X-Git-Url: https://oss.titaniummirror.com/gitweb?a=blobdiff_plain;f=libstdc%2B%2B-v3%2Finclude%2Fbits%2Fstl_function.h;fp=libstdc%2B%2B-v3%2Finclude%2Fbits%2Fstl_function.h;h=b2569d51780419f6348a2fce12025b96b59170e4;hb=6fed43773c9b0ce596dca5686f37ac3fc0fa11c0;hp=9ea975d4a8dc82c397576592938e0c8b42428d9d;hpb=27b11d56b743098deb193d510b337ba22dc52e5c;p=msp430-gcc.git diff --git a/libstdc++-v3/include/bits/stl_function.h b/libstdc++-v3/include/bits/stl_function.h index 9ea975d4..b2569d51 100644 --- a/libstdc++-v3/include/bits/stl_function.h +++ b/libstdc++-v3/include/bits/stl_function.h @@ -1,11 +1,12 @@ // Functor implementations -*- C++ -*- -// Copyright (C) 2001, 2002 Free Software Foundation, Inc. +// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009 +// Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the -// Free Software Foundation; either version 2, or (at your option) +// Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, @@ -13,19 +14,14 @@ // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. -// You should have received a copy of the GNU General Public License along -// with this library; see the file COPYING. If not, write to the Free -// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, -// USA. +// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation. -// As a special exception, you may use this file as part of a free software -// library without restriction. Specifically, if other files instantiate -// templates or use macros or inline functions from this file, or you compile -// this file and link it with other files to produce an executable, this -// file does not by itself cause the resulting executable to be covered by -// the GNU General Public License. This exception does not however -// invalidate any other reasons why the executable file might be covered by -// the GNU General Public License. +// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// . /* * @@ -58,679 +54,662 @@ * You should not attempt to use it directly. */ -#ifndef __GLIBCPP_INTERNAL_FUNCTION_H -#define __GLIBCPP_INTERNAL_FUNCTION_H - -namespace std -{ -// 20.3.1 base classes -/** @defgroup s20_3_1_base Functor Base Classes - * Function objects, or @e functors, are objects with an @c operator() - * defined and accessible. They can be passed as arguments to algorithm - * templates and used in place of a function pointer. Not only is the - * resulting expressiveness of the library increased, but the generated - * code can be more efficient than what you might write by hand. When we - * refer to "functors," then, generally we include function pointers in - * the description as well. - * - * Often, functors are only created as temporaries passed to algorithm - * calls, rather than being created as named variables. - * - * Two examples taken from the standard itself follow. To perform a - * by-element addition of two vectors @c a and @c b containing @c double, - * and put the result in @c a, use - * \code - * transform (a.begin(), a.end(), b.begin(), a.begin(), plus()); - * \endcode - * To negate every element in @c a, use - * \code - * transform(a.begin(), a.end(), a.begin(), negate()); - * \endcode - * The addition and negation functions will be inlined directly. - * - * The standard functiors are derived from structs named @c unary_function - * and @c binary_function. These two classes contain nothing but typedefs, - * to aid in generic (template) programming. If you write your own - * functors, you might consider doing the same. - * - * @{ -*/ -/** - * This is one of the @link s20_3_1_base functor base classes@endlink. -*/ -template -struct unary_function { - typedef _Arg argument_type; ///< @c argument_type is the type of the argument (no surprises here) - typedef _Result result_type; ///< @c result_type is the return type -}; - -/** - * This is one of the @link s20_3_1_base functor base classes@endlink. -*/ -template -struct binary_function { - typedef _Arg1 first_argument_type; ///< the type of the first argument (no surprises here) - typedef _Arg2 second_argument_type; ///< the type of the second argument - typedef _Result result_type; ///< type of the return type -}; -/** @} */ - -// 20.3.2 arithmetic -/** @defgroup s20_3_2_arithmetic Arithmetic Classes - * Because basic math often needs to be done during an algorithm, the library - * provides functors for those operations. See the documentation for - * @link s20_3_1_base the base classes@endlink for examples of their use. - * - * @{ -*/ -/// One of the @link s20_3_2_arithmetic math functors@endlink. -template -struct plus : public binary_function<_Tp,_Tp,_Tp> { - _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } -}; - -/// One of the @link s20_3_2_arithmetic math functors@endlink. -template -struct minus : public