X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=gcc%2Ftree-flow-inline.h;fp=gcc%2Ftree-flow-inline.h;h=aeba17204f9e2b2bb1640f2e346c7d1e54c3589f;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/tree-flow-inline.h b/gcc/tree-flow-inline.h new file mode 100644 index 00000000..aeba1720 --- /dev/null +++ b/gcc/tree-flow-inline.h @@ -0,0 +1,1486 @@ +/* Inline functions for tree-flow.h + Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software + Foundation, Inc. + Contributed by Diego Novillo + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#ifndef _TREE_FLOW_INLINE_H +#define _TREE_FLOW_INLINE_H 1 + +/* Inline functions for manipulating various data structures defined in + tree-flow.h. See tree-flow.h for documentation. */ + +/* Return true when gimple SSA form was built. + gimple_in_ssa_p is queried by gimplifier in various early stages before SSA + infrastructure is initialized. Check for presence of the datastructures + at first place. */ +static inline bool +gimple_in_ssa_p (const struct function *fun) +{ + return fun && fun->gimple_df && fun->gimple_df->in_ssa_p; +} + +/* 'true' after aliases have been computed (see compute_may_aliases). */ +static inline bool +gimple_aliases_computed_p (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->aliases_computed_p; +} + +/* Addressable variables in the function. If bit I is set, then + REFERENCED_VARS (I) has had its address taken. Note that + CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An + addressable variable is not necessarily call-clobbered (e.g., a + local addressable whose address does not escape) and not all + call-clobbered variables are addressable (e.g., a local static + variable). */ +static inline bitmap +gimple_addressable_vars (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->addressable_vars; +} + +/* Call clobbered variables in the function. If bit I is set, then + REFERENCED_VARS (I) is call-clobbered. */ +static inline bitmap +gimple_call_clobbered_vars (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->call_clobbered_vars; +} + +/* Call-used variables in the function. If bit I is set, then + REFERENCED_VARS (I) is call-used at pure function call-sites. */ +static inline bitmap +gimple_call_used_vars (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->call_used_vars; +} + +/* Array of all variables referenced in the function. */ +static inline htab_t +gimple_referenced_vars (const struct function *fun) +{ + if (!fun->gimple_df) + return NULL; + return fun->gimple_df->referenced_vars; +} + +/* Artificial variable used to model the effects of function calls. */ +static inline tree +gimple_global_var (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->global_var; +} + +/* Artificial variable used to model the effects of nonlocal + variables. */ +static inline tree +gimple_nonlocal_all (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->nonlocal_all; +} + +/* Initialize the hashtable iterator HTI to point to hashtable TABLE */ + +static inline void * +first_htab_element (htab_iterator *hti, htab_t table) +{ + hti->htab = table; + hti->slot = table->entries; + hti->limit = hti->slot + htab_size (table); + do + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + break; + } while (++(hti->slot) < hti->limit); + + if (hti->slot < hti->limit) + return *(hti->slot); + return NULL; +} + +/* Return current non-empty/deleted slot of the hashtable pointed to by HTI, + or NULL if we have reached the end. */ + +static inline bool +end_htab_p (const htab_iterator *hti) +{ + if (hti->slot >= hti->limit) + return true; + return false; +} + +/* Advance the hashtable iterator pointed to by HTI to the next element of the + hashtable. */ + +static inline void * +next_htab_element (htab_iterator *hti) +{ + while (++(hti->slot) < hti->limit) + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + return x; + }; + return NULL; +} + +/* Initialize ITER to point to the first referenced variable in the + referenced_vars hashtable, and return that variable. */ + +static inline tree +first_referenced_var (referenced_var_iterator *iter) +{ + return (tree) first_htab_element (&iter->hti, + gimple_referenced_vars (cfun)); +} + +/* Return true if we have hit the end of the referenced variables ITER is + iterating through. */ + +static inline bool +end_referenced_vars_p (const referenced_var_iterator *iter) +{ + return end_htab_p (&iter->hti); +} + +/* Make ITER point to the next