X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=gcc%2Fvec.h;fp=gcc%2Fvec.h;h=adbd16aacbbfea4f3b9c695a8e3d108cdec10bb5;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=0000000000000000000000000000000000000000;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/gcc/vec.h b/gcc/vec.h new file mode 100644 index 00000000..adbd16aa --- /dev/null +++ b/gcc/vec.h @@ -0,0 +1,1198 @@ +/* Vector API for GNU compiler. + Copyright (C) 2004, 2005, 2007, 2008 Free Software Foundation, Inc. + Contributed by Nathan Sidwell + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#ifndef GCC_VEC_H +#define GCC_VEC_H + +/* The macros here implement a set of templated vector types and + associated interfaces. These templates are implemented with + macros, as we're not in C++ land. The interface functions are + typesafe and use static inline functions, sometimes backed by + out-of-line generic functions. The vectors are designed to + interoperate with the GTY machinery. + + Because of the different behavior of structure objects, scalar + objects and of pointers, there are three flavors, one for each of + these variants. Both the structure object and pointer variants + pass pointers to objects around -- in the former case the pointers + are stored into the vector and in the latter case the pointers are + dereferenced and the objects copied into the vector. The scalar + object variant is suitable for int-like objects, and the vector + elements are returned by value. + + There are both 'index' and 'iterate' accessors. The iterator + returns a boolean iteration condition and updates the iteration + variable passed by reference. Because the iterator will be + inlined, the address-of can be optimized away. + + The vectors are implemented using the trailing array idiom, thus + they are not resizeable without changing the address of the vector + object itself. This means you cannot have variables or fields of + vector type -- always use a pointer to a vector. The one exception + is the final field of a structure, which could be a vector type. + You will have to use the embedded_size & embedded_init calls to + create such objects, and they will probably not be resizeable (so + don't use the 'safe' allocation variants). The trailing array + idiom is used (rather than a pointer to an array of data), because, + if we allow NULL to also represent an empty vector, empty vectors + occupy minimal space in the structure containing them. + + Each operation that increases the number of active elements is + available in 'quick' and 'safe' variants. The former presumes that + there is sufficient allocated space for the operation to succeed + (it dies if there is not). The latter will reallocate the + vector, if needed. Reallocation causes an exponential increase in + vector size. If you know you will be adding N elements, it would + be more efficient to use the reserve operation before adding the + elements with the 'quick' operation. This will ensure there are at + least as many elements as you ask for, it will exponentially + increase if there are too few spare slots. If you want reserve a + specific number of slots, but do not want the exponential increase + (for instance, you know this is the last allocation), use the + reserve_exact operation. You can also create a vector of a + specific size from the get go. + + You should prefer the push and pop operations, as they append and + remove from the end of the vector. If you need to remove several + items in one go, use the truncate operation. The insert and remove + operations allow you to change elements in the middle of the + vector. There are two remove operations, one which preserves the + element ordering 'ordered_remove', and one which does not + 'unordered_remove'. The latter function copies the end element + into the removed slot, rather than invoke a memmove operation. The + 'lower_bound' function will determine where to place an item in the + array using insert that will maintain sorted order. + + When a vector type is defined, first a non-memory managed version + is created. You can then define either or both garbage collected + and heap allocated versions. The allocation mechanism is specified + when the type is defined, and is therefore part of the type. If + you need both gc'd and heap allocated versions, you still must have + *exactly* one definition of the common non-memory managed base vector. + + If you need to directly manipulate a vector, then the 'address' + accessor will return the address of the start of the vector. Also + the 'space' predicate will tell you whether there is spare capacity + in the vector. You will not normally need to use these two functions. + + Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to + get the non-memory allocation version, and then a + DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed + vectors. Variables of vector type are declared using a + VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the + allocation strategy, and can be either 'gc' or 'heap' for garbage + collected and heap allocated respectively. It can be 'none' to get + a vector that must be explicitly allocated (for instance as a + trailing array of another structure). The characters O, P and I + indicate whether TYPEDEF is a pointer (P), object (O) or integral + (I) type. Be careful to pick the correct one, as you'll get an + awkward and inefficient API if you use the wrong one. There is a + check, which results in a compile-time warning, for the P and I + versions, but there is no check for the O versions, as that is not + possible in plain C. Due to the way GTY works, you must annotate + any structures you wish to insert or reference from a vector with a + GTY(()) tag. You need to do this even if you never declare the GC + allocated variants. + + An example of their use would be, + + DEF_VEC_P(tree); // non-managed tree vector. + DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must + // appear at file scope. + + struct my_struct { + VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers. + }; + + struct my_struct *s; + + if (VEC_length(tree,s->v)) { we have some contents } + VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end + for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) + { do something with elt } + +*/ + +/* Macros to invoke API calls. A single macro works for both pointer + and object vectors, but the argument and return types might well be + different. In each macro, T is the typedef of the vector elements, + and A is the allocation strategy. The allocation strategy is only + present when it is required. Some of these macros pass the vector, + V, by reference (by taking its address), this is noted in the + descriptions. */ + +/* Length of vector + unsigned VEC_T_length(const VEC(T) *v); + + Return the number of active elements in V. V can be NULL, in which + case zero is returned. */ + +#define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V))) + + +/* Check if vector is empty + int VEC_T_empty(const VEC(T) *v); + + Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ + +#define VEC_empty(T,V) (VEC_length (T,V) == 0) + + +/* Get the final element of the vector. + T VEC_T_last(VEC(T) *v); // Integer + T VEC_T_last(VEC(T) *v); // Pointer + T *VEC_T_last(VEC(T) *v); // Object + + Return the final element. V must not be empty. */ + +#define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO)) + +/* Index into vector + T VEC_T_index(VEC(T) *v, unsigned ix); // Integer + T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer + T *VEC_T_index(VEC(T) *v, unsigned ix); // Object + + Return the IX'th element. If IX must be in the domain of V. */ + +#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO)) + +/* Iterate over vector + int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer + int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer + int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object + + Return iteration condition and update PTR to point to the IX'th + element. At the end of iteration, sets PTR to NULL. Use this to + iterate over the elements of a vector as follows, + + for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) + continue; */ + +#define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P))) + +/* Allocate new vector. + VEC(T,A) *VEC_T_A_alloc(int reserve); + + Allocate a new vector with space for RESERVE objects. If RESERVE + is zero, NO vector is created. */ + +#define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO)) + +/* Free a vector. + void VEC_T_A_free(VEC(T,A) *&); + + Free a vector and set it to NULL. */ + +#define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V)) + +/* Use these to determine the required size and initialization of a + vector embedded within another structure (as the final member). + + size_t VEC_T_embedded_size(int reserve); + void VEC_T_embedded_init(VEC(T) *v, int reserve); + + These allow the caller to perform the memory allocation. */ + +#define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N)) +#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N)) + +/* Copy a vector. + VEC(T,A) *VEC_T_A_copy(VEC(T) *); + + Copy the live elements of a vector into a new vector. The new and + old vectors need not be allocated by the same mechanism. */ + +#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO)) + +/* Determine if a vector has additional capacity. + + int VEC_T_space (VEC(T) *v,int reserve) + + If V has space for RESERVE additional entries, return nonzero. You + usually only need to use this if you are doing your own vector + reallocation, for instance on an embedded vector. This returns + nonzero in exactly the same circumstances that VEC_T_reserve + will. */ + +#define VEC_space(T,V,R) \ + (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO)) + +/* Reserve space. + int VEC_T_A_reserve(VEC(T,A) *&v, int reserve); + + Ensure that V has at least RESERVE slots