binary_function<_Tp,_Tp,_Tp> { - _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } -}; - -/// One of the @link s20_3_2_arithmetic math functors@endlink. -template -struct multiplies : public binary_function<_Tp,_Tp,_Tp> { - _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } -}; - -/// One of the @link s20_3_2_arithmetic math functors@endlink. -template -struct divides : public binary_function<_Tp,_Tp,_Tp> { - _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } -}; - -/// One of the @link s20_3_2_arithmetic math functors@endlink. -template -struct modulus : public binary_function<_Tp,_Tp,_Tp> -{ - _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } -}; - -/// One of the @link s20_3_2_arithmetic math functors@endlink. -template -struct negate : public unary_function<_Tp,_Tp> -{ - _Tp operator()(const _Tp& __x) const { return -__x; } -}; -/** @} */ - -// 20.3.3 comparisons -/** @defgroup s20_3_3_comparisons Comparison Classes - * The library provides six wrapper functors for all the basic comparisons - * in C++, like @c <. - * - * @{ -*/ -/// One of the @link s20_3_3_comparisons comparison functors@endlink. -template -struct equal_to : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } -}; - -/// One of the @link s20_3_3_comparisons comparison functors@endlink. -template -struct not_equal_to : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } -}; - -/// One of the @link s20_3_3_comparisons comparison functors@endlink. -template -struct greater : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } -}; - -/// One of the @link s20_3_3_comparisons comparison functors@endlink. -template -struct less : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } -}; - -/// One of the @link s20_3_3_comparisons comparison functors@endlink. -template -struct greater_equal : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } -}; - -/// One of the @link s20_3_3_comparisons comparison functors@endlink. -template -struct less_equal : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } -}; -/** @} */ - -// 20.3.4 logical operations -/** @defgroup s20_3_4_logical Boolean Operations Classes - * Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !. - * - * @{ -*/ -/// One of the @link s20_3_4_logical Boolean operations functors@endlink. -template -struct logical_and : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } -}; - -/// One of the @link s20_3_4_logical Boolean operations functors@endlink. -template -struct logical_or : public binary_function<_Tp,_Tp,bool> -{ - bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } -}; - -/// One of the @link s20_3_4_logical Boolean operations functors@endlink. -template -struct logical_not : public unary_function<_Tp,bool> -{ - bool operator()(const _Tp& __x) const { return !__x; } -}; -/** @} */ - -// 20.3.5 negators -/** @defgroup s20_3_5_negators Negators - * The functions @c not1 and @c not2 each take a predicate functor - * and return an instance of @c unary_negate or - * @c binary_negate, respectively. These classes are functors whose - * @c operator() performs the stored predicate function and then returns - * the negation of the result. - * - * For example, given a vector of integers and a trivial predicate, - * \code - * struct IntGreaterThanThree - * : public std::unary_function - * { - * bool operator() (int x) { return x > 3; } - * }; - * - * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); - * \endcode - * The call to @c find_if will locate the first index (i) of @c v for which - * "!(v[i] > 3)" is true. - * - * The not1/unary_negate combination works on predicates taking a single - * argument. The not2/binary_negate combination works on predicates which - * take two arguments. - * - * @{ -*/ -/// One of the @link s20_3_5_negators negation functors@endlink. -template -class unary_negate - : public unary_function { -protected: - _Predicate _M_pred; -public: - explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {} - bool operator()(const typename _Predicate::argument_type& __x) const { - return !_M_pred(__x); - } -}; - -/// One of the @link s20_3_5_negators negation functors@endlink. -template -inline unary_negate<_Predicate> -not1(const _Predicate& __pred) -{ - return unary_negate<_Predicate>(__pred); -} - -/// One of the @link s20_3_5_negators negation functors@endlink. -template -class binary_negate - : public binary_function { -protected: - _Predicate _M_pred; -public: - explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {} - bool operator()(const typename _Predicate::first_argument_type& __x, - const typename _Predicate::second_argument_type& __y) const - { - return !