referenced_var in the referenced_var hashtable, + and return that variable. */ + +static inline tree +next_referenced_var (referenced_var_iterator *iter) +{ + return (tree) next_htab_element (&iter->hti); +} + +/* Fill up VEC with the variables in the referenced vars hashtable. */ + +static inline void +fill_referenced_var_vec (VEC (tree, heap) **vec) +{ + referenced_var_iterator rvi; + tree var; + *vec = NULL; + FOR_EACH_REFERENCED_VAR (var, rvi) + VEC_safe_push (tree, heap, *vec, var); +} + +/* Return the variable annotation for T, which must be a _DECL node. + Return NULL if the variable annotation doesn't already exist. */ +static inline var_ann_t +var_ann (const_tree t) +{ + var_ann_t ann; + + if (!t->base.ann) + return NULL; + ann = (var_ann_t) t->base.ann; + + gcc_assert (ann->common.type == VAR_ANN); + + return ann; +} + +/* Return the variable annotation for T, which must be a _DECL node. + Create the variable annotation if it doesn't exist. */ +static inline var_ann_t +get_var_ann (tree var) +{ + var_ann_t ann = var_ann (var); + return (ann) ? ann : create_var_ann (var); +} + +/* Return the function annotation for T, which must be a FUNCTION_DECL node. + Return NULL if the function annotation doesn't already exist. */ +static inline function_ann_t +function_ann (const_tree t) +{ + gcc_assert (t); + gcc_assert (TREE_CODE (t) == FUNCTION_DECL); + gcc_assert (!t->base.ann + || t->base.ann->common.type == FUNCTION_ANN); + + return (function_ann_t) t->base.ann; +} + +/* Return the function annotation for T, which must be a FUNCTION_DECL node. + Create the function annotation if it doesn't exist. */ +static inline function_ann_t +get_function_ann (tree var) +{ + function_ann_t ann = function_ann (var); + gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN); + return (ann) ? ann : create_function_ann (var); +} + +/* Get the number of the next statement uid to be allocated. */ +static inline unsigned int +gimple_stmt_max_uid (struct function *fn) +{ + return fn->last_stmt_uid; +} + +/* Set the number of the next statement uid to be allocated. */ +static inline void +set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid) +{ + fn->last_stmt_uid = maxid; +} + +/* Set the number of the next statement uid to be allocated. */ +static inline unsigned int +inc_gimple_stmt_max_uid (struct function *fn) +{ + return fn->last_stmt_uid++; +} + +/* Return the annotation type for annotation ANN. */ +static inline enum tree_ann_type +ann_type (tree_ann_t ann) +{ + return ann->common.type; +} + +/* Return the may_aliases bitmap for variable VAR, or NULL if it has + no may aliases. */ +static inline bitmap +may_aliases (const_tree var) +{ + return MTAG_ALIASES (var); +} + +/* Return the line number for EXPR, or return -1 if we have no line + number information for it. */ +static inline int +get_lineno (const_gimple stmt) +{ + location_t loc; + + if (!stmt) + return -1; + + loc = gimple_location (stmt); + if (loc != UNKNOWN_LOCATION) + return -1; + + return LOCATION_LINE (loc); +} + +/* Delink an immediate_uses node from its chain. */ +static inline void +delink_imm_use (ssa_use_operand_t *linknode) +{ + /* Return if this node is not in a list. */ + if (linknode->prev == NULL) + return; + + linknode->prev->next = linknode->next; + linknode->next->prev = linknode->prev; + linknode->prev = NULL; + linknode->next = NULL; +} + +/* Link ssa_imm_use node LINKNODE into the chain for LIST. */ +static inline void +link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) +{ + /* Link the new node at the head of the list. If we are in the process of + traversing the list, we won't visit any new nodes added to it. */ + linknode->prev = list; + linknode->next = list->next; + list->next->prev = linknode; + list->next = linknode; +} + +/* Link ssa_imm_use node LINKNODE into the chain for DEF. */ +static inline void +link_imm_use (ssa_use_operand_t *linknode, tree def) +{ + ssa_use_operand_t *root; + + if (!def || TREE_CODE (def) != SSA_NAME) + linknode->prev = NULL; + else + { + root = &(SSA_NAME_IMM_USE_NODE (def)); +#ifdef ENABLE_CHECKING + if (linknode->use) + gcc_assert (*(linknode->use) == def); +#endif + link_imm_use_to_list (linknode, root); + } +} + +/* Set the value of a use pointed to by USE to VAL. */ +static inline void +set_ssa_use_from_ptr (use_operand_p use, tree val) +{ + delink_imm_use (use); + *(use->use) = val; + link_imm_use (use, val); +} + +/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring + in STMT. */ +static inline void +link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt) +{ + if (stmt) + link_imm_use (linknode, def); + else + link_imm_use (linknode, NULL); + linknode->loc.stmt = stmt; +} + +/* Relink a new node in place of an old node in the list. */ +static inline void +relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) +{ + /* The node one had better be in the same list. */ + gcc_assert (*(old->use) == *(node->use)); + node->prev = old->prev; + node->next = old->next; + if (old->prev) + { + old->prev->next = node; + old->next->prev = node; + /* Remove the old node from the list. */ + old->prev = NULL; + } +} + +/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring + in STMT. */ +static inline void +relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, + gimple stmt) +{ + if (stmt) + relink_imm_use (linknode, old); + else + link_imm_use (linknode, NULL); + linknode->loc.stmt = stmt; +} + + +/* Return true is IMM has reached the end of the immediate use list. */ +static inline bool +end_readonly_imm_use_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Initialize iterator IMM to process the list for VAR. */ +static inline use_operand_p +first_readonly_imm_use (imm_use_iterator *imm, tree var) +{ + gcc_assert (TREE_CODE (var) == SSA_NAME); + + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; +#ifdef ENABLE_CHECKING + imm->iter_node.next = imm->imm_use->next; +#endif + if (end_readonly_imm_use_p (imm)) + return NULL_USE_OPERAND_P; + return imm->imm_use; +} + +/* Bump IMM to the next use in the list. */ +static inline use_operand_p +next_readonly_imm_use (imm_use_iterator *imm) +{ + use_operand_p old = imm->imm_use; + +#ifdef ENABLE_CHECKING + /* If this assertion fails, it indicates the 'next' pointer has changed + since the last bump. This indicates that the list is being modified + via stmt changes, or SET_USE, or somesuch thing, and you need to be + using the SAFE version of the iterator. */ + gcc_assert (imm->iter_node.next == old->next); + imm->iter_node.next = old->next->next; +#endif + + imm->imm_use = old->next; + if (end_readonly_imm_use_p (imm)) + return NULL_USE_OPERAND_P; + return imm->imm_use; +} + +/* Return true if VAR has no uses. */ +static inline bool +has_zero_uses (const_tree var) +{ + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); + /* A single use means there is no items in the list. */ + return (ptr == ptr->next); +} + +/* Return true if VAR has a single use. */ +static inline bool +has_single_use (const_tree var) +{ + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); + /* A single use means there is one item in the list. */ + return (ptr != ptr->next && ptr == ptr->next->next); +} + + +/* If VAR has only a single immediate use, return true, and set USE_P and STMT + to the use pointer and stmt of occurrence. */ +static inline bool +single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt) +{ + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); + if (ptr != ptr->next && ptr == ptr->next->next) + { + *use_p = ptr->next; + *stmt = ptr->next->loc.stmt; + return true; + } + *use_p = NULL_USE_OPERAND_P; + *stmt = NULL; + return false; +} + +/* Return the number of immediate uses of VAR. */ +static inline unsigned int +num_imm_uses (const_tree var) +{ + const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); + const ssa_use_operand_t *ptr; + unsigned int num = 0; + + for (ptr = start->next; ptr != start; ptr = ptr->next) + num++; + + return num; +} + +/* Return the tree pointed-to by USE. */ +static inline tree +get_use_from_ptr (use_operand_p use) +{ + return *(use->use); +} + +/* Return the tree pointed-to by DEF. */ +static inline tree +get_def_from_ptr (def_operand_p def) +{ + return *def; +} + +/* Return a use_operand_p pointer for argument I of PHI node GS. */ + +static inline use_operand_p +gimple_phi_arg_imm_use_ptr (gimple gs, int i) +{ + return &gimple_phi_arg (gs, i)->imm_use; +} + +/* Return the tree operand for argument I of PHI node GS. */ + +static inline tree +gimple_phi_arg_def (gimple gs, size_t index) +{ + struct phi_arg_d *pd = gimple_phi_arg (gs, index); + return get_use_from_ptr (&pd->imm_use); +} + +/* Return a pointer to the tree operand for argument I of PHI node GS. */ + +static inline tree * +gimple_phi_arg_def_ptr (gimple gs, size_t index) +{ + return &gimple_phi_arg (gs, index)->def; +} + +/* Return the edge associated with argument I of phi node GS. */ + +static inline edge +gimple_phi_arg_edge (gimple gs, size_t i) +{ + return EDGE_PRED (gimple_bb (gs), i); +} + +/* Return the PHI nodes for basic block BB, or NULL if there are no + PHI nodes. */ +static inline gimple_seq +phi_nodes (const_basic_block bb) +{ + gcc_assert (!