]> oss.titaniummirror.com Git - msp430-binutils.git/blobdiff - gold/output.cc
Merge commit 'upstream/2.20'
[msp430-binutils.git] / gold / output.cc
diff --git a/gold/output.cc b/gold/output.cc
new file mode 100644 (file)
index 0000000..e2d7585
--- /dev/null
@@ -0,0 +1,4363 @@
+// output.cc -- manage the output file for gold
+
+// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
+#include "gold.h"
+
+#include <cstdlib>
+#include <cstring>
+#include <cerrno>
+#include <fcntl.h>
+#include <unistd.h>
+#include <sys/mman.h>
+#include <sys/stat.h>
+#include <algorithm>
+#include "libiberty.h"
+
+#include "parameters.h"
+#include "object.h"
+#include "symtab.h"
+#include "reloc.h"
+#include "merge.h"
+#include "descriptors.h"
+#include "output.h"
+
+// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
+#ifndef MAP_ANONYMOUS
+# define MAP_ANONYMOUS  MAP_ANON
+#endif
+
+#ifndef HAVE_POSIX_FALLOCATE
+// A dummy, non general, version of posix_fallocate.  Here we just set
+// the file size and hope that there is enough disk space.  FIXME: We
+// could allocate disk space by walking block by block and writing a
+// zero byte into each block.
+static int
+posix_fallocate(int o, off_t offset, off_t len)
+{
+  return ftruncate(o, offset + len);
+}
+#endif // !defined(HAVE_POSIX_FALLOCATE)
+
+namespace gold
+{
+
+// Output_data variables.
+
+bool Output_data::allocated_sizes_are_fixed;
+
+// Output_data methods.
+
+Output_data::~Output_data()
+{
+}
+
+// Return the default alignment for the target size.
+
+uint64_t
+Output_data::default_alignment()
+{
+  return Output_data::default_alignment_for_size(
+      parameters->target().get_size());
+}
+
+// Return the default alignment for a size--32 or 64.
+
+uint64_t
+Output_data::default_alignment_for_size(int size)
+{
+  if (size == 32)
+    return 4;
+  else if (size == 64)
+    return 8;
+  else
+    gold_unreachable();
+}
+
+// Output_section_header methods.  This currently assumes that the
+// segment and section lists are complete at construction time.
+
+Output_section_headers::Output_section_headers(
+    const Layout* layout,
+    const Layout::Segment_list* segment_list,
+    const Layout::Section_list* section_list,
+    const Layout::Section_list* unattached_section_list,
+    const Stringpool* secnamepool,
+    const Output_section* shstrtab_section)
+  : layout_(layout),
+    segment_list_(segment_list),
+    section_list_(section_list),
+    unattached_section_list_(unattached_section_list),
+    secnamepool_(secnamepool),
+    shstrtab_section_(shstrtab_section)
+{
+}
+
+// Compute the current data size.
+
+off_t
+Output_section_headers::do_size() const
+{
+  // Count all the sections.  Start with 1 for the null section.
+  off_t count = 1;
+  if (!parameters->options().relocatable())
+    {
+      for (Layout::Segment_list::const_iterator p =
+            this->segment_list_->begin();
+          p != this->segment_list_->end();
+          ++p)
+       if ((*p)->type() == elfcpp::PT_LOAD)
+         count += (*p)->output_section_count();
+    }
+  else
+    {
+      for (Layout::Section_list::const_iterator p =
+            this->section_list_->begin();
+          p != this->section_list_->end();
+          ++p)
+       if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
+         ++count;
+    }
+  count += this->unattached_section_list_->size();
+
+  const int size = parameters->target().get_size();
+  int shdr_size;
+  if (size == 32)
+    shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  else if (size == 64)
+    shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
+  else
+    gold_unreachable();
+
+  return count * shdr_size;
+}
+
+// Write out the section headers.