_M_pred(__x, __y); - } -}; - -/// One of the @link s20_3_5_negators negation functors@endlink. -template -inline binary_negate<_Predicate> -not2(const _Predicate& __pred) -{ - return binary_negate<_Predicate>(__pred); -} -/** @} */ - -// 20.3.6 binders -/** @defgroup s20_3_6_binder Binder Classes - * Binders turn functions/functors with two arguments into functors with - * a single argument, storing an argument to be applied later. For - * example, an variable @c B of type @c binder1st is constructed from a functor - * @c f and an argument @c x. Later, B's @c operator() is called with a - * single argument @c y. The return value is the value of @c f(x,y). - * @c B can be "called" with various arguments (y1, y2, ...) and will in - * turn call @c f(x,y1), @c f(x,y2), ... - * - * The function @c bind1st is provided to save some typing. It takes the - * function and an argument as parameters, and returns an instance of - * @c binder1st. - * - * The type @c binder2nd and its creator function @c bind2nd do the same - * thing, but the stored argument is passed as the second parameter instead - * of the first, e.g., @c bind2nd(std::minus,1.3) will create a - * functor whose @c operator() accepts a floating-point number, subtracts - * 1.3 from it, and returns the result. (If @c bind1st had been used, - * the functor would perform "1.3 - x" instead. - * - * Creator-wrapper functions like @c bind1st are intended to be used in - * calling algorithms. Their return values will be temporary objects. - * (The goal is to not require you to type names like - * @c std::binder1st> for declaring a variable to hold the - * return value from @c bind1st(std::plus,5). - * - * These become more useful when combined with the composition functions. - * - * @{ -*/ -/// One of the @link s20_3_6_binder binder functors@endlink. -template -class binder1st - : public unary_function { -protected: - _Operation op; - typename _Operation::first_argument_type value; -public: - binder1st(const _Operation& __x, - const typename _Operation::first_argument_type& __y) - : op(__x), value(__y) {} - typename _Operation::result_type - operator()(const typename _Operation::second_argument_type& __x) const { - return op(value, __x); - } -#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS - //109. Missing binders for non-const sequence elements - typename _Operation::result_type - operator()(typename _Operation::second_argument_type& __x) const { - return op(value, __x); - } +#ifndef _STL_FUNCTION_H +#define _STL_FUNCTION_H 1 + +_GLIBCXX_BEGIN_NAMESPACE(std) + + // 20.3.1 base classes + /** @defgroup functors Function Objects + * @ingroup utilities + * + * Function objects, or @e functors, are objects with an @c operator() + * defined and accessible. They can be passed as arguments to algorithm + * templates and used in place of a function pointer. Not only is the + * resulting expressiveness of the library increased, but the generated + * code can be more efficient than what you might write by hand. When we + * refer to "functors," then, generally we include function pointers in + * the description as well. + * + * Often, functors are only created as temporaries passed to algorithm + * calls, rather than being created as named variables. + * + * Two examples taken from the standard itself follow. To perform a + * by-element addition of two vectors @c a and @c b containing @c double, + * and put the result in @c a, use + * \code + * transform (a.begin(), a.end(), b.begin(), a.begin(), plus()); + * \endcode + * To negate every element in @c a, use + * \code + * transform(a.begin(), a.end(), a.begin(), negate()); + * \endcode + * The addition and negation functions will be inlined directly. + * + * The standard functors are derived from structs named @c unary_function + * and @c binary_function. These two classes contain nothing but typedefs, + * to aid in generic (template) programming. If you write your own + * functors, you might consider doing the same. + * + * @{ + */ + /** + * This is one of the @link functors functor base classes@endlink. + */ + template + struct unary_function + { + typedef _Arg argument_type; ///< @c argument_type is the type of the + /// argument (no surprises here) + + typedef _Result result_type; ///< @c result_type is the return type + }; + + /** + * This is one of the @link functors functor base classes@endlink. + */ + template + struct binary_function + { + typedef _Arg1 first_argument_type; ///< the type of the first argument + /// (no surprises here) + + typedef _Arg2 second_argument_type; ///< the type of the second argument + typedef _Result result_type; ///< type of the return type + }; + /** @} */ + + // 20.3.2 arithmetic + /** @defgroup arithmetic_functors Arithmetic Classes + * @ingroup functors + * + * Because basic math often needs to be done during an algorithm, + * the library provides functors for those operations. See the + * documentation for @link functors the base classes@endlink + * for examples of their use. + * + * @{ + */ + /// One