(bb->flags & BB_RTL)); + if (!bb->il.gimple) + return NULL; + return bb->il.gimple->phi_nodes; +} + +/* Set PHI nodes of a basic block BB to SEQ. */ + +static inline void +set_phi_nodes (basic_block bb, gimple_seq seq) +{ + gimple_stmt_iterator i; + + gcc_assert (!(bb->flags & BB_RTL)); + bb->il.gimple->phi_nodes = seq; + if (seq) + for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) + gimple_set_bb (gsi_stmt (i), bb); +} + +/* Return the phi argument which contains the specified use. */ + +static inline int +phi_arg_index_from_use (use_operand_p use) +{ + struct phi_arg_d *element, *root; + size_t index; + gimple phi; + + /* Since the use is the first thing in a PHI argument element, we can + calculate its index based on casting it to an argument, and performing + pointer arithmetic. */ + + phi = USE_STMT (use); + gcc_assert (gimple_code (phi) == GIMPLE_PHI); + + element = (struct phi_arg_d *)use; + root = gimple_phi_arg (phi, 0); + index = element - root; + +#ifdef ENABLE_CHECKING + /* Make sure the calculation doesn't have any leftover bytes. If it does, + then imm_use is likely not the first element in phi_arg_d. */ + gcc_assert ( + (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); + gcc_assert (index < gimple_phi_capacity (phi)); +#endif + + return index; +} + +/* Mark VAR as used, so that it'll be preserved during rtl expansion. */ + +static inline void +set_is_used (tree var) +{ + var_ann_t ann = get_var_ann (var); + ann->used = 1; +} + + +/* Return true if T (assumed to be a DECL) is a global variable. */ + +static inline bool +is_global_var (const_tree t) +{ + if (MTAG_P (t)) + return MTAG_GLOBAL (t); + else + return (TREE_STATIC (t) || DECL_EXTERNAL (t)); +} + +/* PHI nodes should contain only ssa_names and invariants. A test + for ssa_name is definitely simpler; don't let invalid contents + slip in in the meantime. */ + +static inline bool +phi_ssa_name_p (const_tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + return true; +#ifdef ENABLE_CHECKING + gcc_assert (is_gimple_min_invariant (t)); +#endif + return false; +} + + +/* Returns the loop of the statement STMT. */ + +static inline struct loop * +loop_containing_stmt (gimple stmt) +{ + basic_block bb = gimple_bb (stmt); + if (!bb) + return NULL; + + return bb->loop_father; +} + + +/* Return the memory partition tag associated with symbol SYM. */ + +static inline tree +memory_partition (tree sym) +{ + tree tag; + + /* MPTs belong to their own partition. */ + if (TREE_CODE (sym) == MEMORY_PARTITION_TAG) + return sym; + + gcc_assert (!is_gimple_reg (sym)); + /* Autoparallelization moves statements from the original function (which has + aliases computed) to the new one (which does not). When rebuilding + operands for the statement in the new function, we do not want to + record the memory partition tags of the original function. */ + if (!gimple_aliases_computed_p (cfun)) + return NULL_TREE; + tag = get_var_ann (sym)->mpt; + +#if defined ENABLE_CHECKING + if (tag) + gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG); +#endif + + return tag; +} + +/* Return true if NAME is a memory factoring SSA name (i.e., an SSA + name for a memory partition. */ + +static inline bool +factoring_name_p (const_tree name) +{ + return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG; +} + +/* Return true if VAR is used by function calls. */ +static inline bool +is_call_used (const_tree var) +{ + return (var_ann (var)->call_clobbered + || bitmap_bit_p (gimple_call_used_vars (cfun), DECL_UID (var))); +} + +/* Return true if VAR is clobbered by function calls. */ +static inline bool +is_call_clobbered (const_tree var) +{ + return var_ann (var)->call_clobbered; +} + +/* Mark variable VAR as being clobbered by function calls. */ +static inline void +mark_call_clobbered (tree var, unsigned int escape_type) +{ + var_ann (var)->escape_mask |= escape_type; + var_ann (var)->call_clobbered = true; + bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); +} + +/* Clear the call-clobbered attribute from variable VAR. */ +static inline void +clear_call_clobbered (tree var) +{ + var_ann_t ann = var_ann (var); + ann->escape_mask = 0; + if (MTAG_P (var)) + MTAG_GLOBAL (var) = 0; + var_ann (var)->call_clobbered = false; + bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); +} + +/* Return the common annotation for T. Return NULL if the annotation + doesn't already exist. */ +static inline tree_ann_common_t +tree_common_ann (const_tree t) +{ + /* Watch out static variables with unshared annotations. */ + if (DECL_P (t) && TREE_CODE (t) == VAR_DECL) + return &var_ann (t)->common; + return &t->base.ann->common; +} + +/* Return a common annotation for T. Create the constant annotation if it + doesn't exist. */ +static inline tree_ann_common_t +get_tree_common_ann (tree t) +{ + tree_ann_common_t ann = tree_common_ann (t); + return (ann) ? ann : create_tree_common_ann (t); +} + +/* ----------------------------------------------------------------------- */ + +/* The following set of routines are used to iterator over various type of + SSA operands. */ + +/* Return true if PTR is finished iterating. */ +static inline bool +op_iter_done (const ssa_op_iter *ptr) +{ + return ptr->done; +} + +/* Get the next iterator use value for PTR. */ +static inline use_operand_p +op_iter_next_use (ssa_op_iter *ptr) +{ + use_operand_p use_p; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_use); +#endif + if (ptr->uses) + { + use_p = USE_OP_PTR (ptr->uses); + ptr->uses = ptr->uses->next; + return use_p; + } + if (ptr->vuses) + { + use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index); + if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) + { + ptr->vuse_index = 0; + ptr->vuses = ptr->vuses->next; + } + return use_p; + } + if (ptr->mayuses) + { + use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index); + if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) + { + ptr->mayuse_index = 0; + ptr->mayuses = ptr->mayuses->next; + } + return use_p; + } + if (ptr->phi_i < ptr->num_phi) + { + return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); + } + ptr->done = true; + return NULL_USE_OPERAND_P; +} + +/* Get the next iterator def value for PTR. */ +static inline def_operand_p +op_iter_next_def (ssa_op_iter *ptr) +{ + def_operand_p def_p; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_def); +#endif + if (ptr->defs) + { + def_p = DEF_OP_PTR (ptr->defs); + ptr->defs = ptr->defs->next; + return def_p; + } + if (ptr->vdefs) + { + def_p = VDEF_RESULT_PTR (ptr->vdefs); + ptr->vdefs = ptr->vdefs->next; + return def_p; + } + ptr->done = true; + return NULL_DEF_OPERAND_P; +} + +/* Get the next iterator tree value for PTR. */ +static inline tree +op_iter_next_tree (ssa_op_iter *ptr) +{ + tree val; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_tree); +#endif + if (ptr->uses) + { + val = USE_OP (ptr->uses); + ptr->uses = ptr->uses->next; + return val; + } + if (ptr->vuses) + { + val = VUSE_OP (ptr->vuses, ptr->vuse_index); + if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) + { + ptr->vuse_index = 0; + ptr->vuses = ptr->vuses->next; + } + return val; + } + if (ptr->mayuses) + { + val = VDEF_OP (ptr->mayuses, ptr->mayuse_index); + if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) + { + ptr->mayuse_index = 0; + ptr->mayuses = ptr->mayuses->next; + } + return val; + } + if (ptr->defs) + { + val = DEF_OP (ptr->defs); + ptr->defs = ptr->defs->next; + return val; + } + if (ptr->vdefs) + { + val = VDEF_RESULT (ptr->vdefs); + ptr->vdefs = ptr->vdefs->next; + return val; + } + + ptr->done = true; + return NULL_TREE; + +} + + +/* This functions clears the iterator PTR, and marks it done. This is normally + used to prevent warnings in the compile about might be uninitialized + components. */ + +static inline void +clear_and_done_ssa_iter (ssa_op_iter *ptr) +{ + ptr->defs = NULL; + ptr->uses = NULL; + ptr->vuses = NULL; + ptr->vdefs = NULL; + ptr->mayuses = NULL; + ptr->iter_type = ssa_op_iter_none; + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL; + ptr->done = true; + ptr->vuse_index = 0; + ptr->mayuse_index = 0; +} + +/* Initialize the iterator PTR to the virtual defs in STMT. */ +static inline void +op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags) +{ + ptr->defs = (flags & SSA_OP_DEF) ? gimple_def_ops (stmt) : NULL; + ptr->uses = (flags & SSA_OP_USE) ? gimple_use_ops (stmt) : NULL; + ptr->vuses = (flags & SSA_OP_VUSE) ? gimple_vuse_ops (stmt) : NULL; + ptr->vdefs = (flags & SSA_OP_VDEF) ? gimple_vdef_ops (stmt) : NULL; + ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? gimple_vdef_ops (stmt) : NULL; + ptr->done = false; + + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL; + ptr->vuse_index = 0; + ptr->mayuse_index = 0; +} + +/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return + the first use. */ +static inline use_operand_p +op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags) +{ + gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0); + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + +/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return + the first def. */ +static inline def_operand_p +op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags) +{ + gcc_assert ((flags & SSA_OP_ALL_USES) == 0); + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_def; + return op_iter_next_def (ptr); +} + +/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return + the first operand as a tree. */ +static inline tree +op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags) +{ + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_tree; + return op_iter_next_tree (ptr); +} + +/* Get the next iterator mustdef value for PTR, returning the mustdef values in + KILL and DEF. */ +static inline void +op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def, + ssa_op_iter *ptr) +{ +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_vdef); +#endif + if (ptr->mayuses) + { + *def = VDEF_RESULT_PTR (ptr->mayuses); + *use = VDEF_VECT (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; + return; + } + + *def = NULL_DEF_OPERAND_P; + *use = NULL; + ptr->done = true; + return; +} + + +static inline void +op_iter_next_mustdef (use_operand_p *use, def_operand_p *def, + ssa_op_iter *ptr) +{ + vuse_vec_p vp; + op_iter_next_vdef (&vp, def, ptr); + if (vp != NULL) + { + gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1); + *use = VUSE_ELEMENT_PTR (*vp, 0); + } + else + *use = NULL_USE_OPERAND_P; +} + +/* Initialize iterator PTR to the operands in STMT. Return the first operands + in USE and DEF. */ +static inline void +op_iter_init_vdef (ssa_op_iter *ptr, gimple stmt, vuse_vec_p *use, + def_operand_p *def) +{ + gcc_assert (gimple_code (stmt) != GIMPLE_PHI); + + op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); + ptr->iter_type = ssa_op_iter_vdef; + op_iter_next_vdef (use, def, ptr); +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline tree +single_ssa_tree_operand (gimple stmt, int flags) +{ + tree var; + ssa_op_iter iter; + + var = op_iter_init_tree (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_TREE; + op_iter_next_tree (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_TREE; +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline use_operand_p +single_ssa_use_operand (gimple stmt, int flags) +{ + use_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_use (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_USE_OPERAND_P; + op_iter_next_use (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_USE_OPERAND_P; +} + + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline def_operand_p +single_ssa_def_operand (gimple stmt, int flags) +{ + def_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_def (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_DEF_OPERAND_P; + op_iter_next_def (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_DEF_OPERAND_P; +} + + +/* Return true if there are zero operands in STMT matching the type + given in FLAGS. */ +static inline bool +zero_ssa_operands (gimple stmt, int flags) +{ + ssa_op_iter iter; + + op_iter_init_tree (&iter, stmt, flags); + return op_iter_done (&iter); +} + + +/* Return the number of operands matching FLAGS in STMT. */ +static inline int +num_ssa_operands (gimple stmt, int flags) +{ + ssa_op_iter iter; + tree t; + int num = 0; + + FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) + num++; + return num; +} + + +/* Delink all immediate_use information for STMT. */ +static inline void +delink_stmt_imm_use (gimple stmt) +{ + ssa_op_iter iter; + use_operand_p use_p; + + if (ssa_operands_active ()) + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) + delink_imm_use (use_p); +} + + +/* This routine will compare all the operands matching FLAGS in STMT1 to those + in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */ +static inline bool +compare_ssa_operands_equal (gimple stmt1, gimple stmt2, int flags) +{ + ssa_op_iter iter1, iter2; + tree op1 = NULL_TREE; + tree