+
+void
+Output_section_headers::do_write(Output_file* of)
+{
+  switch (parameters->size_and_endianness())
+    {
+#ifdef HAVE_TARGET_32_LITTLE
+    case Parameters::TARGET_32_LITTLE:
+      this->do_sized_write<32, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+    case Parameters::TARGET_32_BIG:
+      this->do_sized_write<32, true>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+    case Parameters::TARGET_64_LITTLE:
+      this->do_sized_write<64, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+    case Parameters::TARGET_64_BIG:
+      this->do_sized_write<64, true>(of);
+      break;
+#endif
+    default:
+      gold_unreachable();
+    }
+}
+
+template<int size, bool big_endian>
+void
+Output_section_headers::do_sized_write(Output_file* of)
+{
+  off_t all_shdrs_size = this->data_size();
+  unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
+
+  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+  unsigned char* v = view;
+
+  {
+    typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
+    oshdr.put_sh_name(0);
+    oshdr.put_sh_type(elfcpp::SHT_NULL);
+    oshdr.put_sh_flags(0);
+    oshdr.put_sh_addr(0);
+    oshdr.put_sh_offset(0);
+
+    size_t section_count = (this->data_size()
+                           / elfcpp::Elf_sizes<size>::shdr_size);
+    if (section_count < elfcpp::SHN_LORESERVE)
+      oshdr.put_sh_size(0);
+    else
+      oshdr.put_sh_size(section_count);
+
+    unsigned int shstrndx = this->shstrtab_section_->out_shndx();
+    if (shstrndx < elfcpp::SHN_LORESERVE)
+      oshdr.put_sh_link(0);
+    else
+      oshdr.put_sh_link(shstrndx);
+
+    oshdr.put_sh_info(0);
+    oshdr.put_sh_addralign(0);
+    oshdr.put_sh_entsize(0);
+  }
+
+  v += shdr_size;
+
+  unsigned int shndx = 1;
+  if (!parameters->options().relocatable())
+    {
+      for (Layout::Segment_list::const_iterator p =
+            this->segment_list_->begin();
+          p != this->segment_list_->end();
+          ++p)
+       v = (*p)->write_section_headers<size, big_endian>(this->layout_,
+                                                         this->secnamepool_,
+                                                         v,
+                                                         &shndx);
+    }
+  else
+    {
+      for (Layout::Section_list::const_iterator p =
+            this->section_list_->begin();
+          p != this->section_list_->end();
+          ++p)
+       {
+         // We do unallocated sections below, except that group
+         // sections have to come first.
+         if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
+             && (*p)->type() != elfcpp::SHT_GROUP)
+           continue;
+         gold_assert(shndx == (*p)->out_shndx());
+         elfcpp::Shdr_write<size, big_endian> oshdr(v);
+         (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
+         v += shdr_size;
+         ++shndx;
+       }
+    }
+
+  for (Layout::Section_list::const_iterator p =
+        this->unattached_section_list_->begin();
+       p != this->unattached_section_list_->end();
+       ++p)
+    {
+      // For a relocatable link, we did unallocated group sections
+      // above, since they have to come first.
+      if ((*p)->type() == elfcpp::SHT_GROUP
+         && parameters->options().relocatable())
+       continue;
+      gold_assert(shndx == (*p)->out_shndx());
+      elfcpp::Shdr_write<size, big_endian> oshdr(v);
+      (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
+      v += shdr_size;
+      ++shndx;
+    }
+
+  of->write_output_view(this->offset(), all_shdrs_size, view);
+}
+
+// Output_segment_header methods.