of the @link arithmetic_functors math functors@endlink. + template + struct plus : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x + __y; } + }; + + /// One of the @link arithmetic_functors math functors@endlink. + template + struct minus : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x - __y; } + }; + + /// One of the @link arithmetic_functors math functors@endlink. + template + struct multiplies : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x * __y; } + }; + + /// One of the @link arithmetic_functors math functors@endlink. + template + struct divides : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x / __y; } + }; + + /// One of the @link arithmetic_functors math functors@endlink. + template + struct modulus : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x % __y; } + }; + + /// One of the @link arithmetic_functors math functors@endlink. + template + struct negate : public unary_function<_Tp, _Tp> + { + _Tp + operator()(const _Tp& __x) const + { return -__x; } + }; + /** @} */ + + // 20.3.3 comparisons + /** @defgroup comparison_functors Comparison Classes + * @ingroup functors + * + * The library provides six wrapper functors for all the basic comparisons + * in C++, like @c <. + * + * @{ + */ + /// One of the @link comparison_functors comparison functors@endlink. + template + struct equal_to : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x == __y; } + }; + + /// One of the @link comparison_functors comparison functors@endlink. + template + struct not_equal_to : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x != __y; } + }; + + /// One of the @link comparison_functors comparison functors@endlink. + template + struct greater : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x > __y; } + }; + + /// One of the @link comparison_functors comparison functors@endlink. + template + struct less : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x < __y; } + }; + + /// One of the @link comparison_functors comparison functors@endlink. + template + struct greater_equal : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x >= __y; } + }; + + /// One of the @link comparison_functors comparison functors@endlink. + template + struct less_equal : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x <= __y; } + }; + /** @} */ + + // 20.3.4 logical operations + /** @defgroup logical_functors Boolean Operations Classes + * @ingroup functors + * + * Here are wrapper functors for Boolean operations: @c &&, @c ||, + * and @c !. + * + * @{ + */ + /// One of the @link logical_functors Boolean operations functors@endlink. + template + struct logical_and : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x && __y; } + }; + + /// One of the @link logical_functors Boolean operations functors@endlink. + template + struct logical_or : public binary_function<_Tp, _Tp, bool> + { + bool + operator()(const _Tp& __x, const _Tp& __y) const + { return __x || __y; } + }; + + /// One of the @link logical_functors Boolean operations functors@endlink. + template + struct logical_not : public unary_function<_Tp, bool> + { + bool + operator()(const _Tp& __x) const + { return !__x; } + }; + /** @} */ + + // _GLIBCXX_RESOLVE_LIB_DEFECTS + // DR 660. Missing Bitwise Operations. + template + struct bit_and : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x & __y; } + }; + + template + struct bit_or : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x | __y; } + }; + + template + struct bit_xor : public binary_function<_Tp, _Tp, _Tp> + { + _Tp + operator()(const _Tp& __x, const _Tp& __y) const + { return __x ^ __y; } + }; + + // 20.3.5 negators + /** @defgroup negators Negators + * @ingroup functors + * + * The functions @c not1 and @c not2 each take a predicate functor + * and return an instance of @c unary_negate or + * @c binary_negate, respectively. These classes are functors whose + * @c operator() performs the stored predicate function and then returns + * the negation of the result. + * + * For example, given a vector of integers and a trivial predicate, + * \code + * struct IntGreaterThanThree + * : public std::unary_function + * { + * bool operator() (int x) { return x > 3; } + * }; + * + * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); + * \endcode + * The call to @c find_if will locate the first index (i) of @c v for which + * "!(v[i] > 3)" is true. + * + * The not1/unary_negate combination works on predicates taking a single + * argument. The not2/binary_negate combination works on predicates which + * take two arguments. + * + * @{ + */ + /// One of the @link negators negation functors@endlink. + template + class unary_negate + : public unary_function + { + protected: + _Predicate _M_pred; + + public: + explicit + unary_negate(const _Predicate& __x) : _M_pred(__x) { } + + bool + operator()(const typename _Predicate::argument_type& __x) const + { return !