]> oss.titaniummirror.com Git - msp430-binutils.git/blobdiff - gold/object.cc
Merge commit 'upstream/2.20'
[msp430-binutils.git] / gold / object.cc
diff --git a/gold/object.cc b/gold/object.cc
new file mode 100644 (file)
index 0000000..e9826b0
--- /dev/null
@@ -0,0 +1,2460 @@
+// object.cc -- support for an object file for linking in gold
+
+// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
+#include "gold.h"
+
+#include <cerrno>
+#include <cstring>
+#include <cstdarg>
+#include "demangle.h"
+#include "libiberty.h"
+
+#include "gc.h"
+#include "target-select.h"
+#include "dwarf_reader.h"
+#include "layout.h"
+#include "output.h"
+#include "symtab.h"
+#include "cref.h"
+#include "reloc.h"
+#include "object.h"
+#include "dynobj.h"
+#include "plugin.h"
+
+namespace gold
+{
+
+// Class Xindex.
+
+// Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
+// section and read it in.  SYMTAB_SHNDX is the index of the symbol
+// table we care about.
+
+template<int size, bool big_endian>
+void
+Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
+{
+  if (!this->symtab_xindex_.empty())
+    return;
+
+  gold_assert(symtab_shndx != 0);
+
+  // Look through the sections in reverse order, on the theory that it
+  // is more likely to be near the end than the beginning.
+  unsigned int i = object->shnum();
+  while (i > 0)
+    {
+      --i;
+      if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
+         && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
+       {
+         this->read_symtab_xindex<size, big_endian>(object, i, NULL);
+         return;
+       }
+    }
+
+  object->error(_("missing SHT_SYMTAB_SHNDX section"));
+}
+
+// Read in the symtab_xindex_ array, given the section index of the
+// SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
+// section headers.
+
+template<int size, bool big_endian>
+void
+Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
+                          const unsigned char* pshdrs)
+{
+  section_size_type bytecount;
+  const unsigned char* contents;
+  if (pshdrs == NULL)
+    contents = object->section_contents(xindex_shndx, &bytecount, false);
+  else
+    {
+      const unsigned char* p = (pshdrs
+                               + (xindex_shndx
+                                  * elfcpp::Elf_sizes<size>::shdr_size));
+      typename elfcpp::Shdr<size, big_endian> shdr(p);
+      bytecount = convert_to_section_size_type(shdr.get_sh_size());
+      contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
+    }
+
+  gold_assert(this->symtab_xindex_.empty());
+  this->symtab_xindex_.reserve(bytecount / 4);
+  for (section_size_type i = 0; i < bytecount; i += 4)
+    {
+      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
+      // We preadjust the section indexes we save.
+      this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
+    }
+}
+
+// Symbol symndx has a section of SHN_XINDEX; return the real section
+// index.
+
+unsigned int
+Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
+{
+  if (symndx >= this->symtab_xindex_.size())
+    {
+      object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
+                   symndx);
+      return elfcpp::SHN_UNDEF;
+    }
+  unsigned int shndx = this->symtab_xindex_[symndx];
+  if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
+    {
+      object->error(_("extended index for symbol %u out of range: %u"),
+                   symndx, shndx);
+      return elfcpp::SHN_UNDEF;
+    }
+  return shndx;
+}
+
+// Class Object.
+
+// Report an error for this object file.  This is used by the
+// elfcpp::Elf_file interface, and also called by the Object code
+// itself.
+
+void
+Object::error(const char* format, ...) const
+{
+  va_list args;
+  va_start(args, format);
+  char* buf = NULL;
+  if (vasprintf(&buf, format, args) < 0)
+    gold_nomem();
+  va_end(args);
+  gold_error(_("%s: %s"), this->name().c_str(), buf);
+  free(buf);
+}
+
+// Return a view of the contents of a section.
+
+const unsigned char*
+Object::section_contents(unsigned int shndx, section_size_type* plen,
+                        bool cache)
+{
+  Location loc(this->do_section_contents(shndx));
+  *plen = convert_to_section_size_type(loc.data_size);
+  if (*plen == 0)
+    {
+      static const unsigned char empty[1] = { '\0' };
+      return empty;
+    }
+  return this->get_view(loc.file_offset, *plen, true, cache);
+}
+
+// Read the section data into SD.  This is code common to Sized_relobj
+// and Sized_dynobj, so we put it into Object.
+
+template<int size, bool big_endian>
+void
+Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
+                         Read_symbols_data* sd)
+{
+  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+
+  // Read the section headers.
+  const off_t shoff = elf_file->shoff();
+  const unsigned int shnum = this->shnum();
+  sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
+                                              true, true);
+
+  // Read the section names.
+  const unsigned char* pshdrs = sd->section_headers->data();
+  const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
+  typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
+
+  if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
+    this->error(_("section name section has wrong type: %u"),
+               static_cast<unsigned int>(shdrnames.get_sh_type()));
+
+  sd->section_names_size =
+    convert_to_section_size_type(shdrnames.get_sh_size());
+  sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
+                                            sd->section_names_size, false,
+                                            false);
+}
+
+// If NAME is the name of a special .gnu.warning section, arrange for
+// the warning to be issued.  SHNDX is the section index.  Return
+// whether it is a warning section.
+
+bool
+Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
+                                  Symbol_table* symtab)
+{
+  const char warn_prefix[] = ".gnu.warning.";
+  const int warn_prefix_len = sizeof warn_prefix - 1;
+  if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
+    {
+      // Read the section contents to get the warning text.  It would
+      // be nicer if we only did this if we have to actually issue a
+      // warning.  Unfortunately, warnings are issued as we relocate
+      // sections.  That means that we can not lock the object then,
+      // as we might try to issue the same warning multiple times
+      // simultaneously.
+      section_size_type len;
+      const unsigned char* contents = this->section_contents(shndx, &len,
+                                                            false);
+      if (len == 0)
+       {
+         const char* warning = name + warn_prefix_len;
+         contents = reinterpret_cast<const unsigned char*>(warning);
+         len = strlen(warning);
+       }
+      std::string warning(reinterpret_cast<const char*>(contents), len);
+      symtab->add_warning(name + warn_prefix_len, this, warning);
+      return true;
+    }
+  return false;
+}
+
+// If NAME is the name of the special section which indicates that
+// this object was compiled with -fstack-split, mark it accordingly.
+
+bool
+Object::handle_split_stack_section(const char* name)
+{
+  if (strcmp(name, ".note.GNU-split-stack") == 0)
+    {
+      this->uses_split_stack_ = true;
+      return true;
+    }
+  if (strcmp(name, ".note.GNU-no-split-stack") == 0)
+    {
+      this->has_no_split_stack_ = true;
+      return true;
+    }
+  return false;
+}
+
+// Class Relobj
+
+// To copy the symbols data read from the file to a local data structure.
+// This function is called from do_layout only while doing garbage 
+// collection.
+
+void
+Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
+                          unsigned int section_header_size)
+{
+  gc_sd->section_headers_data = 
+         new unsigned char[(section_header_size)];
+  memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
+         section_header_size);
+  gc_sd->section_names_data = 
+         new unsigned char[sd->section_names_size];
+  memcpy(gc_sd->section_names_data, sd->section_names->data(),
+         sd->section_names_size);
+  gc_sd->section_names_size = sd->section_names_size;
+  if (sd->symbols != NULL)
+    {
+      gc_sd->symbols_data = 
+             new unsigned char[sd->symbols_size];
+      memcpy(gc_sd->symbols_data, sd->symbols->data(),
+            sd->symbols_size);
+    }
+  else
+    {
+      gc_sd->symbols_data = NULL;
+    }
+  gc_sd->symbols_size = sd->symbols_size;
+  gc_sd->external_symbols_offset = sd->external_symbols_offset;
+  if (sd->symbol_names != NULL)
+    {
+      gc_sd->symbol_names_data =
+             new unsigned char[sd->symbol_names_size];
+      memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
+            sd->symbol_names_size);
+    }
+  else
+    {
+      gc_sd->symbol_names_data = NULL;
+    }
+  gc_sd->symbol_names_size = sd->symbol_names_size;
+}
+
+// This function determines if a particular section name must be included
+// in the link.  This is used during garbage collection to determine the
+// roots of the worklist.
+
+bool
+Relobj::is_section_name_included(const char* name)
+{
+  if (is_prefix_of(".ctors", name) 
+      || is_prefix_of(".dtors", name) 
+      || is_prefix_of(".note", name) 
+      || is_prefix_of(".init", name) 
+      || is_prefix_of(".fini", name) 
+      || is_prefix_of(".gcc_except_table", name) 
+      || is_prefix_of(".jcr", name) 
+      || is_prefix_of(".preinit_array", name) 
+      || (is_prefix_of(".text", name) 
+          && strstr(name, "personality")) 
+      || (is_prefix_of(".data", name) 
+          &&  strstr(name, "personality")) 
+      || (is_prefix_of(".gnu.linkonce.d", name) && 
+            strstr(name, "personality")))
+    {
+      return true; 
+    }
+  return false;
+}
+
+// Class Sized_relobj.