+
+Output_segment_headers::Output_segment_headers(
+    const Layout::Segment_list& segment_list)
+  : segment_list_(segment_list)
+{
+}
+
+void
+Output_segment_headers::do_write(Output_file* of)
+{
+  switch (parameters->size_and_endianness())
+    {
+#ifdef HAVE_TARGET_32_LITTLE
+    case Parameters::TARGET_32_LITTLE:
+      this->do_sized_write<32, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+    case Parameters::TARGET_32_BIG:
+      this->do_sized_write<32, true>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+    case Parameters::TARGET_64_LITTLE:
+      this->do_sized_write<64, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+    case Parameters::TARGET_64_BIG:
+      this->do_sized_write<64, true>(of);
+      break;
+#endif
+    default:
+      gold_unreachable();
+    }
+}
+
+template<int size, bool big_endian>
+void
+Output_segment_headers::do_sized_write(Output_file* of)
+{
+  const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
+  off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
+  gold_assert(all_phdrs_size == this->data_size());
+  unsigned char* view = of->get_output_view(this->offset(),
+                                           all_phdrs_size);
+  unsigned char* v = view;
+  for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
+       p != this->segment_list_.end();
+       ++p)
+    {
+      elfcpp::Phdr_write<size, big_endian> ophdr(v);
+      (*p)->write_header(&ophdr);
+      v += phdr_size;
+    }
+
+  gold_assert(v - view == all_phdrs_size);
+
+  of->write_output_view(this->offset(), all_phdrs_size, view);
+}
+
+off_t
+Output_segment_headers::do_size() const
+{
+  const int size = parameters->target().get_size();
+  int phdr_size;
+  if (size == 32)
+    phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
+  else if (size == 64)
+    phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
+  else
+    gold_unreachable();
+
+  return this->segment_list_.size() * phdr_size;
+}
+
+// Output_file_header methods.
+
+Output_file_header::Output_file_header(const Target* target,
+                                      const Symbol_table* symtab,
+                                      const Output_segment_headers* osh,
+                                      const char* entry)
+  : target_(target),
+    symtab_(symtab),
+    segment_header_(osh),
+    section_header_(NULL),
+    shstrtab_(NULL),
+    entry_(entry)
+{
+  this->set_data_size(this->do_size());
+}
+
+// Set the section table information for a file header.
+
+void
+Output_file_header::set_section_info(const Output_section_headers* shdrs,
+                                    const Output_section* shstrtab)
+{
+  this->section_header_ = shdrs;
+  this->shstrtab_ = shstrtab;
+}
+
+// Write out the file header.
+
+void
+Output_file_header::do_write(Output_file* of)
+{
+  gold_assert(this->offset() == 0);
+
+  switch (parameters->size_and_endianness())
+    {
+#ifdef HAVE_TARGET_32_LITTLE
+    case Parameters::TARGET_32_LITTLE:
+      this->do_sized_write<32, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+    case Parameters::TARGET_32_BIG:
+      this->do_sized_write<32, true>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+    case Parameters::TARGET_64_LITTLE:
+      this->do_sized_write<64, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+    case Parameters::TARGET_64_BIG:
+      this->do_sized_write<64, true>(of);
+      break;
+#endif
+    default:
+      gold_unreachable();
+    }
+}
+
+// Write out the file header with appropriate size and endianess.
+
+template<int size, bool big_endian>
+void
+Output_file_header::do_sized_write(Output_file* of)
+{
+  gold_assert(this->offset() == 0);
+
+  int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
+  unsigned char* view = of->get_output_view(0, ehdr_size);
+  elfcpp::Ehdr_write<size, big_endian> oehdr(view);
+
+  unsigned char e_ident[elfcpp::EI_NIDENT];
+  memset(e_ident, 0, elfcpp::EI_NIDENT);
+  e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
+  e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
+  e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
+  e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
+  if (size == 32)
+    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
+  else if (size == 64)
+    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
+  else
+    gold_unreachable();
+  e_ident[elfcpp::EI_DATA] = (big_endian
+                             ? elfcpp::ELFDATA2MSB
+                             : elfcpp::ELFDATA2LSB);
+  e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
+  oehdr.put_e_ident(e_ident);
+
+  elfcpp::ET e_type;
+  if (parameters->options().relocatable())
+    e_type = elfcpp::ET_REL;
+  else if (parameters->options().output_is_position_independent())
+    e_type = elfcpp::ET_DYN;
+  else
+    e_type = elfcpp::ET_EXEC;
+  oehdr.put_e_type(e_type);
+
+  oehdr.put_e_machine(this->target_->machine_code());
+  oehdr.put_e_version(elfcpp::EV_CURRENT);
+
+  oehdr.put_e_entry(this->entry<size>());
+
+  if (this->segment_header_ == NULL)
+    oehdr.put_e_phoff(0);
+  else
+    oehdr.put_e_phoff(this->segment_header_->offset());
+
+  oehdr.put_e_shoff(this->section_header_->offset());
+
+  // FIXME: The target needs to set the flags.