available. This will + create additional headroom. Note this can cause V to be + reallocated. Returns nonzero iff reallocation actually + occurred. */ + +#define VEC_reserve(T,A,V,R) \ + (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) + +/* Reserve space exactly. + int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve); + + Ensure that V has at least RESERVE slots available. This will not + create additional headroom. Note this can cause V to be + reallocated. Returns nonzero iff reallocation actually + occurred. */ + +#define VEC_reserve_exact(T,A,V,R) \ + (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) + +/* Push object with no reallocation + T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer + T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer + T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object + + Push a new element onto the end, returns a pointer to the slot + filled in. For object vectors, the new value can be NULL, in which + case NO initialization is performed. There must + be sufficient space in the vector. */ + +#define VEC_quick_push(T,V,O) \ + (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO)) + +/* Push object with reallocation + T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer + T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer + T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object + + Push a new element onto the end, returns a pointer to the slot + filled in. For object vectors, the new value can be NULL, in which + case NO initialization is performed. Reallocates V, if needed. */ + +#define VEC_safe_push(T,A,V,O) \ + (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO)) + +/* Pop element off end + T VEC_T_pop (VEC(T) *v); // Integer + T VEC_T_pop (VEC(T) *v); // Pointer + void VEC_T_pop (VEC(T) *v); // Object + + Pop the last element off the end. Returns the element popped, for + pointer vectors. */ + +#define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO)) + +/* Truncate to specific length + void VEC_T_truncate (VEC(T) *v, unsigned len); + + Set the length as specified. The new length must be less than or + equal to the current length. This is an O(1) operation. */ + +#define VEC_truncate(T,V,I) \ + (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO)) + +/* Grow to a specific length. + void VEC_T_A_safe_grow (VEC(T,A) *&v, int len); + + Grow the vector to a specific length. The LEN must be as + long or longer than the current length. The new elements are + uninitialized. */ + +#define VEC_safe_grow(T,A,V,I) \ + (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) + +/* Grow to a specific length. + void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len); + + Grow the vector to a specific length. The LEN must be as + long or longer than the current length. The new elements are + initialized to zero. */ + +#define VEC_safe_grow_cleared(T,A,V,I) \ + (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) + +/* Replace element + T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer + T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer + T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object + + Replace the IXth element of V with a new value, VAL. For pointer + vectors returns the original value. For object vectors returns a + pointer to the new value. For object vectors the new value can be + NULL, in which case no overwriting of the slot is actually + performed. */ + +#define VEC_replace(T,V,I,O) \ + (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO)) + +/* Insert object with no reallocation + T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer + T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer + T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object + + Insert an element, VAL, at the IXth position of V. Return a pointer + to the slot created. For vectors of object, the new value can be + NULL, in which case no initialization of the inserted slot takes + place. There must be sufficient space. */ + +#define VEC_quick_insert(T,V,I,O) \ + (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO)) + +/* Insert object with reallocation + T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer + T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer + T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object + + Insert an element, VAL, at the IXth position of V. Return a pointer + to the slot created. For vectors of object, the new value can be + NULL, in which case no initialization of the inserted slot takes + place. Reallocate V, if necessary. */ + +#define VEC_safe_insert(T,A,V,I,O) \ + (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) + +/* Remove element retaining order + T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer + T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer + void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object + + Remove an element from the IXth position of V. Ordering of + remaining