (t); + + return !zerop; +} + + +/* Compute a lattice value from the components of a complex type REAL + and IMAG. */ + +static complex_lattice_t +find_lattice_value_parts (tree real, tree imag) +{ + int r, i; + complex_lattice_t ret; + + r = some_nonzerop (real); + i = some_nonzerop (imag); + ret = r * ONLY_REAL + i * ONLY_IMAG; + + /* ??? On occasion we could do better than mapping 0+0i to real, but we + certainly don't want to leave it UNINITIALIZED, which eventually gets + mapped to VARYING. */ + if (ret == UNINITIALIZED) + ret = ONLY_REAL; + + return ret; +} + + +/* Compute a lattice value from gimple_val T. */ + +static complex_lattice_t +find_lattice_value (tree t) +{ + tree real, imag; + + switch (TREE_CODE (t)) + { + case SSA_NAME: + return VEC_index (complex_lattice_t, complex_lattice_values, + SSA_NAME_VERSION (t)); + + case COMPLEX_CST: + real = TREE_REALPART (t); + imag = TREE_IMAGPART (t); + break; + + default: + gcc_unreachable (); + } + + return find_lattice_value_parts (real, imag); +} + +/* Determine if LHS is something for which we're interested in seeing + simulation results. */ + +static bool +is_complex_reg (tree lhs) +{ + return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); +} + +/* Mark the incoming parameters to the function as VARYING. */ + +static void +init_parameter_lattice_values (void) +{ + tree parm, ssa_name; + + for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm)) + if (is_complex_reg (parm) + && var_ann (parm) != NULL + && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE) + VEC_replace (complex_lattice_t, complex_lattice_values, + SSA_NAME_VERSION (ssa_name), VARYING); +} + +/* Initialize simulation state for each statement. Return false if we + found no statements we want to simulate, and thus there's nothing + for the entire pass to do. */ + +static bool +init_dont_simulate_again (void) +{ + basic_block bb; + gimple_stmt_iterator gsi; + gimple phi; + bool saw_a_complex_op = false; + + FOR_EACH_BB (bb) + { + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + phi = gsi_stmt (gsi); + prop_set_simulate_again (phi, + is_complex_reg (gimple_phi_result (phi))); + } + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt; + tree op0, op1; + bool sim_again_p; + + stmt = gsi_stmt (gsi); + op0 = op1 = NULL_TREE; + + /* Most control-altering statements must be initially + simulated, else we won't cover the entire cfg. */ + sim_again_p = stmt_ends_bb_p (stmt); + + switch (gimple_code (stmt)) + { + case GIMPLE_CALL: + if (gimple_call_lhs (stmt)) + sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); + break; + + case GIMPLE_ASSIGN: + sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); + if (gimple_assign_rhs_code (stmt) == REALPART_EXPR + || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) + op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); + else + op0 = gimple_assign_rhs1 (stmt); + if (gimple_num_ops (stmt) > 2) + op1 = gimple_assign_rhs2 (stmt); + break; + + case GIMPLE_COND: + op0 = gimple_cond_lhs (stmt); + op1 = gimple_cond_rhs (stmt); + break; + + default: + break; + } + + if (op0 || op1) + switch (gimple_expr_code (stmt)) + { + case EQ_EXPR: + case NE_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) + saw_a_complex_op = true; + break; + + case NEGATE_EXPR: + case CONJ_EXPR: + if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) + saw_a_complex_op = true; + break; + + case REALPART_EXPR: + case IMAGPART_EXPR: + /* The total store transformation performed during + gimplification creates such uninitialized loads + and we need to lower the statement to be able + to fix things up. */ + if (TREE_CODE (op0) == SSA_NAME + && ssa_undefined_value_p (op0)) + saw_a_complex_op = true; + break; + + default: + break; + } + + prop_set_simulate_again (stmt, sim_again_p); + } + } + + return saw_a_complex_op; +} + + +/* Evaluate statement STMT against the complex lattice defined above. */ + +static enum ssa_prop_result +complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, + tree *result_p) +{ + complex_lattice_t new_l, old_l, op1_l, op2_l; + unsigned int ver; + tree lhs; + + lhs = gimple_get_lhs (stmt); + /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ + if (!lhs) + return SSA_PROP_VARYING; + + /* These conditions should be satisfied due to the initial filter + set up in init_dont_simulate_again. */ + gcc_assert (TREE_CODE (lhs) == SSA_NAME); + gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); + + *result_p = lhs; + ver = SSA_NAME_VERSION (lhs); + old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver); + + switch (gimple_expr_code (stmt)) + { + case SSA_NAME: + case COMPLEX_CST: + new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + break; + + case COMPLEX_EXPR: + new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt)); + break; + + case PLUS_EXPR: + case MINUS_EXPR: + op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); + + /* We've set up the lattice values such that IOR neatly + models addition. */ + new_l = op1_l | op2_l; + break; + + case MULT_EXPR: + case RDIV_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); + + /* Obviously, if either varies, so does the result. */ + if (op1_l == VARYING || op2_l == VARYING) + new_l = VARYING; + /* Don't prematurely promote variables if we've not yet seen + their inputs. */ + else if (op1_l == UNINITIALIZED) + new_l = op2_l; + else if (op2_l == UNINITIALIZED) + new_l = op1_l; + else + { + /* At this point both numbers have only one component. If the + numbers are of opposite kind, the result is imaginary, + otherwise the result is real. The add/subtract translates + the real/imag from/to 0/1; the ^ performs the comparison. */ + new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; + + /* Don't allow the lattice value to flip-flop indefinitely. */ + new_l |= old_l; + } + break; + + case NEGATE_EXPR: + case CONJ_EXPR: + new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); + break; + + default: + new_l = VARYING; + break; + } + + /* If nothing changed this round, let the propagator know. */ + if (new_l == old_l) + return SSA_PROP_NOT_INTERESTING; + + VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l); + return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; +} + +/* Evaluate a PHI node against the complex lattice defined above. */ + +static enum ssa_prop_result +complex_visit_phi (gimple phi) +{ + complex_lattice_t new_l, old_l; + unsigned int ver; + tree lhs; + int i; + + lhs = gimple_phi_result (phi); + + /* This condition should be satisfied due to the initial filter + set up in init_dont_simulate_again. */ + gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); + + /* We've set up the lattice values such that IOR neatly models PHI meet. */ + new_l = UNINITIALIZED; + for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) + new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); + + ver = SSA_NAME_VERSION (lhs); + old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver); + + if (new_l == old_l) + return SSA_PROP_NOT_INTERESTING; + + VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l); + return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; +} + +/* Create one backing variable for a complex component of ORIG. */ + +static tree +create_one_component_var (tree type, tree orig, const char *prefix, + const char *suffix, enum tree_code code) +{ + tree r = create_tmp_var (type, prefix); + add_referenced_var (r); + + DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); + DECL_ARTIFICIAL (r) = 1; + + if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) + { + const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); + tree inner_type; + + DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL))); + + inner_type = TREE_TYPE (TREE_TYPE (orig)); + SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); + DECL_DEBUG_EXPR_IS_FROM (r) = 1; + DECL_IGNORED_P (r) = 0; + TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); + } + else + { + DECL_IGNORED_P (r) = 1; + TREE_NO_WARNING (r) = 1; + } + + return r; +} + +/* Retrieve a value for a complex component of VAR. */ + +static tree +get_component_var (tree var, bool imag_p) +{ + size_t decl_index = DECL_UID (var) * 2 + imag_p; + tree ret = cvc_lookup (decl_index); + + if (ret == NULL) + { + ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, + imag_p ? "CI" : "CR", + imag_p ? "$imag" : "$real", + imag_p ? IMAGPART_EXPR : REALPART_EXPR); + cvc_insert (decl_index, ret); + } + + return ret; +} + +/* Retrieve a value for a complex component of SSA_NAME. */ + +static tree +get_component_ssa_name (tree ssa_name, bool imag_p) +{ + complex_lattice_t lattice = find_lattice_value (ssa_name); + size_t ssa_name_index; + tree ret; + + if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) + { + tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); + if (SCALAR_FLOAT_TYPE_P (inner_type)) + return build_real (inner_type, dconst0); + else + return build_int_cst (inner_type, 0); + } + + ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; + ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index); + if (ret == NULL) + { + ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); + ret = make_ssa_name (ret, NULL); + + /* Copy some properties from the original. In particular, whether it + is used in an abnormal phi, and whether it's uninitialized. */ + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) + = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); + if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL + && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name))) + { + SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); + set_default_def (SSA_NAME_VAR (ret), ret); + } + + VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret); + } + + return ret; +} + +/* Set a value for a complex component of SSA_NAME, return a + gimple_seq of stuff that needs doing. */ + +static gimple_seq +set_component_ssa_name (tree ssa_name, bool imag_p, tree value) +{ + complex_lattice_t lattice = find_lattice_value (ssa_name); + size_t ssa_name_index; + tree comp; + gimple last; + gimple_seq list; + + /* We know the value must be zero, else there's a bug in our lattice + analysis. But the value may well be a variable known to contain + zero. We should be safe ignoring it. */ + if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) + return NULL; + + /* If we've already assigned an SSA_NAME to this component, then this + means that our walk of the basic blocks found a use before the set. + This is fine. Now we should create an initialization for the value + we created earlier. */ + ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; + comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index); + if (comp) + ; + + /* If we've nothing assigned, and the value we're given is already stable, + then install that as the value for this SSA_NAME. This preemptively + copy-propagates the value, which avoids unnecessary memory allocation. */ + else if (is_gimple_min_invariant (value) + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) + { + VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value); + return NULL; + } + else if (TREE_CODE (value) == SSA_NAME + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) + { + /* Replace an anonymous base value with the variable from cvc_lookup. + This should result in better debug info. */ + if (DECL_IGNORED_P (SSA_NAME_VAR (value)) + && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) + { + comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); + replace_ssa_name_symbol (value, comp); + } + + VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value); + return NULL; + } + + /* Finally, we need to stabilize the result by installing the value into + a new ssa name. */ + else + comp = get_component_ssa_name (ssa_name, imag_p); + + /* Do all the work to assign VALUE to COMP. */ + list = NULL; + value = force_gimple_operand (value, &list, false, NULL); + last = gimple_build_assign (comp, value); + gimple_seq_add_stmt (&list, last); + gcc_assert (SSA_NAME_DEF_STMT (comp) == last); + + return list; +} + +/* Extract the real or imaginary part of a complex variable or constant. + Make sure that it's a proper gimple_val and gimplify it if not. + Emit any new code before gsi. */ + +static tree +extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, + bool gimple_p) +{ + switch (TREE_CODE (t)) + { + case COMPLEX_CST: + return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); + + case COMPLEX_EXPR: + gcc_unreachable (); + + case VAR_DECL: + case RESULT_DECL: + case PARM_DECL: + case INDIRECT_REF: + case COMPONENT_REF: + case ARRAY_REF: + { + tree inner_type = TREE_TYPE (TREE_TYPE (t)); + + t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), + inner_type, unshare_expr (t)); + + if (gimple_p) + t = force_gimple_operand_gsi (gsi, t, true, NULL, true, + GSI_SAME_STMT); + + return t; + } + + case SSA_NAME: + return get_component_ssa_name (t, imagpart_p); + + default: + gcc_unreachable (); + } +} + +/* Update the complex components of the ssa name on the lhs of STMT. */ + +static void +update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r, + tree i) +{ + tree lhs; + gimple_seq list; + + lhs = gimple_get_lhs (stmt); + + list = set_component_ssa_name (lhs, false, r); + if (list) + gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); + + list = set_component_ssa_name (lhs, true, i); + if (list) + gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); +} + +static void +update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) +{ + gimple_seq list; + + list = set_component_ssa_name (lhs, false, r); + if (list) + gsi_insert_seq_on_edge (e, list); + + list = set_component_ssa_name (lhs, true, i); + if (list) + gsi_insert_seq_on_edge (e, list); +} + + +/* Update an assignment to a complex variable in place. */ + +static void +update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) +{ + gimple_stmt_iterator orig_si = *gsi; + + if (gimple_in_ssa_p (cfun)) + update_complex_components (gsi, gsi_stmt (*gsi), r, i); + + gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i); + update_stmt (gsi_stmt (orig_si)); +} + + +/* Generate code at the entry point of the function to initialize the + component variables for a complex parameter. */ + +static void +update_parameter_components (void) +{ + edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR); + tree parm; + + for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm)) + { + tree type = TREE_TYPE (parm); + tree ssa_name, r, i; + + if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) + continue; + + type = TREE_TYPE (type); + ssa_name = gimple_default_def (cfun, parm); + if (!ssa_name) + continue; + + r = build1 (REALPART_EXPR, type, ssa_name); + i = build1 (IMAGPART_EXPR, type, ssa_name); + update_complex_components_on_edge (entry_edge, ssa_name, r, i); + } +} + +/* Generate code to set the component variables of a complex variable + to match the PHI statements in block BB. */ + +static void +update_phi_components (basic_block bb) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + + if (is_complex_reg (gimple_phi_result (phi))) + { + tree lr, li; + gimple pr = NULL, pi = NULL; + unsigned int i, n; + + lr = get_component_ssa_name (gimple_phi_result (phi), false); + if (TREE_CODE (lr) == SSA_NAME) + { + pr = create_phi_node (lr, bb); + SSA_NAME_DEF_STMT (lr) = pr; + } + + li = get_component_ssa_name (gimple_phi_result (phi), true); + if (TREE_CODE (li) == SSA_NAME) + { + pi = create_phi_node (li, bb); + SSA_NAME_DEF_STMT (li) = pi; + } + + for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) + { + tree comp, arg = gimple_phi_arg_def (phi, i); + if (pr) + { + comp = extract_component (NULL, arg, false, false); + SET_PHI_ARG_DEF (pr, i, comp); + } + if (pi) + { + comp = extract_component (NULL, arg, true, false); + SET_PHI_ARG_DEF (pi, i, comp); + } + } + } + } +} + +/* Mark each virtual op in STMT for ssa update. */ + +static void +update_all_vops (gimple stmt) +{ + ssa_op_iter iter; + tree sym; + + FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS) + { + if (TREE_CODE (sym) == SSA_NAME) + sym = SSA_NAME_VAR (sym); + mark_sym_for_renaming (sym); + } +} + + +/* Expand a complex move to scalars. */ + +static void +expand_complex_move (gimple_stmt_iterator *gsi, tree type) +{ + tree inner_type = TREE_TYPE (type); + tree r, i, lhs, rhs; + gimple stmt = gsi_stmt (*gsi); + + if (is_gimple_assign (stmt)) + { + lhs = gimple_assign_lhs (stmt); + if (gimple_num_ops (stmt) == 2) + rhs = gimple_assign_rhs1 (stmt); + else + rhs = NULL_TREE; + } + else if (is_gimple_call (stmt)) + { + lhs = gimple_call_lhs (stmt); + rhs = NULL_TREE; + } + else + gcc_unreachable (); + + if (TREE_CODE (lhs) == SSA_NAME) + { + if (is_ctrl_altering_stmt (stmt)) + { + edge_iterator ei; + edge e; + + /* The value is not assigned on the exception edges, so we need not + concern ourselves there. We do need to update on the fallthru + edge. Find it. */ + FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs) + if (e->flags & EDGE_FALLTHRU) + goto found_fallthru; + gcc_unreachable (); + found_fallthru: + + r = build1 (REALPART_EXPR, inner_type, lhs); + i = build1 (IMAGPART_EXPR, inner_type, lhs); + update_complex_components_on_edge (e, lhs, r, i); + } + else if (is_gimple_call (stmt) + || gimple_has_side_effects (stmt) + || gimple_assign_rhs_code (stmt) == PAREN_EXPR) + { + r = build1 (REALPART_EXPR, inner_type, lhs); + i = build1 (IMAGPART_EXPR, inner_type, lhs); + update_complex_components (gsi, stmt, r, i); + } + else + { + update_all_vops (stmt); + if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) + { + r = extract_component (gsi, rhs, 0, true); + i = extract_component (gsi, rhs, 1, true); + } + else + { + r = gimple_assign_rhs1 (stmt); + i = gimple_assign_rhs2 (stmt); + } + update_complex_assignment (gsi, r, i); + } + } + else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) + { + tree x; + gimple t; + + r = extract_component (gsi, rhs, 0, false); + i = extract_component (gsi, rhs, 1, false); + + x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); + t = gimple_build_assign (x, r); + gsi_insert_before (gsi, t, GSI_SAME_STMT); + + if (stmt == gsi_stmt (*gsi)) + { + x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); + gimple_assign_set_lhs (stmt, x); + gimple_assign_set_rhs1 (stmt, i); + } + else + { + x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); + t = gimple_build_assign (x, i); + gsi_insert_before (gsi, t, GSI_SAME_STMT); + + stmt = gsi_stmt (*gsi); + gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); + gimple_return_set_retval (stmt, lhs); + } + + update_all_vops (stmt); + update_stmt (stmt); + } +} + +/* Expand complex addition to scalars: + a + b = (ar + br) + i(ai + bi) + a - b = (ar - br) + i(ai + bi) +*/ + +static void +expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code, + complex_lattice_t al, complex_lattice_t bl) +{ + tree rr, ri; + + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimplify_build2 (gsi, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_REAL, ONLY_IMAG): + rr = ar; + if (code == MINUS_EXPR) + ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi); + else + ri = bi; + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + if (code == MINUS_EXPR) + rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br); + else + rr = br; + ri = ai; + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = ar; + ri = gimplify_build2 (gsi, code, inner_type, ai, bi); + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimplify_build2 (gsi, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = ar; + ri = gimplify_build2 (gsi, code, inner_type, ai, bi); + break; + + case PAIR (ONLY_REAL, VARYING): + if (code == MINUS_EXPR) + goto general; + rr = gimplify_build2 (gsi, code, inner_type, ar, br); + ri = bi; + break; + + case PAIR (ONLY_IMAG, VARYING): + if (code == MINUS_EXPR) + goto general; + rr = br; + ri = gimplify_build2 (gsi, code, inner_type, ai, bi); + break; + + case PAIR (VARYING, VARYING): + general: + rr = gimplify_build2 (gsi, code, inner_type, ar, br); + ri = gimplify_build2 (gsi, code, inner_type, ai, bi); + break; + + default: + gcc_unreachable (); + } + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand a complex multiplication or division to a libcall to the c99 + compliant routines. */ + +static void +expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai, + tree br, tree bi, enum tree_code code) +{ + enum machine_mode mode; + enum built_in_function bcode; + tree fn, type, lhs; + gimple old_stmt, stmt; + + old_stmt = gsi_stmt (*gsi); + lhs = gimple_assign_lhs (old_stmt); + type = TREE_TYPE (lhs); + + mode = TYPE_MODE (type); + gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); + + if (code == MULT_EXPR) + bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT; + else if (code == RDIV_EXPR) + bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT; + else + gcc_unreachable (); + fn = built_in_decls[bcode]; + + stmt = gimple_build_call (fn, 4, ar, ai, br, bi); + gimple_call_set_lhs (stmt, lhs); + update_stmt (stmt); + gsi_replace (gsi, stmt, false); + + if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) + gimple_purge_dead_eh_edges (gsi_bb (*gsi)); + + if (gimple_in_ssa_p (cfun)) + { + type = TREE_TYPE (type); + update_complex_components (gsi, stmt, + build1 (REALPART_EXPR, type, lhs), + build1 (IMAGPART_EXPR, type, lhs)); + SSA_NAME_DEF_STMT (lhs) = stmt; + } +} + +/* Expand complex multiplication to scalars: + a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) +*/ + +static void +expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + complex_lattice_t al, complex_lattice_t bl) +{ + tree rr, ri; + + if (al < bl) + { + complex_lattice_t tl; + rr = ar, ar = br, br = rr; + ri = ai, ai = bi, bi = ri; + tl = al, al = bl, bl = tl; + } + + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + rr = ar; + if (TREE_CODE (ai) == REAL_CST + && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1)) + ri = br; + else + ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); + rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); + ri = ar; + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); + ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); + rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); + ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); + break; + + case PAIR (VARYING, VARYING): + if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) + { + expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR); + return; + } + else + { + tree t1, t2, t3, t4; + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); + t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); + t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); + + /* Avoid expanding redundant multiplication for the common + case of squaring a complex number. */ + if (ar == br && ai == bi) + t4 = t3; + else + t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); + + rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); + ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4); + } + break; + + default: + gcc_unreachable (); + } + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex division to scalars, straightforward algorithm. + a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) + t = br*br + bi*bi +*/ + +static void +expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code) +{ + tree rr, ri, div, t1, t2, t3; + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br); + t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi); + div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); + t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); + t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); + rr = gimplify_build2 (gsi, code, inner_type, t3, div); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); + t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); + t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); + ri = gimplify_build2 (gsi, code, inner_type, t3, div); + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex division to scalars, modified algorithm to minimize + overflow with wide input ranges. */ + +static void +expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code) +{ + tree rr, ri, ratio, div, t1, t2, tr, ti, compare; + basic_block bb_cond, bb_true, bb_false, bb_join; + gimple stmt; + + /* Examine |br| < |bi|, and branch. */ + t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br); + t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi); + compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2); + STRIP_NOPS (compare); + + bb_cond = bb_true = bb_false = bb_join = NULL; + rr = ri = tr = ti = NULL; + if (!TREE_CONSTANT (compare)) + { + edge e; + gimple stmt; + tree cond, tmp; + + tmp = create_tmp_var (boolean_type_node, NULL); + stmt = gimple_build_assign (tmp, compare); + if (gimple_in_ssa_p (cfun)) + { + tmp = make_ssa_name (tmp, stmt); + gimple_assign_set_lhs (stmt, tmp); + } + + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + + cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node); + stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + + /* Split the original block, and create the TRUE and FALSE blocks. */ + e = split_block (gsi_bb (*gsi), stmt); + bb_cond = e->src; + bb_join = e->dest; + bb_true = create_empty_bb (bb_cond); + bb_false = create_empty_bb (bb_true); + + /* Wire the blocks together. */ + e->flags = EDGE_TRUE_VALUE; + redirect_edge_succ (e, bb_true); + make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); + make_edge (bb_true, bb_join, EDGE_FALLTHRU); + make_edge (bb_false, bb_join, EDGE_FALLTHRU); + + /* Update dominance info. Note that bb_join's data was + updated by split_block. */ + if (dom_info_available_p (CDI_DOMINATORS)) + { + set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); + set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); + } + + rr = make_rename_temp (inner_type, NULL); + ri = make_rename_temp (inner_type, NULL); + } + + /* In the TRUE branch, we compute + ratio = br/bi; + div = (br * ratio) + bi; + tr = (ar * ratio) + ai; + ti = (ai * ratio) - ar; + tr = tr / div; + ti = ti / div; */ + if (bb_true || integer_nonzerop (compare)) + { + if (bb_true) + { + *gsi = gsi_last_bb (bb_true); + gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); + } + + ratio = gimplify_build2 (gsi, code, inner_type, br, bi); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio); + div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); + tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); + ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar); + + tr = gimplify_build2 (gsi, code, inner_type, tr, div); + ti = gimplify_build2 (gsi, code, inner_type, ti, div); + + if (bb_true) + { + stmt = gimple_build_assign (rr, tr); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + stmt = gimple_build_assign (ri, ti); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + gsi_remove (gsi, true); + } + } + + /* In the FALSE branch, we compute + ratio = d/c; + divisor = (d * ratio) + c; + tr = (b * ratio) + a; + ti = b - (a * ratio); + tr = tr / div; + ti = ti / div; */ + if (bb_false || integer_zerop (compare)) + { + if (bb_false) + { + *gsi = gsi_last_bb (bb_false); + gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); + } + + ratio = gimplify_build2 (gsi, code, inner_type, bi, br); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio); + div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); + tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar); + + t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); + ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1); + + tr = gimplify_build2 (gsi, code, inner_type, tr, div); + ti = gimplify_build2 (gsi, code, inner_type, ti, div); + + if (bb_false) + { + stmt = gimple_build_assign (rr, tr); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + stmt = gimple_build_assign (ri, ti); + gsi_insert_before (gsi, stmt, GSI_SAME_STMT); + gsi_remove (gsi, true); + } + } + + if (bb_join) + *gsi = gsi_start_bb (bb_join); + else + rr = tr, ri = ti; + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex division to scalars. */ + +static void +expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai, tree br, tree bi, + enum tree_code code, + complex_lattice_t al, complex_lattice_t bl) +{ + tree rr, ri; + + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimplify_build2 (gsi, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_REAL, ONLY_IMAG): + rr = ai; + ri = gimplify_build2 (gsi, code, inner_type, ar, bi); + ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + rr = ar; + ri = gimplify_build2 (gsi, code, inner_type, ai, br); + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = gimplify_build2 (gsi, code, inner_type, ai, bi); + ri = ar; + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimplify_build2 (gsi, code, inner_type, ar, br); + ri = gimplify_build2 (gsi, code, inner_type, ai, br); + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = gimplify_build2 (gsi, code, inner_type, ai, bi); + ri = gimplify_build2 (gsi, code, inner_type, ar, bi); + ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); + + case PAIR (ONLY_REAL, VARYING): + case PAIR (ONLY_IMAG, VARYING): + case PAIR (VARYING, VARYING): + switch (flag_complex_method) + { + case 0: + /* straightforward implementation of complex divide acceptable. */ + expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); + break; + + case 2: + if (SCALAR_FLOAT_TYPE_P (inner_type)) + { + expand_complex_libcall (gsi, ar, ai, br, bi, code); + break; + } + /* FALLTHRU */ + + case 1: + /* wide ranges of inputs must work for complex divide. */ + expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); + break; + + default: + gcc_unreachable (); + } + return; + + default: + gcc_unreachable (); + } + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex negation to scalars: + -a = (-ar) + i(-ai) +*/ + +static void +expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai) +{ + tree rr, ri; + + rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar); + ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); + + update_complex_assignment (gsi, rr, ri); +} + +/* Expand complex conjugate to scalars: + ~a = (ar) + i(-ai) +*/ + +static void +expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, + tree ar, tree ai) +{ + tree ri; + + ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); + + update_complex_assignment (gsi, ar, ri); +} + +/* Expand complex comparison (EQ or NE only). */ + +static void +expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, + tree br, tree bi, enum tree_code code) +{ + tree cr, ci, cc, type; + gimple stmt; + + cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br); + ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi); + cc = gimplify_build2 (gsi, + (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), + boolean_type_node, cr, ci); + + stmt = gsi_stmt (*gsi); + + switch (gimple_code (stmt)) + { + case GIMPLE_RETURN: + type = TREE_TYPE (gimple_return_retval (stmt)); + gimple_return_set_retval (stmt, fold_convert (type, cc)); + break; + + case GIMPLE_ASSIGN: + type = TREE_TYPE (gimple_assign_lhs (stmt)); + gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); + stmt = gsi_stmt (*gsi); + break; + + case GIMPLE_COND: + gimple_cond_set_code (stmt, EQ_EXPR); + gimple_cond_set_lhs (stmt, cc); + gimple_cond_set_rhs (stmt, boolean_true_node); + break; + + default: + gcc_unreachable (); + } + + update_stmt (stmt); +} + + +/* Process one statement. If we identify a complex operation, expand it. */ + +static void +expand_complex_operations_1 (gimple_stmt_iterator *gsi) +{ + gimple stmt = gsi_stmt (*gsi); + tree type, inner_type, lhs; + tree ac, ar, ai, bc, br, bi; + complex_lattice_t al, bl; + enum tree_code code; + + lhs = gimple_get_lhs (stmt); + if (!lhs && gimple_code (stmt) != GIMPLE_COND) + return; + + type = TREE_TYPE (gimple_op (stmt, 0)); + code = gimple_expr_code (stmt); + + /* Initial filter for operations we handle. */ + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + case NEGATE_EXPR: + case CONJ_EXPR: + if (TREE_CODE (type) != COMPLEX_TYPE) + return; + inner_type = TREE_TYPE (type); + break; + + case EQ_EXPR: + case NE_EXPR: + /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR + subocde, so we need to access the operands using gimple_op. */ + inner_type = TREE_TYPE (gimple_op (stmt, 1)); + if (TREE_CODE (inner_type) != COMPLEX_TYPE) + return; + break; + + default: + { + tree rhs; + + /* GIMPLE_COND may also fallthru here, but we do not need to + do anything with it. */ + if (gimple_code (stmt) == GIMPLE_COND) + return; + + if (TREE_CODE (type) == COMPLEX_TYPE) + expand_complex_move (gsi, type); + else if (is_gimple_assign (stmt) + && (gimple_assign_rhs_code (stmt) == REALPART_EXPR + || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) + && TREE_CODE (lhs) == SSA_NAME) + { + rhs = gimple_assign_rhs1 (stmt); + rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), + gimple_assign_rhs_code (stmt) + == IMAGPART_EXPR, + false); + gimple_assign_set_rhs_from_tree (gsi, rhs); + stmt = gsi_stmt (*gsi); + update_stmt (stmt); + } + } + return; + } + + /* Extract the components of the two complex values. Make sure and + handle the common case of the same value used twice specially. */ + if (is_gimple_assign (stmt)) + { + ac = gimple_assign_rhs1 (stmt); + bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; + } + /* GIMPLE_CALL can not get here. */ + else + { + ac = gimple_cond_lhs (stmt); + bc = gimple_cond_rhs (stmt); + } + + ar = extract_component (gsi, ac, false, true); + ai = extract_component (gsi, ac, true, true); + + if (ac == bc) + br = ar, bi = ai; + else if (bc) + { + br = extract_component (gsi, bc, 0, true); + bi = extract_component (gsi, bc, 1, true); + } + else + br = bi = NULL_TREE; + + if (gimple_in_ssa_p (cfun)) + { + al = find_lattice_value (ac); + if (al == UNINITIALIZED) + al = VARYING; + + if (TREE_CODE_CLASS (code) == tcc_unary) + bl = UNINITIALIZED; + else if (ac == bc) + bl = al; + else + { + bl = find_lattice_value (bc); + if (bl == UNINITIALIZED) + bl = VARYING; + } + } + else + al = bl = VARYING; + + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); + break; + + case MULT_EXPR: + expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl); + break; + + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl); + break; + + case NEGATE_EXPR: + expand_complex_negation (gsi, inner_type, ar, ai); + break; + + case CONJ_EXPR: + expand_complex_conjugate (gsi, inner_type, ar, ai); + break; + + case EQ_EXPR: + case NE_EXPR: + expand_complex_comparison (gsi, ar, ai, br, bi, code); + break; + + default: + gcc_unreachable (); + } +} + + +/* Entry point for complex operation lowering during optimization. */ + +static unsigned int +tree_lower_complex (void) +{ + int old_last_basic_block; + gimple_stmt_iterator gsi; + basic_block bb; + + if (!init_dont_simulate_again ()) + return 0; + + complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names); + VEC_safe_grow_cleared (complex_lattice_t, heap, + complex_lattice_values, num_ssa_names); + + init_parameter_lattice_values (); + ssa_propagate (complex_visit_stmt, complex_visit_phi); + + complex_variable_components = htab_create (10, int_tree_map_hash, + int_tree_map_eq, free); + + complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names); + VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components, + 2 * num_ssa_names); + + update_parameter_components (); + + /* ??? Ideally we'd traverse the blocks in breadth-first order. */ + old_last_basic_block = last_basic_block; + FOR_EACH_BB (bb) + { + if (bb->index >= old_last_basic_block) + continue; + + update_phi_components (bb); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + expand_complex_operations_1 (&gsi); + } + + gsi_commit_edge_inserts (); + + htab_delete (complex_variable_components); + VEC_free (tree, heap, complex_ssa_name_components); + VEC_free (complex_lattice_t, heap, complex_lattice_values); + return 0; +} + +struct gimple_opt_pass pass_lower_complex = +{ + { + GIMPLE_PASS, + "cplxlower", /* name */ + 0, /* gate */ + tree_lower_complex, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_ssa, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func + | TODO_ggc_collect + | TODO_update_ssa + | TODO_verify_stmts /* todo_flags_finish */ + } +}; + + +/* Entry point for complex operation lowering without optimization. */ + +static unsigned int +tree_lower_complex_O0 (void) +{ + int old_last_basic_block = last_basic_block; + gimple_stmt_iterator gsi; + basic_block bb; + + FOR_EACH_BB (bb) + { + if (bb->index >= old_last_basic_block) + continue; + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + expand_complex_operations_1 (&gsi); + } + return 0; +} + +static bool +gate_no_optimization (void) +{ + /* With errors, normal optimization passes are not run. If we don't + lower complex operations at all, rtl expansion will abort. */ + return optimize == 0 || sorrycount || errorcount; +} + +struct gimple_opt_pass pass_lower_complex_O0 = +{ + { + GIMPLE_PASS, + "cplxlower0", /* name */ + gate_no_optimization, /* gate */ + tree_lower_complex_O0, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_ggc_collect + | TODO_verify_stmts, /* todo_flags_finish */ + } +};