+  oehdr.put_e_flags(0);
+
+  oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
+
+  if (this->segment_header_ == NULL)
+    {
+      oehdr.put_e_phentsize(0);
+      oehdr.put_e_phnum(0);
+    }
+  else
+    {
+      oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
+      oehdr.put_e_phnum(this->segment_header_->data_size()
+                       / elfcpp::Elf_sizes<size>::phdr_size);
+    }
+
+  oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
+  size_t section_count = (this->section_header_->data_size()
+                         / elfcpp::Elf_sizes<size>::shdr_size);
+
+  if (section_count < elfcpp::SHN_LORESERVE)
+    oehdr.put_e_shnum(this->section_header_->data_size()
+                     / elfcpp::Elf_sizes<size>::shdr_size);
+  else
+    oehdr.put_e_shnum(0);
+
+  unsigned int shstrndx = this->shstrtab_->out_shndx();
+  if (shstrndx < elfcpp::SHN_LORESERVE)
+    oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
+  else
+    oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
+
+  // Let the target adjust the ELF header, e.g., to set EI_OSABI in
+  // the e_ident field.
+  parameters->target().adjust_elf_header(view, ehdr_size);
+
+  of->write_output_view(0, ehdr_size, view);
+}
+
+// Return the value to use for the entry address.  THIS->ENTRY_ is the
+// symbol specified on the command line, if any.
+
+template<int size>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_file_header::entry()
+{
+  const bool should_issue_warning = (this->entry_ != NULL
+                                    && !parameters->options().relocatable()
+                                     && !parameters->options().shared());
+
+  // FIXME: Need to support target specific entry symbol.
+  const char* entry = this->entry_;
+  if (entry == NULL)
+    entry = "_start";
+
+  Symbol* sym = this->symtab_->lookup(entry);
+
+  typename Sized_symbol<size>::Value_type v;
+  if (sym != NULL)
+    {
+      Sized_symbol<size>* ssym;
+      ssym = this->symtab_->get_sized_symbol<size>(sym);
+      if (!ssym->is_defined() && should_issue_warning)
+       gold_warning("entry symbol '%s' exists but is not defined", entry);
+      v = ssym->value();
+    }
+  else
+    {
+      // We couldn't find the entry symbol.  See if we can parse it as
+      // a number.  This supports, e.g., -e 0x1000.
+      char* endptr;
+      v = strtoull(entry, &endptr, 0);
+      if (*endptr != '\0')
+       {
+         if (should_issue_warning)
+           gold_warning("cannot find entry symbol '%s'", entry);
+         v = 0;
+       }
+    }
+
+  return v;
+}
+
+// Compute the current data size.
+
+off_t
+Output_file_header::do_size() const
+{
+  const int size = parameters->target().get_size();
+  if (size == 32)
+    return elfcpp::Elf_sizes<32>::ehdr_size;
+  else if (size == 64)
+    return elfcpp::Elf_sizes<64>::ehdr_size;
+  else
+    gold_unreachable();
+}
+
+// Output_data_const methods.
+
+void
+Output_data_const::do_write(Output_file* of)
+{
+  of->write(this->offset(), this->data_.data(), this->data_.size());
+}
+
+// Output_data_const_buffer methods.
+
+void
+Output_data_const_buffer::do_write(Output_file* of)
+{
+  of->write(this->offset(), this->p_, this->data_size());
+}
+
+// Output_section_data methods.