_M_pred(__x); } + }; + + /// One of the @link negators negation functors@endlink. + template + inline unary_negate<_Predicate> + not1(const _Predicate& __pred) + { return unary_negate<_Predicate>(__pred); } + + /// One of the @link negators negation functors@endlink. + template + class binary_negate + : public binary_function + { + protected: + _Predicate _M_pred; + + public: + explicit + binary_negate(const _Predicate& __x) : _M_pred(__x) { } + + bool + operator()(const typename _Predicate::first_argument_type& __x, + const typename _Predicate::second_argument_type& __y) const + { return !_M_pred(__x, __y); } + }; + + /// One of the @link negators negation functors@endlink. + template + inline binary_negate<_Predicate> + not2(const _Predicate& __pred) + { return binary_negate<_Predicate>(__pred); } + /** @} */ + + // 20.3.7 adaptors pointers functions + /** @defgroup pointer_adaptors Adaptors for pointers to functions + * @ingroup functors + * + * The advantage of function objects over pointers to functions is that + * the objects in the standard library declare nested typedefs describing + * their argument and result types with uniform names (e.g., @c result_type + * from the base classes @c unary_function and @c binary_function). + * Sometimes those typedefs are required, not just optional. + * + * Adaptors are provided to turn pointers to unary (single-argument) and + * binary (double-argument) functions into function objects. The + * long-winded functor @c pointer_to_unary_function is constructed with a + * function pointer @c f, and its @c operator() called with argument @c x + * returns @c f(x). The functor @c pointer_to_binary_function does the same + * thing, but with a double-argument @c f and @c operator(). + * + * The function @c ptr_fun takes a pointer-to-function @c f and constructs + * an instance of the appropriate functor. + * + * @{ + */ + /// One of the @link pointer_adaptors adaptors for function pointers@endlink. + template + class pointer_to_unary_function : public unary_function<_Arg, _Result> + { + protected: + _Result (*_M_ptr)(_Arg); + + public: + pointer_to_unary_function() { } + + explicit + pointer_to_unary_function(_Result (*__x)(_Arg)) + : _M_ptr(__x) { } + + _Result + operator()(_Arg __x) const + { return _M_ptr(__x); } + }; + + /// One of the @link pointer_adaptors adaptors for function pointers@endlink. + template + inline pointer_to_unary_function<_Arg, _Result> + ptr_fun(_Result (*__x)(_Arg)) + { return pointer_to_unary_function<_Arg, _Result>(__x); } + + /// One of the @link pointer_adaptors adaptors for function pointers@endlink. + template + class pointer_to_binary_function + : public binary_function<_Arg1, _Arg2, _Result> + { + protected: + _Result (*_M_ptr)(_Arg1, _Arg2); + + public: + pointer_to_binary_function() { } + + explicit + pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) + : _M_ptr(__x) { } + + _Result + operator()(_Arg1 __x, _Arg2 __y) const + { return _M_ptr(__x, __y); } + }; + + /// One of the @link pointer_adaptors adaptors for function pointers@endlink. + template + inline pointer_to_binary_function<_Arg1, _Arg2, _Result> + ptr_fun(_Result (*__x)(_Arg1, _Arg2)) + { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); } + /** @} */ + + template + struct _Identity : public unary_function<_Tp,_Tp> + { + _Tp& + operator()(_Tp& __x) const + { return __x; } + + const _Tp& + operator()(const _Tp& __x) const + { return __x; } + }; + + template + struct _Select1st : public unary_function<_Pair, + typename _Pair::first_type> + { + typename _Pair::first_type& + operator()(_Pair& __x) const + { return __x.first; } + + const typename _Pair::first_type& + operator()(const _Pair& __x) const + { return __x.first; } + }; + + template + struct _Select2nd : public unary_function<_Pair, + typename _Pair::second_type> + { + typename _Pair::second_type& + operator()(_Pair& __x) const + { return __x.second; } + + const typename _Pair::second_type& + operator()(const _Pair& __x) const + { return __x.second; } + }; + + // 20.3.8 adaptors pointers members + /** @defgroup memory_adaptors Adaptors for pointers to members + * @ingroup functors + * + * There are a total of 8 = 2^3 function objects in this family. + * (1) Member functions taking no arguments vs member functions taking + * one argument. + * (2) Call through pointer vs call through reference. + * (3) Const vs non-const member function. + * + * All of this complexity is in the function objects themselves. You can + * ignore it by using the helper function mem_fun and mem_fun_ref, + * which create whichever type of adaptor is appropriate. + * + * @{ + */ + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class mem_fun_t : public unary_function<_Tp*, _Ret> + { + public: + explicit + mem_fun_t(_Ret (_Tp::*__pf)()) + : _M_f(__pf) { } + + _Ret + operator()(_Tp* __p) const + { return (__p->*_M_f)(); } + + private: + _Ret (_Tp::*_M_f)(); + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class const_mem_fun_t : public unary_function + { + public: + explicit + const_mem_fun_t(_Ret (_Tp::*__pf)() const) + : _M_f(__pf) { } + + _Ret + operator()(const _Tp* __p) const + { return (__p->*_M_f)(); } + + private: + _Ret (_Tp::*_M_f)() const; + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class mem_fun_ref_t : public unary_function<_Tp, _Ret> + { + public: + explicit + mem_fun_ref_t(_Ret (_Tp::*__pf)()) + : _M_f(__pf) { } + + _Ret + operator()(_Tp& __r) const + { return (__r.*_M_f)(); } + + private: + _Ret (_Tp::*_M_f)(); + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class const_mem_fun_ref_t : public unary_function<_Tp, _Ret> + { + public: + explicit + const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) + : _M_f(__pf) { } + + _Ret + operator()(const _Tp& __r) const + { return (__r.*_M_f)(); } + + private: + _Ret (_Tp::*_M_f)() const; + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret> + { + public: + explicit + mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) + : _M_f(__pf) { } + + _Ret + operator()(_Tp* __p, _Arg __x) const + { return (__p->*_M_f)(__x); } + + private: + _Ret (_Tp::*_M_f)(_Arg); + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class const_mem_fun1_t : public binary_function + { + public: + explicit + const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) + : _M_f(__pf) { } + + _Ret + operator()(const _Tp* __p, _Arg __x) const + { return (__p->*_M_f)(__x); } + + private: + _Ret (_Tp::*_M_f)(_Arg) const; + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> + { + public: + explicit + mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) + : _M_f(__pf) { } + + _Ret + operator()(_Tp& __r, _Arg __x) const + { return (__r.*_M_f)(__x); } + + private: + _Ret (_Tp::*_M_f)(_Arg); + }; + + /// One of the @link memory_adaptors adaptors for member + /// pointers@endlink. + template + class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> + { + public: + explicit + const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) + : _M_f(__pf) { } + + _Ret + operator()(const _Tp& __r, _Arg __x) const + { return (__r.*_M_f)(__x); } + + private: + _Ret (_Tp::*_M_f)(_Arg) const; + }; + + // Mem_fun adaptor helper functions. There are only two: + // mem_fun and mem_fun_ref. + template + inline mem_fun_t<_Ret, _Tp> + mem_fun(_Ret (_Tp::*__f)()) + { return mem_fun_t<_Ret, _Tp>(__f); } + + template + inline const_mem_fun_t<_Ret, _Tp> + mem_fun(_Ret (_Tp::*__f)() const) + { return const_mem_fun_t<_Ret, _Tp>(__f); } + + template + inline mem_fun_ref_t<_Ret, _Tp> + mem_fun_ref(_Ret (_Tp::*__f)()) + { return mem_fun_ref_t<_Ret, _Tp>(__f); } + + template + inline const_mem_fun_ref_t<_Ret, _Tp> + mem_fun_ref(_Ret (_Tp::*__f)() const) + { return const_mem_fun_ref_t<_Ret, _Tp>(__f); } + + template + inline mem_fun1_t<_Ret, _Tp, _Arg> + mem_fun(_Ret (_Tp::*__f)(_Arg)) + { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); } + + template + inline const_mem_fun1_t<_Ret, _Tp, _Arg> + mem_fun(_Ret (_Tp::*__f)(_Arg) const) + { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); } + + template + inline mem_fun1_ref_t<_Ret, _Tp, _Arg> + mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) + { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } + + template + inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg> + mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) + { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } + + /** @} */ + +_GLIBCXX_END_NAMESPACE + +#if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_DEPRECATED +# include #endif -}; - -/// One of the @link s20_3_6_binder binder functors@endlink. -template -inline binder1st<_Operation> -bind1st(const _Operation& __fn, const _Tp& __x) -{ - typedef typename _Operation::first_argument_type _Arg1_type; - return binder1st<_Operation>(__fn, _Arg1_type(__x)); -} - -/// One of the @link s20_3_6_binder binder functors@endlink. -template -class binder2nd - : public unary_function { -protected: - _Operation op; - typename _Operation::second_argument_type value; -public: - binder2nd(const _Operation& __x, - const typename _Operation::second_argument_type& __y) - : op(__x), value(__y) {} - typename _Operation::result_type - operator()(const typename _Operation::first_argument_type& __x) const { - return op(__x, value); - } -#ifdef _GLIBCPP_RESOLVE_LIB_DEFECTS - //109. Missing binders for non-const sequence elements - typename _Operation::result_type - operator()(typename _Operation::first_argument_type& __x) const { - return op(__x, value); - } -#endif -}; - -/// One of the @link