+
+template<int size, bool big_endian>
+Sized_relobj<size, big_endian>::Sized_relobj(
+    const std::string& name,
+    Input_file* input_file,
+    off_t offset,
+    const elfcpp::Ehdr<size, big_endian>& ehdr)
+  : Relobj(name, input_file, offset),
+    elf_file_(this, ehdr),
+    symtab_shndx_(-1U),
+    local_symbol_count_(0),
+    output_local_symbol_count_(0),
+    output_local_dynsym_count_(0),
+    symbols_(),
+    defined_count_(0),
+    local_symbol_offset_(0),
+    local_dynsym_offset_(0),
+    local_values_(),
+    local_got_offsets_(),
+    kept_comdat_sections_(),
+    has_eh_frame_(false),
+    discarded_eh_frame_shndx_(-1U)
+{
+}
+
+template<int size, bool big_endian>
+Sized_relobj<size, big_endian>::~Sized_relobj()
+{
+}
+
+// Set up an object file based on the file header.  This sets up the
+// section information.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_setup()
+{
+  const unsigned int shnum = this->elf_file_.shnum();
+  this->set_shnum(shnum);
+}
+
+// Find the SHT_SYMTAB section, given the section headers.  The ELF
+// standard says that maybe in the future there can be more than one
+// SHT_SYMTAB section.  Until somebody figures out how that could
+// work, we assume there is only one.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
+{
+  const unsigned int shnum = this->shnum();
+  this->symtab_shndx_ = 0;
+  if (shnum > 0)
+    {
+      // Look through the sections in reverse order, since gas tends
+      // to put the symbol table at the end.
+      const unsigned char* p = pshdrs + shnum * This::shdr_size;
+      unsigned int i = shnum;
+      unsigned int xindex_shndx = 0;
+      unsigned int xindex_link = 0;
+      while (i > 0)
+       {
+         --i;
+         p -= This::shdr_size;
+         typename This::Shdr shdr(p);
+         if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
+           {
+             this->symtab_shndx_ = i;
+             if (xindex_shndx > 0 && xindex_link == i)
+               {
+                 Xindex* xindex =
+                   new Xindex(this->elf_file_.large_shndx_offset());
+                 xindex->read_symtab_xindex<size, big_endian>(this,
+                                                              xindex_shndx,
+                                                              pshdrs);
+                 this->set_xindex(xindex);
+               }
+             break;
+           }
+
+         // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
+         // one.  This will work if it follows the SHT_SYMTAB
+         // section.
+         if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
+           {
+             xindex_shndx = i;
+             xindex_link = this->adjust_shndx(shdr.get_sh_link());
+           }
+       }
+    }
+}
+
+// Return the Xindex structure to use for object with lots of
+// sections.
+
+template<int size, bool big_endian>
+Xindex*
+Sized_relobj<size, big_endian>::do_initialize_xindex()
+{
+  gold_assert(this->symtab_shndx_ != -1U);
+  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
+  xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
+  return xindex;
+}
+
+// Return whether SHDR has the right type and flags to be a GNU
+// .eh_frame section.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj<size, big_endian>::check_eh_frame_flags(
+    const elfcpp::Shdr<size, big_endian>* shdr) const
+{
+  return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
+         && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
+}
+
+// Return whether there is a GNU .eh_frame section, given the section
+// headers and the section names.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj<size, big_endian>::find_eh_frame(
+    const unsigned char* pshdrs,
+    const char* names,
+    section_size_type names_size) const
+{
+  const unsigned int shnum = this->shnum();
+  const unsigned char* p = pshdrs + This::shdr_size;
+  for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
+    {
+      typename This::Shdr shdr(p);
+      if (this->check_eh_frame_flags(&shdr))
+       {
+         if (shdr.get_sh_name() >= names_size)
+           {
+             this->error(_("bad section name offset for section %u: %lu"),
+                         i, static_cast<unsigned long>(shdr.get_sh_name()));
+             continue;
+           }
+
+         const char* name = names + shdr.get_sh_name();
+         if (strcmp(name, ".eh_frame") == 0)
+           return true;
+       }
+    }
+  return false;
+}
+
+// Read the sections and symbols from an object file.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+  this->read_section_data(&this->elf_file_, sd);
+
+  const unsigned char* const pshdrs = sd->section_headers->data();
+
+  this->find_symtab(pshdrs);
+
+  const unsigned char* namesu = sd->section_names->data();
+  const char* names = reinterpret_cast<const char*>(namesu);
+  if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
+    {
+      if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
+        this->has_eh_frame_ = true;
+    }
+
+  sd->symbols = NULL;
+  sd->symbols_size = 0;
+  sd->external_symbols_offset = 0;
+  sd->symbol_names = NULL;
+  sd->symbol_names_size = 0;
+
+  if (this->symtab_shndx_ == 0)
+    {
+      // No symbol table.  Weird but legal.
+      return;
+    }
+
+  // Get the symbol table section header.
+  typename This::Shdr symtabshdr(pshdrs
+                                + this->symtab_shndx_ * This::shdr_size);
+  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+  // If this object has a .eh_frame section, we need all the symbols.
+  // Otherwise we only need the external symbols.  While it would be
+  // simpler to just always read all the symbols, I've seen object
+  // files with well over 2000 local symbols, which for a 64-bit
+  // object file format is over 5 pages that we don't need to read
+  // now.
+
+  const int sym_size = This::sym_size;
+  const unsigned int loccount = symtabshdr.get_sh_info();
+  this->local_symbol_count_ = loccount;
+  this->local_values_.resize(loccount);
+  section_offset_type locsize = loccount * sym_size;
+  off_t dataoff = symtabshdr.get_sh_offset();
+  section_size_type datasize =
+    convert_to_section_size_type(symtabshdr.get_sh_size());
+  off_t extoff = dataoff + locsize;
+  section_size_type extsize = datasize - locsize;
+
+  off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
+  section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
+
+  if (readsize == 0)
+    {
+      // No external symbols.  Also weird but also legal.
+      return;
+    }
+
+  File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
+
+  // Read the section header for the symbol names.
+  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
+  if (strtab_shndx >= this->shnum())
+    {
+      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
+      return;
+    }
+  typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
+  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
+    {
+      this->error(_("symbol table name section has wrong type: %u"),
+                 static_cast<unsigned int>(strtabshdr.get_sh_type()));
+      return;
+    }
+
+  // Read the symbol names.
+  File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
+                                              strtabshdr.get_sh_size(),
+                                              false, true);
+
+  sd->symbols = fvsymtab;
+  sd->symbols_size = readsize;
+  sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
+  sd->symbol_names = fvstrtab;
+  sd->symbol_names_size =
+    convert_to_section_size_type(strtabshdr.get_sh_size());
+}
+
+// Return the section index of symbol SYM.  Set *VALUE to its value in
+// the object file.  Set *IS_ORDINARY if this is an ordinary section
+// index.  not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
+// Note that for a symbol which is not defined in this object file,
+// this will set *VALUE to 0 and return SHN_UNDEF; it will not return
+// the final value of the symbol in the link.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
+                                                        Address* value,
+                                                        bool* is_ordinary)
+{
+  section_size_type symbols_size;
+  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
+                                                       &symbols_size,
+                                                       false);
+
+  const size_t count = symbols_size / This::sym_size;
+  gold_assert(sym < count);
+
+  elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
+  *value = elfsym.get_st_value();
+
+  return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
+}
+
+// Return whether to include a section group in the link.  LAYOUT is
+// used to keep track of which section groups we have already seen.
+// INDEX is the index of the section group and SHDR is the section
+// header.  If we do not want to include this group, we set bits in
+// OMIT for each section which should be discarded.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj<size, big_endian>::include_section_group(
+    Symbol_table* symtab,
+    Layout* layout,
+    unsigned int index,
+    const char* name,
+    const unsigned char* shdrs,
+    const char* section_names,
+    section_size_type section_names_size,
+    std::vector<bool>* omit)
+{
+  // Read the section contents.
+  typename This::Shdr shdr(shdrs + index * This::shdr_size);
+  const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
+                                            shdr.get_sh_size(), true, false);
+  const elfcpp::Elf_Word* pword =
+    reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
+
+  // The first word contains flags.  We only care about COMDAT section
+  // groups.  Other section groups are always included in the link
+  // just like ordinary sections.
+  elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
+
+  // Look up the group signature, which is the name of a symbol.  This
+  // is a lot of effort to go to to read a string.  Why didn't they
+  // just have the group signature point into the string table, rather
+  // than indirect through a symbol?
+
+  // Get the appropriate symbol table header (this will normally be
+  // the single SHT_SYMTAB section, but in principle it need not be).
+  const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
+  typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
+
+  // Read the symbol table entry.