+
+// Record the output section, and set the entry size and such.
+
+void
+Output_section_data::set_output_section(Output_section* os)
+{
+  gold_assert(this->output_section_ == NULL);
+  this->output_section_ = os;
+  this->do_adjust_output_section(os);
+}
+
+// Return the section index of the output section.
+
+unsigned int
+Output_section_data::do_out_shndx() const
+{
+  gold_assert(this->output_section_ != NULL);
+  return this->output_section_->out_shndx();
+}
+
+// Set the alignment, which means we may need to update the alignment
+// of the output section.
+
+void
+Output_section_data::set_addralign(uint64_t addralign)
+{
+  this->addralign_ = addralign;
+  if (this->output_section_ != NULL
+      && this->output_section_->addralign() < addralign)
+    this->output_section_->set_addralign(addralign);
+}
+
+// Output_data_strtab methods.
+
+// Set the final data size.
+
+void
+Output_data_strtab::set_final_data_size()
+{
+  this->strtab_->set_string_offsets();
+  this->set_data_size(this->strtab_->get_strtab_size());
+}
+
+// Write out a string table.
+
+void
+Output_data_strtab::do_write(Output_file* of)
+{
+  this->strtab_->write(of, this->offset());
+}
+
+// Output_reloc methods.
+
+// A reloc against a global symbol.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+    Symbol* gsym,
+    unsigned int type,
+    Output_data* od,
+    Address address,
+    bool is_relative)
+  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
+    is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
+{
+  // this->type_ is a bitfield; make sure TYPE fits.
+  gold_assert(this->type_ == type);
+  this->u1_.gsym = gsym;
+  this->u2_.od = od;
+  if (dynamic)
+    this->set_needs_dynsym_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+    Symbol* gsym,
+    unsigned int type,
+    Sized_relobj<size, big_endian>* relobj,
+    unsigned int shndx,
+    Address address,
+    bool is_relative)
+  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
+    is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
+{
+  gold_assert(shndx != INVALID_CODE);
+  // this->type_ is a bitfield; make sure TYPE fits.
+  gold_assert(this->type_ == type);
+  this->u1_.gsym = gsym;
+  this->u2_.relobj = relobj;
+  if (dynamic)
+    this->set_needs_dynsym_index();
+}
+
+// A reloc against a local symbol.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+    Sized_relobj<size, big_endian>* relobj,
+    unsigned int local_sym_index,
+    unsigned int type,
+    Output_data* od,
+    Address address,
+    bool is_relative,
+    bool is_section_symbol)
+  : address_(address), local_sym_index_(local_sym_index), type_(type),
+    is_relative_(is_relative), is_section_symbol_(is_section_symbol),
+    shndx_(INVALID_CODE)
+{
+  gold_assert(local_sym_index != GSYM_CODE
+              && local_sym_index != INVALID_CODE);
+  // this->type_ is a bitfield; make sure TYPE fits.
+  gold_assert(this->type_ == type);
+  this->u1_.relobj = relobj;
+  this->u2_.od = od;
+  if (dynamic)
+    this->set_needs_dynsym_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+    Sized_relobj<size, big_endian>* relobj,
+    unsigned int local_sym_index,
+    unsigned int type,
+    unsigned int shndx,
+    Address address,
+    bool is_relative,
+    bool is_section_symbol)
+  : address_(address), local_sym_index_(local_sym_index), type_(type),
+    is_relative_(is_relative), is_section_symbol_(is_section_symbol),
+    shndx_(shndx)
+{
+  gold_assert(local_sym_index != GSYM_CODE
+              && local_sym_index != INVALID_CODE);
+  gold_assert(shndx != INVALID_CODE);
+  // this->type_ is a bitfield; make sure TYPE fits.
+  gold_assert(this->type_ == type);
+  this->u1_.relobj = relobj;
+  this->u2_.relobj = relobj;
+  if (dynamic)
+    this->set_needs_dynsym_index();
+}
+
+// A reloc against the STT_SECTION symbol of an output section.