op2 = NULL_TREE; + bool look1, look2; + + if (stmt1 == stmt2) + return true; + + look1 = stmt1 != NULL; + look2 = stmt2 != NULL; + + if (look1) + { + op1 = op_iter_init_tree (&iter1, stmt1, flags); + if (!look2) + return op_iter_done (&iter1); + } + else + clear_and_done_ssa_iter (&iter1); + + if (look2) + { + op2 = op_iter_init_tree (&iter2, stmt2, flags); + if (!look1) + return op_iter_done (&iter2); + } + else + clear_and_done_ssa_iter (&iter2); + + while (!op_iter_done (&iter1) && !op_iter_done (&iter2)) + { + if (op1 != op2) + return false; + op1 = op_iter_next_tree (&iter1); + op2 = op_iter_next_tree (&iter2); + } + + return (op_iter_done (&iter1) && op_iter_done (&iter2)); +} + + +/* If there is a single DEF in the PHI node which matches FLAG, return it. + Otherwise return NULL_DEF_OPERAND_P. */ +static inline tree +single_phi_def (gimple stmt, int flags) +{ + tree def = PHI_RESULT (stmt); + if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) + return def; + if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) + return def; + return NULL_TREE; +} + +/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should + be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ +static inline use_operand_p +op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags) +{ + tree phi_def = gimple_phi_result (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->phi_stmt = phi; + ptr->num_phi = gimple_phi_num_args (phi); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + + +/* Start an iterator for a PHI definition. */ + +static inline def_operand_p +op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags) +{ + tree phi_def = PHI_RESULT (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->iter_type = ssa_op_iter_def; + /* The first call to op_iter_next_def will terminate the iterator since + all the fields are NULL. Simply return the result here as the first and + therefore only result. */ + return PHI_RESULT_PTR (phi); +} + +/* Return true is IMM has reached the end of the immediate use stmt list. */ + +static inline bool +end_imm_use_stmt_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Finished the traverse of an immediate use stmt list IMM by removing the + placeholder node from the list. */ + +static inline void +end_imm_use_stmt_traverse (imm_use_iterator *imm) +{ + delink_imm_use (&(imm->iter_node)); +} + +/* Immediate use traversal of uses within a stmt require that all the + uses on a stmt be sequentially listed. This routine is used to build up + this sequential list by adding USE_P to the end of the current list + currently delimited by HEAD and LAST_P. The new LAST_P value is + returned. */ + +static inline use_operand_p +move_use_after_head (use_operand_p use_p, use_operand_p head, + use_operand_p last_p) +{ + gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); + /* Skip head when we find it. */ + if (use_p != head) + { + /* If use_p is already linked in after last_p, continue. */ + if (last_p->next == use_p) + last_p = use_p; + else + { + /* Delink from current location, and link in at last_p. */ + delink_imm_use (use_p); + link_imm_use_to_list (use_p, last_p); + last_p = use_p; + } + } + return last_p; +} + + +/* This routine will relink all uses with the same stmt as HEAD into the list + immediately following HEAD for iterator IMM. */ + +static inline void +link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) +{ + use_operand_p use_p; + use_operand_p last_p = head; + gimple head_stmt = USE_STMT (head); + tree use = USE_FROM_PTR (head); + ssa_op_iter op_iter; + int flag; + + /* Only look at virtual or real uses, depending on the type of HEAD. */ + flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + if (gimple_code (head_stmt) == GIMPLE_PHI) + { + FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + else + { + FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + /* Link iter node in after last_p. */ + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + link_imm_use_to_list (&(imm->iter_node), last_p); +} + +/* Initialize IMM to traverse over uses of VAR. Return the first statement. */ +static inline gimple +first_imm_use_stmt (imm_use_iterator *imm, tree var) +{ + gcc_assert (TREE_CODE (var) == SSA_NAME); + + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; + imm->next_imm_name = NULL_USE_OPERAND_P; + + /* iter_node is used as a marker within the immediate use list to indicate + where the end of the