+  unsigned int symndx = shdr.get_sh_info();
+  if (symndx >= symshdr.get_sh_size() / This::sym_size)
+    {
+      this->error(_("section group %u info %u out of range"),
+                 index, symndx);
+      return false;
+    }
+  off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
+  const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
+                                            false);
+  elfcpp::Sym<size, big_endian> sym(psym);
+
+  // Read the symbol table names.
+  section_size_type symnamelen;
+  const unsigned char* psymnamesu;
+  psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
+                                     &symnamelen, true);
+  const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
+
+  // Get the section group signature.
+  if (sym.get_st_name() >= symnamelen)
+    {
+      this->error(_("symbol %u name offset %u out of range"),
+                 symndx, sym.get_st_name());
+      return false;
+    }
+
+  std::string signature(psymnames + sym.get_st_name());
+
+  // It seems that some versions of gas will create a section group
+  // associated with a section symbol, and then fail to give a name to
+  // the section symbol.  In such a case, use the name of the section.
+  if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
+    {
+      bool is_ordinary;
+      unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
+                                                     sym.get_st_shndx(),
+                                                     &is_ordinary);
+      if (!is_ordinary || sym_shndx >= this->shnum())
+       {
+         this->error(_("symbol %u invalid section index %u"),
+                     symndx, sym_shndx);
+         return false;
+       }
+      typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
+      if (member_shdr.get_sh_name() < section_names_size)
+        signature = section_names + member_shdr.get_sh_name();
+    }
+
+  // Record this section group in the layout, and see whether we've already
+  // seen one with the same signature.
+  bool include_group;
+  bool is_comdat;
+  Kept_section* kept_section = NULL;
+
+  if ((flags & elfcpp::GRP_COMDAT) == 0)
+    {
+      include_group = true;
+      is_comdat = false;
+    }
+  else
+    {
+      include_group = layout->find_or_add_kept_section(signature,
+                                                      this, index, true,
+                                                      true, &kept_section);
+      is_comdat = true;
+    }
+
+  size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
+
+  std::vector<unsigned int> shndxes;
+  bool relocate_group = include_group && parameters->options().relocatable();
+  if (relocate_group)
+    shndxes.reserve(count - 1);
+
+  for (size_t i = 1; i < count; ++i)
+    {
+      elfcpp::Elf_Word shndx =
+       this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
+
+      if (relocate_group)
+       shndxes.push_back(shndx);
+
+      if (shndx >= this->shnum())
+       {
+         this->error(_("section %u in section group %u out of range"),
+                     shndx, index);
+         continue;
+       }
+
+      // Check for an earlier section number, since we're going to get
+      // it wrong--we may have already decided to include the section.
+      if (shndx < index)
+        this->error(_("invalid section group %u refers to earlier section %u"),
+                    index, shndx);
+
+      // Get the name of the member section.
+      typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
+      if (member_shdr.get_sh_name() >= section_names_size)
+        {
+          // This is an error, but it will be diagnosed eventually
+          // in do_layout, so we don't need to do anything here but
+          // ignore it.
+          continue;
+        }
+      std::string mname(section_names + member_shdr.get_sh_name());
+
+      if (include_group)
+       {
+         if (is_comdat)
+           kept_section->add_comdat_section(mname, shndx,
+                                            member_shdr.get_sh_size());
+       }
+      else
+        {
+          (*omit)[shndx] = true;
+
+         if (is_comdat)
+            {
+             Relobj* kept_object = kept_section->object();
+             if (kept_section->is_comdat())
+               {
+                 // Find the corresponding kept section, and store
+                 // that info in the discarded section table.
+                 unsigned int kept_shndx;
+                 uint64_t kept_size;
+                 if (kept_section->find_comdat_section(mname, &kept_shndx,
+                                                       &kept_size))
+                   {
+                     // We don't keep a mapping for this section if
+                     // it has a different size.  The mapping is only
+                     // used for relocation processing, and we don't
+                     // want to treat the sections as similar if the
+                     // sizes are different.  Checking the section
+                     // size is the approach used by the GNU linker.
+                     if (kept_size == member_shdr.get_sh_size())
+                       this->set_kept_comdat_section(shndx, kept_object,
+                                                     kept_shndx);
+                   }
+               }
+             else
+               {
+                 // The existing section is a linkonce section.  Add
+                 // a mapping if there is exactly one section in the
+                 // group (which is true when COUNT == 2) and if it
+                 // is the same size.
+                 if (count == 2
+                     && (kept_section->linkonce_size()
+                         == member_shdr.get_sh_size()))
+                   this->set_kept_comdat_section(shndx, kept_object,
+                                                 kept_section->shndx());
+               }
+            }
+        }
+    }
+
+  if (relocate_group)
+    layout->layout_group(symtab, this, index, name, signature.c_str(),
+                        shdr, flags, &shndxes);
+
+  return include_group;
+}
+
+// Whether to include a linkonce section in the link.  NAME is the
+// name of the section and SHDR is the section header.
+
+// Linkonce sections are a GNU extension implemented in the original
+// GNU linker before section groups were defined.  The semantics are
+// that we only include one linkonce section with a given name.  The
+// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
+// where T is the type of section and SYMNAME is the name of a symbol.
+// In an attempt to make linkonce sections interact well with section
+// groups, we try to identify SYMNAME and use it like a section group
+// signature.  We want to block section groups with that signature,
+// but not other linkonce sections with that signature.  We also use
+// the full name of the linkonce section as a normal section group
+// signature.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj<size, big_endian>::include_linkonce_section(
+    Layout* layout,
+    unsigned int index,
+    const char* name,
+    const elfcpp::Shdr<size, big_endian>& shdr)
+{
+  typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
+  // In general the symbol name we want will be the string following
+  // the last '.'.  However, we have to handle the case of
+  // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
+  // some versions of gcc.  So we use a heuristic: if the name starts
+  // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
+  // we look for the last '.'.  We can't always simply skip
+  // ".gnu.linkonce.X", because we have to deal with cases like
+  // ".gnu.linkonce.d.rel.ro.local".
+  const char* const linkonce_t = ".gnu.linkonce.t.";
+  const char* symname;
+  if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
+    symname = name + strlen(linkonce_t);
+  else
+    symname = strrchr(name, '.') + 1;
+  std::string sig1(symname);
+  std::string sig2(name);
+  Kept_section* kept1;
+  Kept_section* kept2;
+  bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
+                                                  false, &kept1);
+  bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
+                                                  true, &kept2);
+
+  if (!include2)
+    {
+      // We are not including this section because we already saw the
+      // name of the section as a signature.  This normally implies
+      // that the kept section is another linkonce section.  If it is
+      // the same size, record it as the section which corresponds to
+      // this one.
+      if (kept2->object() != NULL
+         && !kept2->is_comdat()
+         && kept2->linkonce_size() == sh_size)
+       this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
+    }
+  else if (!include1)
+    {
+      // The section is being discarded on the basis of its symbol
+      // name.  This means that the corresponding kept section was
+      // part of a comdat group, and it will be difficult to identify
+      // the specific section within that group that corresponds to
+      // this linkonce section.  We'll handle the simple case where
+      // the group has only one member section.  Otherwise, it's not
+      // worth the effort.
+      unsigned int kept_shndx;
+      uint64_t kept_size;
+      if (kept1->object() != NULL
+         && kept1->is_comdat()
+         && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
+         && kept_size == sh_size)
+       this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
+    }
+  else
+    {
+      kept1->set_linkonce_size(sh_size);
+      kept2->set_linkonce_size(sh_size);
+    }
+
+  return include1 && include2;
+}
+
+// Layout an input section.
+
+template<int size, bool big_endian>
+inline void
+Sized_relobj<size, big_endian>::layout_section(Layout* layout,
+                                               unsigned int shndx,
+                                               const char* name,
+                                               typename This::Shdr& shdr,
+                                               unsigned int reloc_shndx,
+                                               unsigned int reloc_type)
+{
+  off_t offset;
+  Output_section* os = layout->layout(this, shndx, name, shdr,
+                                         reloc_shndx, reloc_type, &offset);
+
+  this->output_sections()[shndx] = os;
+  if (offset == -1)
+    this->section_offsets_[shndx] = invalid_address;
+  else
+    this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
+
+  // If this section requires special handling, and if there are
+  // relocs that apply to it, then we must do the special handling
+  // before we apply the relocs.
+  if (offset == -1 && reloc_shndx != 0)
+    this->set_relocs_must_follow_section_writes();
+}
+
+// Lay out the input sections.  We walk through the sections and check
+// whether they should be included in the link.  If they should, we
+// pass them to the Layout object, which will return an output section
+// and an offset.  
+// During garbage collection (--gc-sections) and identical code folding 
+// (--icf), this function is called twice.  When it is called the first 
+// time, it is for setting up some sections as roots to a work-list for
+// --gc-sections and to do comdat processing.  Actual layout happens the 
+// second time around after all the relevant sections have been determined.  