elements is preserved. For pointer vectors returns the + removed object. This is an O(N) operation due to a memmove. */ + +#define VEC_ordered_remove(T,V,I) \ + (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) + +/* Remove element destroying order + T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer + T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer + void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object + + Remove an element from the IXth position of V. Ordering of + remaining elements is destroyed. For pointer vectors returns the + removed object. This is an O(1) operation. */ + +#define VEC_unordered_remove(T,V,I) \ + (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) + +/* Remove a block of elements + void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); + + Remove LEN elements starting at the IXth. Ordering is retained. + This is an O(1) operation. */ + +#define VEC_block_remove(T,V,I,L) \ + (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO)) + +/* Get the address of the array of elements + T *VEC_T_address (VEC(T) v) + + If you need to directly manipulate the array (for instance, you + want to feed it to qsort), use this accessor. */ + +#define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V))) + +/* Find the first index in the vector not less than the object. + unsigned VEC_T_lower_bound (VEC(T) *v, const T val, + bool (*lessthan) (const T, const T)); // Integer + unsigned VEC_T_lower_bound (VEC(T) *v, const T val, + bool (*lessthan) (const T, const T)); // Pointer + unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, + bool (*lessthan) (const T*, const T*)); // Object + + Find the first position in which VAL could be inserted without + changing the ordering of V. LESSTHAN is a function that returns + true if the first argument is strictly less than the second. */ + +#define VEC_lower_bound(T,V,O,LT) \ + (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO)) + +/* Reallocate an array of elements with prefix. */ +extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL); +extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL); +extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); +extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t + MEM_STAT_DECL); +extern void ggc_free (void *); +#define vec_gc_free(V) ggc_free (V) +extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL); +extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL); +extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); +extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t + MEM_STAT_DECL); +extern void dump_vec_loc_statistics (void); +#ifdef GATHER_STATISTICS +void vec_heap_free (void *); +#else +#define vec_heap_free(V) free (V) +#endif + +#if ENABLE_CHECKING +#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ +#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ +#define VEC_CHECK_PASS ,file_,line_,function_ + +#define VEC_ASSERT(EXPR,OP,T,A) \ + (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) + +extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) + ATTRIBUTE_NORETURN; +#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) +#else +#define VEC_CHECK_INFO +#define VEC_CHECK_DECL +#define VEC_CHECK_PASS +#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) +#endif + +/* Note: gengtype has hardwired knowledge of the expansions of the + VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the + expansions of these macros you may need to change gengtype too. */ + +#define VEC(T,A) VEC_##T##_##A +#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP + +/* Base of vector type, not user visible. */ +#define VEC_T(T,B) \ +typedef struct VEC(T,B) \ +{ \ + unsigned num; \ + unsigned alloc; \ + T vec[1]; \ +} VEC(T,B) + +#define VEC_T_GTY(T,B) \ +typedef struct VEC(T,B) GTY(()) \ +{ \ + unsigned num; \ + unsigned alloc; \ + T GTY ((length ("%h.num"))) vec[1]; \ +} VEC(T,B) + +/* Derived vector type, user visible. */ +#define VEC_TA_GTY(T,B,A,GTY) \ +typedef struct VEC(T,A) GTY \ +{ \ + VEC(T,B) base; \ +} VEC(T,A) + +#define VEC_TA(T,B,A) \ +typedef struct VEC(T,A) \ +{ \ + VEC(T,B) base; \ +} VEC(T,A) + +/* Convert to base type. */ +#define VEC_BASE(P) ((P) ? &(P)->base : 0) + +/* Vector of integer-like object. */ +#define DEF_VEC_I(T) \ +static inline void VEC_OP (T,must_be,integral_type) (void) \ +{ \ + (void)~(T)0; \ +} \ + \ +VEC_T(T,base); \ +VEC_TA(T,base,none); \ +DEF_VEC_FUNC_P(T) \ +struct vec_swallow_trailing_semi +#define DEF_VEC_ALLOC_I(T,A) \ +VEC_TA(T,base,A); \ +DEF_VEC_ALLOC_FUNC_I(T,A) \ +struct vec_swallow_trailing_semi + +/* Vector of pointer to object. */ +#define DEF_VEC_P(T) \ +static inline void VEC_OP (T,must_be,pointer_type) (void) \ +{ \ + (void)((T)1 == (void *)1); \ +} \ + \ +VEC_T_GTY(T,base); \ +VEC_TA(T,base,none); \ +DEF_VEC_FUNC_P(T) \ +struct vec_swallow_trailing_semi +#define DEF_VEC_ALLOC_P(T,A) \ +VEC_TA(T,base,A); \ +DEF_VEC_ALLOC_FUNC_P(T,A) \ +struct