current stmt's uses are. Initialize it to NULL + stmt and use, which indicates a marker node. */ + imm->iter_node.prev = NULL_USE_OPERAND_P; + imm->iter_node.next = NULL_USE_OPERAND_P; + imm->iter_node.loc.stmt = NULL; + imm->iter_node.use = NULL_USE_OPERAND_P; + + if (end_imm_use_stmt_p (imm)) + return NULL; + + link_use_stmts_after (imm->imm_use, imm); + + return USE_STMT (imm->imm_use); +} + +/* Bump IMM to the next stmt which has a use of var. */ + +static inline gimple +next_imm_use_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->iter_node.next; + if (end_imm_use_stmt_p (imm)) + { + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + return NULL; + } + + link_use_stmts_after (imm->imm_use, imm); + return USE_STMT (imm->imm_use); +} + +/* This routine will return the first use on the stmt IMM currently refers + to. */ + +static inline use_operand_p +first_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; +} + +/* Return TRUE if the last use on the stmt IMM refers to has been visited. */ + +static inline bool +end_imm_use_on_stmt_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == &(imm->iter_node)); +} + +/* Bump to the next use on the stmt IMM refers to, return NULL if done. */ + +static inline use_operand_p +next_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->next_imm_name; + if (end_imm_use_on_stmt_p (imm)) + return NULL_USE_OPERAND_P; + else + { + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; + } +} + +/* Return true if VAR cannot be modified by the program. */ + +static inline bool +unmodifiable_var_p (const_tree var) +{ + if (TREE_CODE (var) == SSA_NAME) + var = SSA_NAME_VAR (var); + + if (MTAG_P (var)) + return false; + + return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); +} + +/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ + +static inline bool +array_ref_contains_indirect_ref (const_tree ref) +{ + gcc_assert (TREE_CODE (ref) == ARRAY_REF); + + do { + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return TREE_CODE (ref) == INDIRECT_REF; +} + +/* Return true if REF, a handled component reference, has an ARRAY_REF + somewhere in it. */ + +static inline bool +ref_contains_array_ref (const_tree ref) +{ + gcc_assert (handled_component_p (ref)); + + do { + if (TREE_CODE (ref) == ARRAY_REF) + return true; + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return false; +} + +/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2] + overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the + range is open-ended. Otherwise return false. */ + +static inline bool +ranges_overlap_p (unsigned HOST_WIDE_INT pos1, + unsigned HOST_WIDE_INT size1, + unsigned HOST_WIDE_INT pos2, + unsigned HOST_WIDE_INT size2) +{ + if (pos1 >= pos2 + && (size2 == (unsigned HOST_WIDE_INT)-1 + || pos1 < (pos2 + size2))) + return true; + if (pos2 >= pos1 + && (size1 == (unsigned HOST_WIDE_INT)-1 + || pos2 < (pos1 + size1))) + return true; + + return false; +} + +/* Return the memory tag associated with symbol SYM. */ + +static inline tree +symbol_mem_tag (tree sym) +{ + tree tag = get_var_ann (sym)->symbol_mem_tag; + +#if defined ENABLE_CHECKING + if (tag) + gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); +#endif + + return tag; +} + + +/* Set the memory tag associated with symbol SYM. */ + +static inline void +set_symbol_mem_tag (tree sym, tree tag) +{ +#if defined ENABLE_CHECKING + if (tag) + gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); +#endif + + get_var_ann (sym)->symbol_mem_tag = tag; +} + +/* Accessor to tree-ssa-operands.c caches. */ +static inline struct ssa_operands * +gimple_ssa_operands (const struct function *fun) +{ + return &fun->gimple_df->ssa_operands; +} + +/* Map describing reference statistics for function FN. */ +static inline struct mem_ref_stats_d * +gimple_mem_ref_stats (const struct function *fn) +{ + return &fn->gimple_df->mem_ref_stats; +} + +/* Given an edge_var_map V, return the PHI arg definition. */ + +static inline tree +redirect_edge_var_map_def (edge_var_map *v) +{ + return v->def; +} + +/* Given an edge_var_map V, return the PHI result. */ + +static inline tree +redirect_edge_var_map_result (edge_var_map *v) +{ + return v->result; +} + + +/* Return an SSA_NAME node for variable VAR defined in statement STMT + in function cfun. */ + +static inline tree +make_ssa_name (tree var, gimple stmt) +{ + return make_ssa_name_fn (cfun, var, stmt); +} + +#endif /* _TREE_FLOW_INLINE_H */