+// The first time, is_worklist_ready or is_icf_ready is false. It is then 
+// set to true after the garbage collection worklist or identical code 
+// folding is processed and the relevant sections to be kept are 
+// determined.  Then, this function is called again to layout the sections.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
+                                         Layout* layout,
+                                         Read_symbols_data* sd)
+{
+  const unsigned int shnum = this->shnum();
+  bool is_gc_pass_one = ((parameters->options().gc_sections() 
+                          && !symtab->gc()->is_worklist_ready())
+                         || (parameters->options().icf_enabled()
+                             && !symtab->icf()->is_icf_ready()));
+  bool is_gc_pass_two = ((parameters->options().gc_sections() 
+                          && symtab->gc()->is_worklist_ready())
+                         || (parameters->options().icf_enabled()
+                             && symtab->icf()->is_icf_ready()));
+
+  bool is_gc_or_icf = (parameters->options().gc_sections()
+                       || parameters->options().icf_enabled()); 
+
+  // Both is_gc_pass_one and is_gc_pass_two should not be true.
+  gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
+
+  if (shnum == 0)
+    return;
+  Symbols_data* gc_sd = NULL;
+  if (is_gc_pass_one)
+    {
+      // During garbage collection save the symbols data to use it when 
+      // re-entering this function.   
+      gc_sd = new Symbols_data;
+      this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
+      this->set_symbols_data(gc_sd);
+    }
+  else if (is_gc_pass_two)
+    {
+      gc_sd = this->get_symbols_data();
+    }
+
+  const unsigned char* section_headers_data = NULL;
+  section_size_type section_names_size;
+  const unsigned char* symbols_data = NULL;
+  section_size_type symbols_size;
+  section_offset_type external_symbols_offset;
+  const unsigned char* symbol_names_data = NULL;
+  section_size_type symbol_names_size;
+  if (is_gc_or_icf)
+    {
+      section_headers_data = gc_sd->section_headers_data;
+      section_names_size = gc_sd->section_names_size;
+      symbols_data = gc_sd->symbols_data;
+      symbols_size = gc_sd->symbols_size;
+      external_symbols_offset = gc_sd->external_symbols_offset;
+      symbol_names_data = gc_sd->symbol_names_data;
+      symbol_names_size = gc_sd->symbol_names_size;
+    }
+  else
+    {
+      section_headers_data = sd->section_headers->data();
+      section_names_size = sd->section_names_size;
+      if (sd->symbols != NULL)
+        symbols_data = sd->symbols->data();
+      symbols_size = sd->symbols_size;
+      external_symbols_offset = sd->external_symbols_offset;
+      if (sd->symbol_names != NULL)
+        symbol_names_data = sd->symbol_names->data();
+      symbol_names_size = sd->symbol_names_size;
+    }
+
+  // Get the section headers.
+  const unsigned char* shdrs = section_headers_data;
+  const unsigned char* pshdrs;
+
+  // Get the section names.
+  const unsigned char* pnamesu = (is_gc_or_icf) 
+                                 ? gc_sd->section_names_data
+                                 : sd->section_names->data();
+
+  const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+  // If any input files have been claimed by plugins, we need to defer
+  // actual layout until the replacement files have arrived.
+  const bool should_defer_layout =
+      (parameters->options().has_plugins()
+       && parameters->options().plugins()->should_defer_layout());
+  unsigned int num_sections_to_defer = 0;
+
+  // For each section, record the index of the reloc section if any.
+  // Use 0 to mean that there is no reloc section, -1U to mean that
+  // there is more than one.
+  std::vector<unsigned int> reloc_shndx(shnum, 0);
+  std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
+  // Skip the first, dummy, section.
+  pshdrs = shdrs + This::shdr_size;
+  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
+    {
+      typename This::Shdr shdr(pshdrs);
+
+      // Count the number of sections whose layout will be deferred.
+      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
+        ++num_sections_to_defer;
+
+      unsigned int sh_type = shdr.get_sh_type();
+      if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
+       {
+         unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
+         if (target_shndx == 0 || target_shndx >= shnum)
+           {
+             this->error(_("relocation section %u has bad info %u"),
+                         i, target_shndx);
+             continue;
+           }
+
+         if (reloc_shndx[target_shndx] != 0)
+           reloc_shndx[target_shndx] = -1U;
+         else
+           {
+             reloc_shndx[target_shndx] = i;
+             reloc_type[target_shndx] = sh_type;
+           }
+       }
+    }
+
+  Output_sections& out_sections(this->output_sections());
+  std::vector<Address>& out_section_offsets(this->section_offsets_);
+
+  if (!is_gc_pass_two)
+    {
+      out_sections.resize(shnum);
+      out_section_offsets.resize(shnum);
+    }
+
+  // If we are only linking for symbols, then there is nothing else to
+  // do here.
+  if (this->input_file()->just_symbols())
+    {
+      if (!is_gc_pass_two)
+        {
+          delete sd->section_headers;
+          sd->section_headers = NULL;
+          delete sd->section_names;
+          sd->section_names = NULL;
+        }
+      return;
+    }
+
+  if (num_sections_to_defer > 0)
+    {
+      parameters->options().plugins()->add_deferred_layout_object(this);
+      this->deferred_layout_.reserve(num_sections_to_defer);
+    }
+
+  // Whether we've seen a .note.GNU-stack section.
+  bool seen_gnu_stack = false;
+  // The flags of a .note.GNU-stack section.
+  uint64_t gnu_stack_flags = 0;
+
+  // Keep track of which sections to omit.
+  std::vector<bool> omit(shnum, false);
+
+  // Keep track of reloc sections when emitting relocations.
+  const bool relocatable = parameters->options().relocatable();
+  const bool emit_relocs = (relocatable
+                           || parameters->options().emit_relocs());
+  std::vector<unsigned int> reloc_sections;
+
+  // Keep track of .eh_frame sections.
+  std::vector<unsigned int> eh_frame_sections;
+
+  // Skip the first, dummy, section.
+  pshdrs = shdrs + This::shdr_size;
+  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
+    {
+      typename This::Shdr shdr(pshdrs);
+
+      if (shdr.get_sh_name() >= section_names_size)
+       {
+         this->error(_("bad section name offset for section %u: %lu"),
+                     i, static_cast<unsigned long>(shdr.get_sh_name()));
+         return;
+       }
+
+      const char* name = pnames + shdr.get_sh_name();
+
+      if (!is_gc_pass_two)
+        { 
+          if (this->handle_gnu_warning_section(name, i, symtab))
+            { 
+             if (!relocatable)
+               omit[i] = true;
+           }
+
+          // The .note.GNU-stack section is special.  It gives the
+          // protection flags that this object file requires for the stack
+          // in memory.
+          if (strcmp(name, ".note.GNU-stack") == 0)
+            {
+             seen_gnu_stack = true;
+             gnu_stack_flags |= shdr.get_sh_flags();
+             omit[i] = true;
+            }
+
+         // The .note.GNU-split-stack section is also special.  It
+         // indicates that the object was compiled with
+         // -fsplit-stack.
+         if (this->handle_split_stack_section(name))
+           {
+             if (!parameters->options().relocatable()
+                 && !parameters->options().shared())
+               omit[i] = true;
+           }
+
+          bool discard = omit[i];
+          if (!discard)
+            {
+             if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
+               {
+                 if (!this->include_section_group(symtab, layout, i, name, 
+                                                   shdrs, pnames, 
+                                                   section_names_size,
+                                                  &omit))
+                   discard = true;
+               }
+              else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
+                       && Layout::is_linkonce(name))
+               {
+                 if (!this->include_linkonce_section(layout, i, name, shdr))
+                   discard = true;
+               }
+           }
+
+          if (discard)
+            {
+             // Do not include this section in the link.
+             out_sections[i] = NULL;
+              out_section_offsets[i] = invalid_address;
+             continue;
+            }
+        }
+      if (is_gc_pass_one && parameters->options().gc_sections())
+        {
+          if (is_section_name_included(name)
+              || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
+              || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
+            {
+              symtab->gc()->worklist().push(Section_id(this, i)); 
+            }
+        }
+
+      // When doing a relocatable link we are going to copy input
+      // reloc sections into the output.  We only want to copy the
+      // ones associated with sections which are not being discarded.
+      // However, we don't know that yet for all sections.  So save
+      // reloc sections and process them later. Garbage collection is
+      // not triggered when relocatable code is desired.
+      if (emit_relocs
+         && (shdr.get_sh_type() == elfcpp::SHT_REL
+             || shdr.get_sh_type() == elfcpp::SHT_RELA))
+       {
+         reloc_sections.push_back(i);
+         continue;
+       }
+
+      if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
+       continue;
+
+      // The .eh_frame section is special.  It holds exception frame
+      // information that we need to read in order to generate the
+      // exception frame header.  We process these after all the other
+      // sections so that the exception frame reader can reliably
+      // determine which sections are being discarded, and discard the
+      // corresponding information.