vec_swallow_trailing_semi + +#define DEF_VEC_FUNC_P(T) \ +static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ +{ \ + return vec_ ? vec_->num : 0; \ +} \ + \ +static inline T VEC_OP (T,base,last) \ + (const VEC(T,base) *vec_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ + \ + return vec_->vec[vec_->num - 1]; \ +} \ + \ +static inline T VEC_OP (T,base,index) \ + (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ + \ + return vec_->vec[ix_]; \ +} \ + \ +static inline int VEC_OP (T,base,iterate) \ + (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \ +{ \ + if (vec_ && ix_ < vec_->num) \ + { \ + *ptr = vec_->vec[ix_]; \ + return 1; \ + } \ + else \ + { \ + *ptr = 0; \ + return 0; \ + } \ +} \ + \ +static inline size_t VEC_OP (T,base,embedded_size) \ + (int alloc_) \ +{ \ + return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ +} \ + \ +static inline void VEC_OP (T,base,embedded_init) \ + (VEC(T,base) *vec_, int alloc_) \ +{ \ + vec_->num = 0; \ + vec_->alloc = alloc_; \ +} \ + \ +static inline int VEC_OP (T,base,space) \ + (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (alloc_ >= 0, "space", T, base); \ + return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ +} \ + \ +static inline T *VEC_OP (T,base,quick_push) \ + (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ + slot_ = &vec_->vec[vec_->num++]; \ + *slot_ = obj_; \ + \ + return slot_; \ +} \ + \ +static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ +{ \ + T obj_; \ + \ + VEC_ASSERT (vec_->num, "pop", T, base); \ + obj_ = vec_->vec[--vec_->num]; \ + \ + return obj_; \ +} \ + \ +static inline void VEC_OP (T,base,truncate) \ + (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ + if (vec_) \ + vec_->num = size_; \ +} \ + \ +static inline T VEC_OP (T,base,replace) \ + (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ +{ \ + T old_obj_; \ + \ + VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ + old_obj_ = vec_->vec[ix_]; \ + vec_->vec[ix_] = obj_; \ + \ + return old_obj_; \ +} \ + \ +static inline T *VEC_OP (T,base,quick_insert) \ + (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ + VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ + slot_ = &vec_->vec[ix_]; \ + memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ + *slot_ = obj_; \ + \ + return slot_; \ +} \ + \ +static inline T VEC_OP (T,base,ordered_remove) \ + (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + T obj_; \ + \ + VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ + slot_ = &vec_->vec[ix_]; \ + obj_ = *slot_; \ + memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ + \ + return obj_; \ +} \ + \ +static inline T VEC_OP (T,base,unordered_remove) \ + (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + T obj_; \ + \ + VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ + slot_ = &vec_->vec[ix_]; \ + obj_ = *slot_; \ + *slot_ = vec_->vec[--vec_->num]; \ + \ + return obj_; \ +} \ + \ +static inline void VEC_OP (T,base,block_remove) \ + (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ + slot_ = &vec_->vec[ix_]; \ + vec_->num -= len_; \ + memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ +} \ + \ +static inline T *VEC_OP (T,base,address) \ + (VEC(T,base) *vec_) \ +{ \ + return vec_ ? vec_->vec : 0; \ +} \ + \ +static inline unsigned VEC_OP (T,base,lower_bound) \ + (VEC(T,base) *vec_, const T obj_, \ + bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \ +{ \ + unsigned int len_ = VEC_OP (T,base, length) (vec_); \ + unsigned int half_, middle_; \ + unsigned int first_ = 0; \ + while (len_ > 0) \ + { \ + T middle_elem_; \ + half_ = len_ >> 1; \ + middle_ = first_; \ + middle_ += half_; \ + middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ + if (lessthan_ (middle_elem_, obj_)) \ + { \ + first_ = middle_; \ + ++first_; \ + len_ = len_ - half_ - 1; \ + } \ + else \ + len_ = half_; \ + } \ + return first_; \ +} + +#define DEF_VEC_ALLOC_FUNC_P(T,A) \ +static inline VEC(T,A) *VEC_OP (T,A,alloc) \ + (int alloc_ MEM_STAT_DECL) \ +{ \ + return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \ + PASS_MEM_STAT); \ +} \ + \ +static inline void VEC_OP (T,A,free) \ + (VEC(T,A) **vec_) \ +{ \ + if (*vec_) \ + vec_##A##_free (*vec_); \ + *vec_ = NULL; \ +} \ + \ +static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ +{ \ + size_t len_ = vec_ ? vec_->num : 0; \ + VEC (T,A) *new_vec_ = NULL; \ + \ + if (len_) \ + { \ + new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \ + (NULL, len_ PASS_MEM_STAT)); \ + \ + new_vec_->base.num = len_; \ + memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ + } \ + return new_vec_; \ +} \ + \ +static inline int VEC_OP (T,A,reserve) \ + (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ + VEC_CHECK_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \ + \ + return extend; \ +} \ + \ +static inline int VEC_OP (T,A,reserve_exact) \ + (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ + VEC_CHECK_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \ + PASS_MEM_STAT); \ + \ + return extend; \ +} \ + \ +static inline void VEC_OP (T,A,safe_grow) \ + (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_ASSERT (size_ >= 0 \ + && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ + "grow", T, A); \ + VEC_OP (T,A,reserve_exact) (vec_, \ + size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ + VEC_CHECK_PASS PASS_MEM_STAT); \ + VEC_BASE (*vec_)->num = size_; \ +} \ + \ +static inline void VEC_OP (T,A,safe_grow_cleared) \ + (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ + VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ + memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ + sizeof (T) * (size_ - oldsize)); \ +} \ + \ +static inline T *VEC_OP (T,A,safe_push) \ + (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ + \ + return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ +} \ + \ +static inline T *VEC_OP (T,A,safe_insert) \ + (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ + \ + return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ + VEC_CHECK_PASS); \ +} + +/* Vector of object. */ +#define DEF_VEC_O(T) \ +VEC_T_GTY(T,base); \ +VEC_TA(T,base,none); \ +DEF_VEC_FUNC_O(T) \ +struct vec_swallow_trailing_semi +#define DEF_VEC_ALLOC_O(T,A) \ +VEC_TA(T,base,A); \ +DEF_VEC_ALLOC_FUNC_O(T,A) \ +struct vec_swallow_trailing_semi + +#define DEF_VEC_FUNC_O(T) \ +static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ +{ \ + return vec_ ? vec_->num : 0; \ +} \ + \ +static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ + \ + return &vec_->vec[vec_->num - 1]; \ +} \ + \ +static inline T *VEC_OP (T,base,index) \ + (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ + \ + return &vec_->vec[ix_]; \ +} \ + \ +static inline int VEC_OP (T,base,iterate) \ + (VEC(T,base) *vec_, unsigned ix_, T **ptr) \ +{ \ + if (vec_ && ix_ < vec_->num) \ + { \ + *ptr = &vec_->vec[ix_]; \ + return 1; \ + } \ + else \ + { \ + *ptr = 0; \ + return 0; \ + } \ +} \ + \ +static inline size_t VEC_OP (T,base,embedded_size) \ + (int alloc_) \ +{ \ + return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ +} \ + \ +static inline void VEC_OP (T,base,embedded_init) \ + (VEC(T,base) *vec_, int alloc_) \ +{ \ + vec_->num = 0; \ + vec_->alloc = alloc_; \ +} \ + \ +static inline int VEC_OP (T,base,space) \ + (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (alloc_ >= 0, "space", T, base); \ + return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ +} \ + \ +static inline T *VEC_OP (T,base,quick_push) \ + (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ + slot_ = &vec_->vec[vec_->num++]; \ + if (obj_) \ + *slot_ = *obj_; \ + \ + return slot_; \ +} \ + \ +static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_->num, "pop", T, base); \ + --vec_->num; \ +} \ + \ +static inline void VEC_OP (T,base,truncate) \ + (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ + if (vec_) \ + vec_->num = size_; \ +} \ + \ +static inline T *VEC_OP (T,base,replace) \ + (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ + slot_ = &vec_->vec[ix_]; \ + if (obj_) \ + *slot_ = *obj_; \ + \ + return slot_; \ +} \ + \ +static inline T *VEC_OP (T,base,quick_insert) \ + (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ + VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ + slot_ = &vec_->vec[ix_]; \ + memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ + if (obj_) \ + *slot_ = *obj_; \ + \ + return slot_; \ +} \ + \ +static inline void VEC_OP (T,base,ordered_remove) \ + (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ + slot_ = &vec_->vec[ix_]; \ + memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ +} \ + \ +static inline void VEC_OP (T,base,unordered_remove) \ + (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ +{ \ + VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ + vec_->vec[ix_] = vec_->vec[--vec_->num]; \ +} \ + \ +static inline void VEC_OP (T,base,block_remove) \ + (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ +{ \ + T *slot_; \ + \ + VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ + slot_ = &vec_->vec[ix_]; \ + vec_->num -= len_; \ + memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ +} \ + \ +static inline T *VEC_OP (T,base,address) \ + (VEC(T,base) *vec_) \ +{ \ + return vec_ ? vec_->vec : 0; \ +} \ + \ +static inline unsigned VEC_OP (T,base,lower_bound) \ + (VEC(T,base) *vec_, const T *obj_, \ + bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \ +{ \ + unsigned int len_ = VEC_OP (T, base, length) (vec_); \ + unsigned int half_, middle_; \ + unsigned int first_ = 0; \ + while (len_ > 0) \ + { \ + T *middle_elem_; \ + half_ = len_ >> 1; \ + middle_ = first_; \ + middle_ += half_; \ + middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ + if (lessthan_ (middle_elem_, obj_)) \ + { \ + first_ = middle_; \ + ++first_; \ + len_ = len_ - half_ - 1; \ + } \ + else \ + len_ = half_; \ + } \ + return first_; \ +} + +#define