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+    Output_section* os,
+    unsigned int type,
+    Output_data* od,
+    Address address)
+  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
+    is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
+{
+  // this->type_ is a bitfield; make sure TYPE fits.
+  gold_assert(this->type_ == type);
+  this->u1_.os = os;
+  this->u2_.od = od;
+  if (dynamic)
+    this->set_needs_dynsym_index();
+  else
+    os->set_needs_symtab_index();
+}
+
+template<bool dynamic, int size, bool big_endian>
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
+    Output_section* os,
+    unsigned int type,
+    Sized_relobj<size, big_endian>* relobj,
+    unsigned int shndx,
+    Address address)
+  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
+    is_relative_(false), is_section_symbol_(true), shndx_(shndx)
+{
+  gold_assert(shndx != INVALID_CODE);
+  // this->type_ is a bitfield; make sure TYPE fits.
+  gold_assert(this->type_ == type);
+  this->u1_.os = os;
+  this->u2_.relobj = relobj;
+  if (dynamic)
+    this->set_needs_dynsym_index();
+  else
+    os->set_needs_symtab_index();
+}
+
+// Record that we need a dynamic symbol index for this relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+set_needs_dynsym_index()
+{
+  if (this->is_relative_)
+    return;
+  switch (this->local_sym_index_)
+    {
+    case INVALID_CODE:
+      gold_unreachable();
+
+    case GSYM_CODE:
+      this->u1_.gsym->set_needs_dynsym_entry();
+      break;
+
+    case SECTION_CODE:
+      this->u1_.os->set_needs_dynsym_index();
+      break;
+
+    case 0:
+      break;
+
+    default:
+      {
+        const unsigned int lsi = this->local_sym_index_;
+        if (!this->is_section_symbol_)
+          this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
+        else
+          this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
+      }
+      break;
+    }
+}
+
+// Get the symbol index of a relocation.
+
+template<bool dynamic, int size, bool big_endian>
+unsigned int
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
+  const
+{
+  unsigned int index;
+  switch (this->local_sym_index_)
+    {
+    case INVALID_CODE:
+      gold_unreachable();
+
+    case GSYM_CODE:
+      if (this->u1_.gsym == NULL)
+       index = 0;
+      else if (dynamic)
+       index = this->u1_.gsym->dynsym_index();
+      else
+       index = this->u1_.gsym->symtab_index();
+      break;
+
+    case SECTION_CODE:
+      if (dynamic)
+       index = this->u1_.os->dynsym_index();
+      else
+       index = this->u1_.os->symtab_index();
+      break;
+
+    case 0:
+      // Relocations without symbols use a symbol index of 0.
+      index = 0;
+      break;
+
+    default:
+      {
+        const unsigned int lsi = this->local_sym_index_;
+        if (!this->is_section_symbol_)
+          {
+            if (dynamic)
+              index = this->u1_.relobj->dynsym_index(lsi);
+            else
+              index = this->u1_.relobj->symtab_index(lsi);
+          }
+        else
+          {
+            Output_section* os = this->u1_.relobj->output_section(lsi);
+            gold_assert(os != NULL);
+            if (dynamic)
+              index = os->dynsym_index();
+            else
+              index = os->symtab_index();
+          }
+      }
+      break;
+    }
+  gold_assert(index != -1U);
+  return index;
+}
+
+// For a local section symbol, get the address of the offset ADDEND
+// within the input section.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+  local_section_offset(Addend addend) const
+{
+  gold_assert(this->local_sym_index_ != GSYM_CODE
+              && this->local_sym_index_ != SECTION_CODE
+              && this->local_sym_index_ != INVALID_CODE
+              && this->is_section_symbol_);
+  const unsigned int lsi = this->local_sym_index_;
+  Output_section* os = this->u1_.relobj->output_section(lsi);
+  gold_assert(os != NULL);
+  Address offset = this->u1_.relobj->get_output_section_offset(lsi);
+  if (offset != invalid_address)
+    return offset + addend;
+  // This is a merge section.