+      if (!relocatable
+          && strcmp(name, ".eh_frame") == 0
+          && this->check_eh_frame_flags(&shdr))
+        {
+          if (is_gc_pass_one)
+            {
+              out_sections[i] = reinterpret_cast<Output_section*>(1);
+              out_section_offsets[i] = invalid_address;
+            }
+          else
+            eh_frame_sections.push_back(i);
+          continue;
+        }
+
+      if (is_gc_pass_two && parameters->options().gc_sections())
+        {
+          // This is executed during the second pass of garbage 
+          // collection. do_layout has been called before and some 
+          // sections have been already discarded. Simply ignore 
+          // such sections this time around.
+          if (out_sections[i] == NULL)
+            {
+              gold_assert(out_section_offsets[i] == invalid_address);
+              continue; 
+            }
+          if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
+              && symtab->gc()->is_section_garbage(this, i))
+              {
+                if (parameters->options().print_gc_sections())
+                  gold_info(_("%s: removing unused section from '%s'" 
+                              " in file '%s'"),
+                            program_name, this->section_name(i).c_str(), 
+                            this->name().c_str());
+                out_sections[i] = NULL;
+                out_section_offsets[i] = invalid_address;
+                continue;
+              }
+        }
+
+      if (is_gc_pass_two && parameters->options().icf_enabled())
+        {
+          if (out_sections[i] == NULL)
+            {
+              gold_assert(out_section_offsets[i] == invalid_address);
+              continue;
+            }
+          if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
+              && symtab->icf()->is_section_folded(this, i))
+              {
+                if (parameters->options().print_icf_sections())
+                  {
+                    Section_id folded =
+                                symtab->icf()->get_folded_section(this, i);
+                    Relobj* folded_obj =
+                                reinterpret_cast<Relobj*>(folded.first);
+                    gold_info(_("%s: ICF folding section '%s' in file '%s'"
+                                "into '%s' in file '%s'"),
+                              program_name, this->section_name(i).c_str(),
+                              this->name().c_str(),
+                              folded_obj->section_name(folded.second).c_str(),
+                              folded_obj->name().c_str());
+                  }
+                out_sections[i] = NULL;
+                out_section_offsets[i] = invalid_address;
+                continue;
+              }
+        }
+
+      // Defer layout here if input files are claimed by plugins.  When gc
+      // is turned on this function is called twice.  For the second call
+      // should_defer_layout should be false.
+      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
+        {
+          gold_assert(!is_gc_pass_two);
+          this->deferred_layout_.push_back(Deferred_layout(i, name, 
+                                                           pshdrs,
+                                                           reloc_shndx[i],
+                                                           reloc_type[i]));
+          // Put dummy values here; real values will be supplied by
+          // do_layout_deferred_sections.
+          out_sections[i] = reinterpret_cast<Output_section*>(2);
+          out_section_offsets[i] = invalid_address;
+          continue;
+        }
+
+      // During gc_pass_two if a section that was previously deferred is
+      // found, do not layout the section as layout_deferred_sections will
+      // do it later from gold.cc.
+      if (is_gc_pass_two 
+          && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
+        continue;
+
+      if (is_gc_pass_one)
+        {
+          // This is during garbage collection. The out_sections are 
+          // assigned in the second call to this function. 
+          out_sections[i] = reinterpret_cast<Output_section*>(1);
+          out_section_offsets[i] = invalid_address;
+        }
+      else
+        {
+          // When garbage collection is switched on the actual layout
+          // only happens in the second call.
+          this->layout_section(layout, i, name, shdr, reloc_shndx[i],
+                               reloc_type[i]);
+        }
+    }
+
+  if (!is_gc_pass_one)
+    layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
+
+  // When doing a relocatable link handle the reloc sections at the
+  // end.  Garbage collection  and Identical Code Folding is not 
+  // turned on for relocatable code. 
+  if (emit_relocs)
+    this->size_relocatable_relocs();
+
+  gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
+
+  for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
+       p != reloc_sections.end();
+       ++p)
+    {
+      unsigned int i = *p;
+      const unsigned char* pshdr;
+      pshdr = section_headers_data + i * This::shdr_size;
+      typename This::Shdr shdr(pshdr);
+
+      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
+      if (data_shndx >= shnum)
+       {
+         // We already warned about this above.
+         continue;
+       }
+
+      Output_section* data_section = out_sections[data_shndx];
+      if (data_section == NULL)
+       {
+         out_sections[i] = NULL;
+          out_section_offsets[i] = invalid_address;
+         continue;
+       }
+
+      Relocatable_relocs* rr = new Relocatable_relocs();
+      this->set_relocatable_relocs(i, rr);
+
+      Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
+                                               rr);
+      out_sections[i] = os;
+      out_section_offsets[i] = invalid_address;
+    }
+
+  // Handle the .eh_frame sections at the end.
+  gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
+  for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
+       p != eh_frame_sections.end();
+       ++p)
+    {
+      gold_assert(this->has_eh_frame_);
+      gold_assert(external_symbols_offset != 0);
+
+      unsigned int i = *p;
+      const unsigned char *pshdr;
+      pshdr = section_headers_data + i * This::shdr_size;
+      typename This::Shdr shdr(pshdr);
+
+      off_t offset;
+      Output_section* os = layout->layout_eh_frame(this,
+                                                  symbols_data,
+                                                  symbols_size,
+                                                  symbol_names_data,
+                                                  symbol_names_size,
+                                                  i, shdr,
+                                                  reloc_shndx[i],
+                                                  reloc_type[i],
+                                                  &offset);
+      out_sections[i] = os;
+      if (offset == -1)
+       {
+         // An object can contain at most one section holding exception
+         // frame information.
+         gold_assert(this->discarded_eh_frame_shndx_ == -1U);
+         this->discarded_eh_frame_shndx_ = i;
+         out_section_offsets[i] = invalid_address;
+       }
+      else
+        out_section_offsets[i] = convert_types<Address, off_t>(offset);
+
+      // If this section requires special handling, and if there are
+      // relocs that apply to it, then we must do the special handling
+      // before we apply the relocs.
+      if (offset == -1 && reloc_shndx[i] != 0)
+       this->set_relocs_must_follow_section_writes();
+    }
+
+  if (is_gc_pass_two)
+    {
+      delete[] gc_sd->section_headers_data;
+      delete[] gc_sd->section_names_data;
+      delete[] gc_sd->symbols_data;
+      delete[] gc_sd->symbol_names_data;
+      this->set_symbols_data(NULL);
+    }
+  else
+    {
+      delete sd->section_headers;
+      sd->section_headers = NULL;
+      delete sd->section_names;
+      sd->section_names = NULL;
+    }
+}
+
+// Layout sections whose layout was deferred while waiting for
+// input files from a plugin.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
+{
+  typename std::vector<Deferred_layout>::iterator deferred;
+
+  for (deferred = this->deferred_layout_.begin();
+       deferred != this->deferred_layout_.end();
+       ++deferred)
+    {
+      typename This::Shdr shdr(deferred->shdr_data_);
+      this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
+                           shdr, deferred->reloc_shndx_, deferred->reloc_type_);
+    }
+
+  this->deferred_layout_.clear();
+}
+
+// Add the symbols to the symbol table.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
+                                              Read_symbols_data* sd,
+                                              Layout*)
+{
+  if (sd->symbols == NULL)
+    {
+      gold_assert(sd->symbol_names == NULL);
+      return;
+    }
+
+  const int sym_size = This::sym_size;
+  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
+                    / sym_size);
+  if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
+    {
+      this->error(_("size of symbols is not multiple of symbol size"));
+      return;
+    }
+
+  this->symbols_.resize(symcount);
+
+  const char* sym_names =
+    reinterpret_cast<const char*>(sd->symbol_names->data());
+  symtab->add_from_relobj(this,
+                         sd->symbols->data() + sd->external_symbols_offset,
+                         symcount, this->local_symbol_count_,
+                         sym_names, sd->symbol_names_size,
+                         &this->symbols_,
+                         &this->defined_count_);
+
+  delete sd->symbols;
+  sd->symbols = NULL;
+  delete sd->symbol_names;
+  sd->symbol_names = NULL;
+}
+
+// First pass over the local symbols.  Here we add their names to
+// *POOL and *DYNPOOL, and we store the symbol value in
+// THIS->LOCAL_VALUES_.  This function is always called from a
+// singleton thread.  This is followed by a call to
+// finalize_local_symbols.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
+                                                      Stringpool* dynpool)
+{
+  gold_assert(this->symtab_shndx_ != -1U);
+  if (this->symtab_shndx_ == 0)
+    {
+      // This object has no symbols.  Weird but legal.
+      return;
+    }
+
+  // Read the symbol table section header.
+  const unsigned int symtab_shndx = this->symtab_shndx_;
+  typename This::Shdr symtabshdr(this,
+                                this->elf_file_.section_header(symtab_shndx));
+  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+  // Read the local symbols.