DEF_VEC_ALLOC_FUNC_O(T,A) \ +static inline VEC(T,A) *VEC_OP (T,A,alloc) \ + (int alloc_ MEM_STAT_DECL) \ +{ \ + return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \ + offsetof (VEC(T,A),base.vec), \ + sizeof (T) \ + PASS_MEM_STAT); \ +} \ + \ +static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ +{ \ + size_t len_ = vec_ ? vec_->num : 0; \ + VEC (T,A) *new_vec_ = NULL; \ + \ + if (len_) \ + { \ + new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ + (NULL, len_, \ + offsetof (VEC(T,A),base.vec), sizeof (T) \ + PASS_MEM_STAT)); \ + \ + new_vec_->base.num = len_; \ + memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ + } \ + return new_vec_; \ +} \ + \ +static inline void VEC_OP (T,A,free) \ + (VEC(T,A) **vec_) \ +{ \ + if (*vec_) \ + vec_##A##_free (*vec_); \ + *vec_ = NULL; \ +} \ + \ +static inline int VEC_OP (T,A,reserve) \ + (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ + VEC_CHECK_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ + offsetof (VEC(T,A),base.vec),\ + sizeof (T) \ + PASS_MEM_STAT); \ + \ + return extend; \ +} \ + \ +static inline int VEC_OP (T,A,reserve_exact) \ + (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ + VEC_CHECK_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ + (*vec_, alloc_, \ + offsetof (VEC(T,A),base.vec), \ + sizeof (T) PASS_MEM_STAT); \ + \ + return extend; \ +} \ + \ +static inline void VEC_OP (T,A,safe_grow) \ + (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_ASSERT (size_ >= 0 \ + && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ + "grow", T, A); \ + VEC_OP (T,A,reserve_exact) (vec_, \ + size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ + VEC_CHECK_PASS PASS_MEM_STAT); \ + VEC_BASE (*vec_)->num = size_; \ +} \ + \ +static inline void VEC_OP (T,A,safe_grow_cleared) \ + (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ + VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ + memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ + sizeof (T) * (size_ - oldsize)); \ +} \ + \ +static inline T *VEC_OP (T,A,safe_push) \ + (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ + \ + return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ +} \ + \ +static inline T *VEC_OP (T,A,safe_insert) \ + (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \ + VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ + \ + return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ + VEC_CHECK_PASS); \ +} + +#define DEF_VEC_ALLOC_FUNC_I(T,A) \ +static inline VEC(T,A) *VEC_OP (T,A,alloc) \ + (int alloc_ MEM_STAT_DECL) \ +{ \ + return (VEC(T,A) *) vec_##A##_o_reserve_exact \ + (NULL, alloc_, offsetof (VEC(T,A),base.vec), \ + sizeof (T) PASS_MEM_STAT); \ +} \ + \ +static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ +{ \ + size_t len_ = vec_ ? vec_->num : 0; \ + VEC (T,A) *new_vec_ = NULL; \ + \ + if (len_) \ + { \ + new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ + (NULL, len_, \ + offsetof (VEC(T,A),base.vec), sizeof (T) \ + PASS_MEM_STAT)); \ + \ + new_vec_->base.num = len_; \ + memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ + } \ + return new_vec_; \ +} \ + \ +static inline void VEC_OP (T,A,free) \ + (VEC(T,A) **vec_) \ +{ \ + if (*vec_) \ + vec_##A##_free (*vec_); \ + *vec_ = NULL; \ +} \ + \ +static inline int VEC_OP (T,A,reserve) \ + (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ + VEC_CHECK_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ + offsetof (VEC(T,A),base.vec),\ + sizeof (T) \ + PASS_MEM_STAT); \ + \ + return extend; \ +} \ + \ +static inline int VEC_OP (T,A,reserve_exact) \ + (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ + VEC_CHECK_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ + (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \ + sizeof (T) PASS_MEM_STAT); \ + \ + return extend; \ +} \ + \ +static inline void VEC_OP (T,A,safe_grow) \ + (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_ASSERT (size_ >= 0 \ + && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ + "grow", T, A); \ + VEC_OP (T,A,reserve_exact) (vec_, \ + size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ + VEC_CHECK_PASS PASS_MEM_STAT); \ + VEC_BASE (*vec_)->num = size_; \ +} \ + \ +static inline void VEC_OP (T,A,safe_grow_cleared) \ + (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ + VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ + memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ + sizeof (T) * (size_ - oldsize)); \ +} \ + \ +static inline T *VEC_OP (T,A,safe_push) \ + (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ + \ + return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ +} \ + \ +static inline T *VEC_OP (T,A,safe_insert) \ + (VEC(T,A) **vec_, unsigned ix_, const T obj_ \ + VEC_CHECK_DECL MEM_STAT_DECL) \ +{ \ + VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ + \ + return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ + VEC_CHECK_PASS); \ +} + +#endif /* GCC_VEC_H */