+  offset = os->output_address(this->u1_.relobj, lsi, addend);
+  gold_assert(offset != invalid_address);
+  return offset;
+}
+
+// Get the output address of a relocation.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
+{
+  Address address = this->address_;
+  if (this->shndx_ != INVALID_CODE)
+    {
+      Output_section* os = this->u2_.relobj->output_section(this->shndx_);
+      gold_assert(os != NULL);
+      Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
+      if (off != invalid_address)
+       address += os->address() + off;
+      else
+       {
+         address = os->output_address(this->u2_.relobj, this->shndx_,
+                                      address);
+         gold_assert(address != invalid_address);
+       }
+    }
+  else if (this->u2_.od != NULL)
+    address += this->u2_.od->address();
+  return address;
+}
+
+// Write out the offset and info fields of a Rel or Rela relocation
+// entry.
+
+template<bool dynamic, int size, bool big_endian>
+template<typename Write_rel>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
+    Write_rel* wr) const
+{
+  wr->put_r_offset(this->get_address());
+  unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
+  wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
+}
+
+// Write out a Rel relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
+    unsigned char* pov) const
+{
+  elfcpp::Rel_write<size, big_endian> orel(pov);
+  this->write_rel(&orel);
+}
+
+// Get the value of the symbol referred to by a Rel relocation.
+
+template<bool dynamic, int size, bool big_endian>
+typename elfcpp::Elf_types<size>::Elf_Addr
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
+    Addend addend) const
+{
+  if (this->local_sym_index_ == GSYM_CODE)
+    {
+      const Sized_symbol<size>* sym;
+      sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
+      return sym->value() + addend;
+    }
+  gold_assert(this->local_sym_index_ != SECTION_CODE
+              && this->local_sym_index_ != INVALID_CODE
+              && !this->is_section_symbol_);
+  const unsigned int lsi = this->local_sym_index_;
+  const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
+  return symval->value(this->u1_.relobj, addend);
+}
+
+// Reloc comparison.  This function sorts the dynamic relocs for the
+// benefit of the dynamic linker.  First we sort all relative relocs
+// to the front.  Among relative relocs, we sort by output address.
+// Among non-relative relocs, we sort by symbol index, then by output
+// address.
+
+template<bool dynamic, int size, bool big_endian>
+int
+Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
+  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
+    const
+{
+  if (this->is_relative_)
+    {
+      if (!r2.is_relative_)
+       return -1;
+      // Otherwise sort by reloc address below.
+    }
+  else if (r2.is_relative_)
+    return 1;
+  else
+    {
+      unsigned int sym1 = this->get_symbol_index();
+      unsigned int sym2 = r2.get_symbol_index();
+      if (sym1 < sym2)
+       return -1;
+      else if (sym1 > sym2)
+       return 1;
+      // Otherwise sort by reloc address.
+    }
+
+  section_offset_type addr1 = this->get_address();
+  section_offset_type addr2 = r2.get_address();
+  if (addr1 < addr2)
+    return -1;
+  else if (addr1 > addr2)
+    return 1;
+
+  // Final tie breaker, in order to generate the same output on any
+  // host: reloc type.
+  unsigned int type1 = this->type_;
+  unsigned int type2 = r2.type_;
+  if (type1 < type2)
+    return -1;
+  else if (type1 > type2)
+    return 1;
+
+  // These relocs appear to be exactly the same.
+  return 0;
+}
+
+// Write out a Rela relocation.
+
+template<bool dynamic, int size, bool big_endian>
+void
+Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
+    unsigned char* pov) const
+{
+  elfcpp::Rela_write<size, big_endian> orel(pov);
+  this->rel_.write_rel(&orel);
+  Addend addend = this->addend_;
+  if (this->rel_.is_relative())
+    addend = this->rel_.symbol_value(addend);
+  else if (this->rel_.is_local_section_symbol())
+    addend = this->rel_.local_section_offset(addend);
+  orel.put_r_addend(addend);
+}
+
+// Output_data_reloc_base methods.