+  const int sym_size = This::sym_size;
+  const unsigned int loccount = this->local_symbol_count_;
+  gold_assert(loccount == symtabshdr.get_sh_info());
+  off_t locsize = loccount * sym_size;
+  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+                                             locsize, true, true);
+
+  // Read the symbol names.
+  const unsigned int strtab_shndx =
+    this->adjust_shndx(symtabshdr.get_sh_link());
+  section_size_type strtab_size;
+  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
+                                                       &strtab_size,
+                                                       true);
+  const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+  // Loop over the local symbols.
+
+  const Output_sections& out_sections(this->output_sections());
+  unsigned int shnum = this->shnum();
+  unsigned int count = 0;
+  unsigned int dyncount = 0;
+  // Skip the first, dummy, symbol.
+  psyms += sym_size;
+  bool discard_locals = parameters->options().discard_locals();
+  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
+    {
+      elfcpp::Sym<size, big_endian> sym(psyms);
+
+      Symbol_value<size>& lv(this->local_values_[i]);
+
+      bool is_ordinary;
+      unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
+                                                 &is_ordinary);
+      lv.set_input_shndx(shndx, is_ordinary);
+
+      if (sym.get_st_type() == elfcpp::STT_SECTION)
+       lv.set_is_section_symbol();
+      else if (sym.get_st_type() == elfcpp::STT_TLS)
+       lv.set_is_tls_symbol();
+
+      // Save the input symbol value for use in do_finalize_local_symbols().
+      lv.set_input_value(sym.get_st_value());
+
+      // Decide whether this symbol should go into the output file.
+
+      if ((shndx < shnum && out_sections[shndx] == NULL)
+         || (shndx == this->discarded_eh_frame_shndx_))
+        {
+         lv.set_no_output_symtab_entry();
+          gold_assert(!lv.needs_output_dynsym_entry());
+          continue;
+        }
+
+      if (sym.get_st_type() == elfcpp::STT_SECTION)
+       {
+         lv.set_no_output_symtab_entry();
+          gold_assert(!lv.needs_output_dynsym_entry());
+         continue;
+       }
+
+      if (sym.get_st_name() >= strtab_size)
+       {
+         this->error(_("local symbol %u section name out of range: %u >= %u"),
+                     i, sym.get_st_name(),
+                     static_cast<unsigned int>(strtab_size));
+         lv.set_no_output_symtab_entry();
+         continue;
+       }
+
+      // If --discard-locals option is used, discard all temporary local
+      // symbols.  These symbols start with system-specific local label
+      // prefixes, typically .L for ELF system.  We want to be compatible
+      // with GNU ld so here we essentially use the same check in
+      // bfd_is_local_label().  The code is different because we already
+      // know that:
+      //
+      //   - the symbol is local and thus cannot have global or weak binding.
+      //   - the symbol is not a section symbol.
+      //   - the symbol has a name.
+      //
+      // We do not discard a symbol if it needs a dynamic symbol entry.
+      const char* name = pnames + sym.get_st_name();
+      if (discard_locals
+         && sym.get_st_type() != elfcpp::STT_FILE
+         && !lv.needs_output_dynsym_entry()
+         && parameters->target().is_local_label_name(name))
+       {
+         lv.set_no_output_symtab_entry();
+         continue;
+       }
+
+      // Discard the local symbol if -retain_symbols_file is specified
+      // and the local symbol is not in that file.
+      if (!parameters->options().should_retain_symbol(name))
+        {
+          lv.set_no_output_symtab_entry();
+          continue;
+        }
+
+      // Add the symbol to the symbol table string pool.
+      pool->add(name, true, NULL);
+      ++count;
+
+      // If needed, add the symbol to the dynamic symbol table string pool.
+      if (lv.needs_output_dynsym_entry())
+        {
+          dynpool->add(name, true, NULL);
+          ++dyncount;
+        }
+    }
+
+  this->output_local_symbol_count_ = count;
+  this->output_local_dynsym_count_ = dyncount;
+}
+
+// Finalize the local symbols.  Here we set the final value in
+// THIS->LOCAL_VALUES_ and set their output symbol table indexes.
+// This function is always called from a singleton thread.  The actual
+// output of the local symbols will occur in a separate task.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
+                                                         off_t off,
+                                                          Symbol_table* symtab)
+{
+  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
+
+  const unsigned int loccount = this->local_symbol_count_;
+  this->local_symbol_offset_ = off;
+
+  const bool relocatable = parameters->options().relocatable();
+  const Output_sections& out_sections(this->output_sections());
+  const std::vector<Address>& out_offsets(this->section_offsets_);
+  unsigned int shnum = this->shnum();
+
+  for (unsigned int i = 1; i < loccount; ++i)
+    {
+      Symbol_value<size>& lv(this->local_values_[i]);
+
+      bool is_ordinary;
+      unsigned int shndx = lv.input_shndx(&is_ordinary);
+
+      // Set the output symbol value.
+
+      if (!is_ordinary)
+       {
+         if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
+           lv.set_output_value(lv.input_value());
+         else
+           {
+             this->error(_("unknown section index %u for local symbol %u"),
+                         shndx, i);
+             lv.set_output_value(0);
+           }
+       }
+      else
+       {
+         if (shndx >= shnum)
+           {
+             this->error(_("local symbol %u section index %u out of range"),
+                         i, shndx);
+             shndx = 0;
+           }
+
+         Output_section* os = out_sections[shndx];
+          Address secoffset = out_offsets[shndx];
+          if (symtab->is_section_folded(this, shndx))
+            {
+              gold_assert (os == NULL && secoffset == invalid_address);
+              // Get the os of the section it is folded onto.
+              Section_id folded = symtab->icf()->get_folded_section(this,
+                                                                    shndx);
+              gold_assert(folded.first != NULL);
+              Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
+                <Sized_relobj<size, big_endian>*>(folded.first);
+              os = folded_obj->output_section(folded.second);
+              gold_assert(os != NULL);
+              secoffset = folded_obj->get_output_section_offset(folded.second);
+              gold_assert(secoffset != invalid_address);
+            }
+
+         if (os == NULL)
+           {
+              // This local symbol belongs to a section we are discarding.
+              // In some cases when applying relocations later, we will
+              // attempt to match it to the corresponding kept section,
+              // so we leave the input value unchanged here.
+             continue;
+           }
+         else if (secoffset == invalid_address)
+           {
+             uint64_t start;
+
+             // This is a SHF_MERGE section or one which otherwise
+             // requires special handling.
+             if (shndx == this->discarded_eh_frame_shndx_)
+               {
+                 // This local symbol belongs to a discarded .eh_frame
+                 // section.  Just treat it like the case in which
+                 // os == NULL above.
+                 gold_assert(this->has_eh_frame_);
+                 continue;
+               }
+             else if (!lv.is_section_symbol())
+               {
+                 // This is not a section symbol.  We can determine
+                 // the final value now.
+                 lv.set_output_value(os->output_address(this, shndx,
+                                                        lv.input_value()));
+               }
+             else if (!os->find_starting_output_address(this, shndx, &start))
+               {
+                 // This is a section symbol, but apparently not one
+                 // in a merged section.  Just use the start of the
+                 // output section.  This happens with relocatable
+                 // links when the input object has section symbols
+                 // for arbitrary non-merge sections.
+                 lv.set_output_value(os->address());
+               }
+             else
+               {
+                 // We have to consider the addend to determine the
+                 // value to use in a relocation.  START is the start
+                 // of this input section.
+                 Merged_symbol_value<size>* msv =
+                   new Merged_symbol_value<size>(lv.input_value(), start);
+                 lv.set_merged_symbol_value(msv);
+               }
+           }
+          else if (lv.is_tls_symbol())
+           lv.set_output_value(os->tls_offset()
+                               + secoffset
+                               + lv.input_value());
+         else
+           lv.set_output_value((relocatable ? 0 : os->address())
+                               + secoffset
+                               + lv.input_value());
+       }
+
+      if (lv.needs_output_symtab_entry())
+        {
+          lv.set_output_symtab_index(index);
+          ++index;
+        }
+    }
+  return index;
+}
+
+// Set the output dynamic symbol table indexes for the local variables.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
+{
+  const unsigned int loccount = this->local_symbol_count_;
+  for (unsigned int i = 1; i < loccount; ++i)
+    {
+      Symbol_value<size>& lv(this->local_values_[i]);
+      if (lv.needs_output_dynsym_entry())
+        {
+          lv.set_output_dynsym_index(index);
+          ++index;
+        }
+    }
+  return index;
+}
+
+// Set the offset where local dynamic symbol information will be stored.
+// Returns the count of local symbols contributed to the symbol table by
+// this object.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
+{
+  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
+  this->local_dynsym_offset_ = off;
+  return this->output_local_dynsym_count_;
+}
+
+// If Symbols_data is not NULL get the section flags from here otherwise
+// get it from the file.