s20_3_6_binder binder functors@endlink. -template -inline binder2nd<_Operation> -bind2nd(const _Operation& __fn, const _Tp& __x) -{ - typedef typename _Operation::second_argument_type _Arg2_type; - return binder2nd<_Operation>(__fn, _Arg2_type(__x)); -} -/** @} */ - -// 20.3.7 adaptors pointers functions -/** @defgroup s20_3_7_adaptors Adaptors for pointers to functions - * The advantage of function objects over pointers to functions is that - * the objects in the standard library declare nested typedefs describing - * their argument and result types with uniform names (e.g., @c result_type - * from the base classes @c unary_function and @c binary_function). - * Sometimes those typedefs are required, not just optional. - * - * Adaptors are provided to turn pointers to unary (single-argument) and - * binary (double-argument) functions into function objects. The long-winded - * functor @c pointer_to_unary_function is constructed with a function - * pointer @c f, and its @c operator() called with argument @c x returns - * @c f(x). The functor @c pointer_to_binary_function does the same thing, - * but with a double-argument @c f and @c operator(). - * - * The function @c ptr_fun takes a pointer-to-function @c f and constructs - * an instance of the appropriate functor. - * - * @{ -*/ -/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink. -template -class pointer_to_unary_function : public unary_function<_Arg, _Result> { -protected: - _Result (*_M_ptr)(_Arg); -public: - pointer_to_unary_function() {} - explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {} - _Result operator()(_Arg __x) const { return _M_ptr(__x); } -}; - -/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink. -template -inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) -{ - return pointer_to_unary_function<_Arg, _Result>(__x); -} - -/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink. -template -class pointer_to_binary_function : - public binary_function<_Arg1,_Arg2,_Result> { -protected: - _Result (*_M_ptr)(_Arg1, _Arg2); -public: - pointer_to_binary_function() {} - explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) - : _M_ptr(__x) {} - _Result operator()(_Arg1 __x, _Arg2 __y) const { - return _M_ptr(__x, __y); - } -}; - -/// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink. -template -inline pointer_to_binary_function<_Arg1,_Arg2,_Result> -ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { - return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x); -} -/** @} */ - -template -struct _Identity : public unary_function<_Tp,_Tp> { - _Tp& operator()(_Tp& __x) const { return __x; } - const _Tp& operator()(const _Tp& __x) const { return __x; } -}; - -template -struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { - typename _Pair::first_type& operator()(_Pair& __x) const { - return __x.first; - } - const typename _Pair::first_type& operator()(const _Pair& __x) const { - return __x.first; - } -}; - -template -struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> -{ - typename _Pair::second_type& operator()(_Pair& __x) const { - return __x.second; - } - const typename _Pair::second_type& operator()(const _Pair& __x) const { - return __x.second; - } -}; - -// 20.3.8 adaptors pointers members -/** @defgroup s20_3_8_memadaptors Adaptors for pointers to members - * There are a total of 16 = 2^4 function objects in this family. - * (1) Member functions taking no arguments vs member functions taking - * one argument. - * (2) Call through pointer vs call through reference. - * (3) Member function with void return type vs member function with - * non-void return type. - * (4) Const vs non-const member function. - * - * Note that choice (3) is nothing more than a workaround: according - * to the draft, compilers should handle void and non-void the same way. - * This feature is not yet widely implemented, though. You can only use - * member functions returning void if your compiler supports partial - * specialization. - * - * All of this complexity is in the function objects themselves. You can - * ignore it by using the helper function mem_fun and mem_fun_ref, - * which create whichever type of adaptor is appropriate. - * - * @{ -*/ -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun_t : public unary_function<_Tp*,_Ret> { -public: - explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {} - _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } -private: - _Ret (_Tp::*_M_f)(); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun_t : public unary_function { -public: - explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {} - _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } -private: - _Ret (_Tp::*_M_f)() const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun_ref_t : public unary_function<_Tp,_Ret> { -public: - explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {} - _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } -private: - _Ret (_Tp::*_M_f)(); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> { -public: - explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {} - _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } -private: - _Ret (_Tp::*_M_f)() const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> { -public: - explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} - _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } -private: - _Ret (_Tp::*_M_f)(_Arg); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun1_t : public binary_function { -public: - explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} - _Ret operator()(const _Tp* __p, _Arg __x) const - { return (__p->*_M_f)(__x); } -private: - _Ret (_Tp::*_M_f)(_Arg) const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> { -public: - explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} - _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } -private: - _Ret (_Tp::*_M_f)(_Arg); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> { -public: - explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} - _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } -private: - _Ret (_Tp::*_M_f)(_Arg) const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun_t : public unary_function<_Tp*,void> { -public: - explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {} - void operator()(_Tp* __p) const { (__p->*_M_f)(); } -private: - void (_Tp::*_M_f)(); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun_t : public unary_function { -public: - explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {} - void operator()(const _Tp* __p) const { (__p->*_M_f)(); } -private: - void (_Tp::*_M_f)() const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun_ref_t : public unary_function<_Tp,void> { -public: - explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {} - void operator()(_Tp& __r) const { (__r.*_M_f)(); } -private: - void (_Tp::*_M_f)(); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun_ref_t : public unary_function<_Tp,void> { -public: - explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {} - void operator()(const _Tp& __r) const { (__r.*_M_f)(); } -private: - void (_Tp::*_M_f)() const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun1_t : public binary_function<_Tp*,_Arg,void> { -public: - explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} - void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); } -private: - void (_Tp::*_M_f)(_Arg); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun1_t - : public binary_function { -public: - explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} - void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); } -private: - void (_Tp::*_M_f)(_Arg) const; -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class mem_fun1_ref_t - : public binary_function<_Tp,_Arg,void> { -public: - explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {} - void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); } -private: - void (_Tp::*_M_f)(_Arg); -}; - -/// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink. -template -class const_mem_fun1_ref_t - : public binary_function<_Tp,_Arg,void> { -public: - explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {} - void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); } -private: - void (_Tp::*_M_f)(_Arg) const; -}; - - -// Mem_fun adaptor helper functions. There are only two: -// mem_fun and mem_fun_ref. - -template -inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)()) - { return mem_fun_t<_Ret,_Tp>(__f); } - -template -inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const) - { return const_mem_fun_t<_Ret,_Tp>(__f); } - -template -inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)()) - { return mem_fun_ref_t<_Ret,_Tp>(__f); } - -template -inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) - { return const_mem_fun_ref_t<_Ret,_Tp>(__f); } - -template -inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) - { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); } - -template -inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) - { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); } - -template -inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) - { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } - -template -inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg> -mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) - { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); } - -/** @} */ - -} // namespace std - -#endif /* __GLIBCPP_INTERNAL_FUNCTION_H */ - -// Local Variables: -// mode:C++ -// End: + +#endif /* _STL_FUNCTION_H */