+
+template<int size, bool big_endian>
+uint64_t
+Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
+{
+  Symbols_data* sd = this->get_symbols_data();
+  if (sd != NULL)
+    {
+      const unsigned char* pshdrs = sd->section_headers_data
+                                    + This::shdr_size * shndx;
+      typename This::Shdr shdr(pshdrs);
+      return shdr.get_sh_flags(); 
+    }
+  // If sd is NULL, read the section header from the file.
+  return this->elf_file_.section_flags(shndx); 
+}
+
+// Get the section's ent size from Symbols_data.  Called by get_section_contents
+// in icf.cc
+
+template<int size, bool big_endian>
+uint64_t
+Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
+{
+  Symbols_data* sd = this->get_symbols_data();
+  gold_assert (sd != NULL);
+
+  const unsigned char* pshdrs = sd->section_headers_data
+                                + This::shdr_size * shndx;
+  typename This::Shdr shdr(pshdrs);
+  return shdr.get_sh_entsize(); 
+}
+
+
+// Write out the local symbols.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::write_local_symbols(
+    Output_file* of,
+    const Stringpool* sympool,
+    const Stringpool* dynpool,
+    Output_symtab_xindex* symtab_xindex,
+    Output_symtab_xindex* dynsym_xindex)
+{
+  const bool strip_all = parameters->options().strip_all();
+  if (strip_all)
+    {
+      if (this->output_local_dynsym_count_ == 0)
+       return;
+      this->output_local_symbol_count_ = 0;
+    }
+
+  gold_assert(this->symtab_shndx_ != -1U);
+  if (this->symtab_shndx_ == 0)
+    {
+      // This object has no symbols.  Weird but legal.
+      return;
+    }
+
+  // Read the symbol table section header.
+  const unsigned int symtab_shndx = this->symtab_shndx_;
+  typename This::Shdr symtabshdr(this,
+                                this->elf_file_.section_header(symtab_shndx));
+  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+  const unsigned int loccount = this->local_symbol_count_;
+  gold_assert(loccount == symtabshdr.get_sh_info());
+
+  // Read the local symbols.
+  const int sym_size = This::sym_size;
+  off_t locsize = loccount * sym_size;
+  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+                                             locsize, true, false);
+
+  // Read the symbol names.
+  const unsigned int strtab_shndx =
+    this->adjust_shndx(symtabshdr.get_sh_link());
+  section_size_type strtab_size;
+  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
+                                                       &strtab_size,
+                                                       false);
+  const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+  // Get views into the output file for the portions of the symbol table
+  // and the dynamic symbol table that we will be writing.
+  off_t output_size = this->output_local_symbol_count_ * sym_size;
+  unsigned char* oview = NULL;
+  if (output_size > 0)
+    oview = of->get_output_view(this->local_symbol_offset_, output_size);
+
+  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
+  unsigned char* dyn_oview = NULL;
+  if (dyn_output_size > 0)
+    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
+                                    dyn_output_size);
+
+  const Output_sections out_sections(this->output_sections());
+
+  gold_assert(this->local_values_.size() == loccount);
+
+  unsigned char* ov = oview;
+  unsigned char* dyn_ov = dyn_oview;
+  psyms += sym_size;
+  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
+    {
+      elfcpp::Sym<size, big_endian> isym(psyms);
+
+      Symbol_value<size>& lv(this->local_values_[i]);
+
+      bool is_ordinary;
+      unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
+                                                    &is_ordinary);
+      if (is_ordinary)
+       {
+         gold_assert(st_shndx < out_sections.size());
+         if (out_sections[st_shndx] == NULL)
+           continue;
+         st_shndx = out_sections[st_shndx]->out_shndx();
+         if (st_shndx >= elfcpp::SHN_LORESERVE)
+           {
+             if (lv.needs_output_symtab_entry() && !strip_all)
+               symtab_xindex->add(lv.output_symtab_index(), st_shndx);
+             if (lv.needs_output_dynsym_entry())
+               dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
+             st_shndx = elfcpp::SHN_XINDEX;
+           }
+       }
+
+      // Write the symbol to the output symbol table.
+      if (!strip_all && lv.needs_output_symtab_entry())
+        {
+          elfcpp::Sym_write<size, big_endian> osym(ov);
+
+          gold_assert(isym.get_st_name() < strtab_size);
+          const char* name = pnames + isym.get_st_name();
+          osym.put_st_name(sympool->get_offset(name));
+          osym.put_st_value(this->local_values_[i].value(this, 0));
+          osym.put_st_size(isym.get_st_size());
+          osym.put_st_info(isym.get_st_info());
+          osym.put_st_other(isym.get_st_other());
+          osym.put_st_shndx(st_shndx);
+
+          ov += sym_size;
+        }
+
+      // Write the symbol to the output dynamic symbol table.
+      if (lv.needs_output_dynsym_entry())
+        {
+          gold_assert(dyn_ov < dyn_oview + dyn_output_size);
+          elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
+
+          gold_assert(isym.get_st_name() < strtab_size);
+          const char* name = pnames + isym.get_st_name();
+          osym.put_st_name(dynpool->get_offset(name));
+          osym.put_st_value(this->local_values_[i].value(this, 0));
+          osym.put_st_size(isym.get_st_size());
+          osym.put_st_info(isym.get_st_info());
+          osym.put_st_other(isym.get_st_other());
+          osym.put_st_shndx(st_shndx);
+
+          dyn_ov += sym_size;
+        }
+    }
+
+
+  if (output_size > 0)
+    {
+      gold_assert(ov - oview == output_size);
+      of->write_output_view(this->local_symbol_offset_, output_size, oview);
+    }
+
+  if (dyn_output_size > 0)
+    {
+      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
+      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
+                            dyn_oview);
+    }
+}
+
+// Set *INFO to symbolic information about the offset OFFSET in the
+// section SHNDX.  Return true if we found something, false if we
+// found nothing.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj<size, big_endian>::get_symbol_location_info(
+    unsigned int shndx,
+    off_t offset,
+    Symbol_location_info* info)
+{
+  if (this->symtab_shndx_ == 0)
+    return false;
+
+  section_size_type symbols_size;
+  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
+                                                       &symbols_size,
+                                                       false);
+
+  unsigned int symbol_names_shndx =
+    this->adjust_shndx(this->section_link(this->symtab_shndx_));
+  section_size_type names_size;
+  const unsigned char* symbol_names_u =
+    this->section_contents(symbol_names_shndx, &names_size, false);
+  const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
+
+  const int sym_size = This::sym_size;
+  const size_t count = symbols_size / sym_size;
+
+  const unsigned char* p = symbols;
+  for (size_t i = 0; i < count; ++i, p += sym_size)
+    {
+      elfcpp::Sym<size, big_endian> sym(p);
+
+      if (sym.get_st_type() == elfcpp::STT_FILE)
+       {
+         if (sym.get_st_name() >= names_size)
+           info->source_file = "(invalid)";
+         else
+           info->source_file = symbol_names + sym.get_st_name();
+         continue;
+       }
+
+      bool is_ordinary;
+      unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
+                                                    &is_ordinary);
+      if (is_ordinary
+         && st_shndx == shndx
+         && static_cast<off_t>(sym.get_st_value()) <= offset
+         && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
+             > offset))
+        {
+          if (sym.get_st_name() > names_size)
+           info->enclosing_symbol_name = "(invalid)";
+         else
+            {
+              info->enclosing_symbol_name = symbol_names + sym.get_st_name();
+              if (parameters->options().do_demangle())
+                {
+                  char* demangled_name = cplus_demangle(
+                      info->enclosing_symbol_name.c_str(),
+                      DMGL_ANSI | DMGL_PARAMS);
+                  if (demangled_name != NULL)
+                    {
+                      info->enclosing_symbol_name.assign(demangled_name);
+                      free(demangled_name);
+                    }
+                }
+            }
+         return true;
+        }
+    }
+
+  return false;
+}
+
+// Look for a kept section corresponding to the given discarded section,
+// and return its output address.  This is used only for relocations in
+// debugging sections.  If we can't find the kept section, return 0.
+
+template<int size, bool big_endian>
+typename Sized_relobj<size, big_endian>::Address
+Sized_relobj<size, big_endian>::map_to_kept_section(
+    unsigned int shndx,
+    bool* found) const
+{
+  Relobj* kept_object;
+  unsigned int kept_shndx;
+  if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
+    {
+      Sized_relobj<size, big_endian>* kept_relobj =
+       static_cast<Sized_relobj<size, big_endian>*>(kept_object);
+      Output_section* os = kept_relobj->output_section(kept_shndx);
+      Address offset = kept_relobj->get_output_section_offset(kept_shndx);
+      if (os != NULL && offset != invalid_address)
+       {
+         *found = true;
+         return os->address() + offset;
+       }
+    }
+  *found = false;
+  return 0;
+}
+
+// Get symbol counts.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
+    const Symbol_table*,
+    size_t* defined,
+    size_t* used) const
+{
+  *defined = this->defined_count_;
+  size_t count = 0;
+  for (Symbols::const_iterator p = this->symbols_.begin();
+       p != this->symbols_.end();
+       ++p)
+    if (*p != NULL
+       && (*p)->source() == Symbol::FROM_OBJECT
+       && (*p)->object() == this
+       && (*p)->is_defined())
+      ++count;
+  *used = count;
+}
+
+// Input_objects methods.
+
+// Add a regular relocatable object to the list.  Return false if this
+// object should be ignored.
+
+bool
+Input_objects::add_object(Object* obj)
+{
+  // Print the filename if the -t/--trace option is selected.
+  if (parameters->options().trace())
+    gold_info("%s", obj->name().c_str());
+
+  if (!obj->is_dynamic())
+    this->relobj_list_.push_back(static_cast<Relobj*>(obj));
+  else
+    {
+      // See if this is a duplicate SONAME.
+      Dynobj* dynobj = static_cast<Dynobj*>(obj);
+      const char* soname = dynobj->soname();
+
+      std::pair<Unordered_set<std::string>::iterator, bool> ins =
+       this->sonames_.insert(soname);
+      if (!ins.second)
+       {
+         // We have already seen a dynamic object with this soname.
+         return false;
+       }
+
+      this->dynobj_list_.push_back(dynobj);
+    }
+
+  // Add this object to the cross-referencer if requested.
+  if (parameters->options().user_set_print_symbol_counts())
+    {
+      if (this->cref_ == NULL)
+       this->cref_ = new Cref();
+      this->cref_->add_object(obj);
+    }
+
+  return true;
+}
+
+// For each dynamic object, record whether we've seen all of its
+// explicit dependencies.
+
+void
+Input_objects::check_dynamic_dependencies() const
+{
+  for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
+       p != this->dynobj_list_.end();
+       ++p)
+    {
+      const Dynobj::Needed& needed((*p)->needed());
+      bool found_all = true;
+      for (Dynobj::Needed::const_iterator pneeded = needed.begin();
+          pneeded != needed.end();
+          ++pneeded)
+       {
+         if (this->sonames_.find(*pneeded) == this->sonames_.end())
+           {
+             found_all = false;
+             break;
+           }
+       }
+      (*p)->set_has_unknown_needed_entries(!found_all);
+    }
+}
+
+// Start processing an archive.
+
+void
+Input_objects::archive_start(Archive* archive)
+{
+  if (parameters->options().user_set_print_symbol_counts())
+    {
+      if (this->cref_ == NULL)
+       this->cref_ = new Cref();
+      this->cref_->add_archive_start(archive);
+    }
+}
+
+// Stop processing an archive.
+
+void
+Input_objects::archive_stop(Archive* archive)
+{
+  if (parameters->options().user_set_print_symbol_counts())
+    this->cref_->add_archive_stop(archive);
+}
+
+// Print symbol counts
+
+void
+Input_objects::print_symbol_counts(const Symbol_table* symtab) const
+{
+  if (parameters->options().user_set_print_symbol_counts()
+      && this->cref_ != NULL)
+    this->cref_->print_symbol_counts(symtab);
+}
+
+// Relocate_info methods.
+
+// Return a string describing the location of a relocation.  This is
+// only used in error messages.
+
+template<int size, bool big_endian>
+std::string
+Relocate_info<size, big_endian>::location(size_t, off_t offset) const
+{
+  // See if we can get line-number information from debugging sections.
+  std::string filename;
+  std::string file_and_lineno;   // Better than filename-only, if available.
+
+  Sized_dwarf_line_info<size, big_endian> line_info(this->object);
+  // This will be "" if we failed to parse the debug info for any reason.
+  file_and_lineno = line_info.addr2line(this->data_shndx, offset);
+
+  std::string ret(this->object->name());
+  ret += ':';
+  Symbol_location_info info;
+  if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
+    {
+      ret += " in function ";
+      ret += info.enclosing_symbol_name;
+      ret += ":";
+      filename = info.source_file;
+    }
+
+  if (!file_and_lineno.empty())
+    ret += file_and_lineno;
+  else
+    {
+      if (!filename.empty())
+        ret += filename;
+      ret += "(";
+      ret += this->object->section_name(this->data_shndx);
+      char buf[100];
+      // Offsets into sections have to be positive.
+      snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
+      ret += buf;
+      ret += ")";
+    }
+  return ret;
+}
+
+} // End namespace gold.
+
+namespace
+{
+
+using namespace gold;
+
+// Read an ELF file with the header and return the appropriate
+// instance of Object.
+
+template<int size, bool big_endian>
+Object*
+make_elf_sized_object(const std::string& name, Input_file* input_file,
+                     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
+                     bool* punconfigured)
+{
+  Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
+                                ehdr.get_e_ident()[elfcpp::EI_OSABI],
+                                ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
+  if (target == NULL)
+    gold_fatal(_("%s: unsupported ELF machine number %d"),
+              name.c_str(), ehdr.get_e_machine());
+
+  if (!parameters->target_valid())
+    set_parameters_target(target);
+  else if (target != &parameters->target())
+    {
+      if (punconfigured != NULL)
+       *punconfigured = true;
+      else
+       gold_error(_("%s: incompatible target"), name.c_str());
+      return NULL;
+    }
+
+  return target->make_elf_object<size, big_endian>(name, input_file, offset,
+                                                  ehdr);
+}
+
+} // End anonymous namespace.
+
+namespace gold
+{
+
+// Return whether INPUT_FILE is an ELF object.
+
+bool
+is_elf_object(Input_file* input_file, off_t offset,
+             const unsigned char** start, int *read_size)
+{
+  off_t filesize = input_file->file().filesize();
+  int want = elfcpp::Elf_recognizer::max_header_size;
+  if (filesize - offset < want)
+    want = filesize - offset;
+
+  const unsigned char* p = input_file->file().get_view(offset, 0, want,
+                                                      true, false);
+  *start = p;
+  *read_size = want;
+
+  return elfcpp::Elf_recognizer::is_elf_file(p, want);
+}
+
+// Read an ELF file and return the appropriate instance of Object.
+
+Object*
+make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
+               const unsigned char* p, section_offset_type bytes,
+               bool* punconfigured)
+{
+  if (punconfigured != NULL)
+    *punconfigured = false;
+
+  std::string error;
+  bool big_endian;
+  int size;
+  if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
+                                               &big_endian, &error))
+    {
+      gold_error(_("%s: %s"), name.c_str(), error.c_str());
+      return NULL;
+    }
+
+  if (size == 32)
+    {
+      if (big_endian)
+       {
+#ifdef HAVE_TARGET_32_BIG
+         elfcpp::Ehdr<32, true> ehdr(p);
+         return make_elf_sized_object<32, true>(name, input_file,
+                                                offset, ehdr, punconfigured);
+#else
+         if (punconfigured != NULL)
+           *punconfigured = true;
+         else
+           gold_error(_("%s: not configured to support "
+                        "32-bit big-endian object"),
+                      name.c_str());
+         return NULL;
+#endif
+       }
+      else
+       {
+#ifdef HAVE_TARGET_32_LITTLE
+         elfcpp::Ehdr<32, false> ehdr(p);
+         return make_elf_sized_object<32, false>(name, input_file,
+                                                 offset, ehdr, punconfigured);
+#else
+         if (punconfigured != NULL)
+           *punconfigured = true;
+         else
+           gold_error(_("%s: not configured to support "
+                        "32-bit little-endian object"),
+                      name.c_str());
+         return NULL;
+#endif
+       }
+    }
+  else if (size == 64)
+    {
+      if (big_endian)
+       {
+#ifdef HAVE_TARGET_64_BIG
+         elfcpp::Ehdr<64, true> ehdr(p);
+         return make_elf_sized_object<64, true>(name, input_file,
+                                                offset, ehdr, punconfigured);
+#else
+         if (punconfigured != NULL)
+           *punconfigured = true;
+         else
+           gold_error(_("%s: not configured to support "
+                        "64-bit big-endian object"),
+                      name.c_str());
+         return NULL;
+#endif
+       }
+      else
+       {
+#ifdef HAVE_TARGET_64_LITTLE
+         elfcpp::Ehdr<64, false> ehdr(p);
+         return make_elf_sized_object<64, false>(name, input_file,
+                                                 offset, ehdr, punconfigured);
+#else
+         if (punconfigured != NULL)
+           *punconfigured = true;
+         else
+           gold_error(_("%s: not configured to support "
+                        "64-bit little-endian object"),
+                      name.c_str());
+         return NULL;
+#endif
+       }
+    }
+  else
+    gold_unreachable();
+}
+
+// Instantiate the templates we need.
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+void
+Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
+                                    Read_symbols_data*);
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+void
+Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
+                                   Read_symbols_data*);
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+void
+Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
+                                    Read_symbols_data*);
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+void
+Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
+                                   Read_symbols_data*);
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Sized_relobj<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Sized_relobj<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Sized_relobj<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Sized_relobj<64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+struct Relocate_info<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+struct Relocate_info<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+struct Relocate_info<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+struct Relocate_info<64, true>;
+#endif
+
+} // End namespace gold.