+
+// Adjust the output section.
+
+template<int sh_type, bool dynamic, int size, bool big_endian>
+void
+Output_data_reloc_base<sh_type, dynamic, size, big_endian>
+    ::do_adjust_output_section(Output_section* os)
+{
+  if (sh_type == elfcpp::SHT_REL)
+    os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
+  else if (sh_type == elfcpp::SHT_RELA)
+    os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
+  else
+    gold_unreachable();
+  if (dynamic)
+    os->set_should_link_to_dynsym();
+  else
+    os->set_should_link_to_symtab();
+}
+
+// Write out relocation data.
+
+template<int sh_type, bool dynamic, int size, bool big_endian>
+void
+Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
+    Output_file* of)
+{
+  const off_t off = this->offset();
+  const off_t oview_size = this->data_size();
+  unsigned char* const oview = of->get_output_view(off, oview_size);
+
+  if (this->sort_relocs_)
+    {
+      gold_assert(dynamic);
+      std::sort(this->relocs_.begin(), this->relocs_.end(),
+               Sort_relocs_comparison());
+    }
+
+  unsigned char* pov = oview;
+  for (typename Relocs::const_iterator p = this->relocs_.begin();
+       p != this->relocs_.end();
+       ++p)
+    {
+      p->write(pov);
+      pov += reloc_size;
+    }
+
+  gold_assert(pov - oview == oview_size);
+
+  of->write_output_view(off, oview_size, oview);
+
+  // We no longer need the relocation entries.
+  this->relocs_.clear();
+}
+
+// Class Output_relocatable_relocs.
+
+template<int sh_type, int size, bool big_endian>
+void
+Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
+{
+  this->set_data_size(this->rr_->output_reloc_count()
+                     * Reloc_types<sh_type, size, big_endian>::reloc_size);
+}
+
+// class Output_data_group.
+
+template<int size, bool big_endian>
+Output_data_group<size, big_endian>::Output_data_group(
+    Sized_relobj<size, big_endian>* relobj,
+    section_size_type entry_count,
+    elfcpp::Elf_Word flags,
+    std::vector<unsigned int>* input_shndxes)
+  : Output_section_data(entry_count * 4, 4, false),
+    relobj_(relobj),
+    flags_(flags)
+{
+  this->input_shndxes_.swap(*input_shndxes);
+}
+
+// Write out the section group, which means translating the section
+// indexes to apply to the output file.
+
+template<int size, bool big_endian>
+void
+Output_data_group<size, big_endian>::do_write(Output_file* of)
+{
+  const off_t off = this->offset();
+  const section_size_type oview_size =
+    convert_to_section_size_type(this->data_size());
+  unsigned char* const oview = of->get_output_view(off, oview_size);
+
+  elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
+  elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
+  ++contents;
+
+  for (std::vector<unsigned int>::const_iterator p =
+        this->input_shndxes_.begin();
+       p != this->input_shndxes_.end();
+       ++p, ++contents)
+    {
+      Output_section* os = this->relobj_->output_section(*p);
+
+      unsigned int output_shndx;
+      if (os != NULL)
+       output_shndx = os->out_shndx();
+      else
+       {
+         this->relobj_->error(_("section group retained but "
+                                "group element discarded"));
+         output_shndx = 0;
+       }
+
+      elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
+    }
+
+  size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
+  gold_assert(wrote == oview_size);
+
+  of->write_output_view(off, oview_size, oview);
+
+  // We no longer need this information.
+  this->input_shndxes_.clear();
+}
+
+// Output_data_got::Got_entry methods.
+
+// Write out the entry.
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
+{
+  Valtype val = 0;
+
+  switch (this->local_sym_index_)
+    {
+    case GSYM_CODE:
+      {
+       // If the symbol is resolved locally, we need to write out the
+       // link-time value, which will be relocated dynamically by a
+       // RELATIVE relocation.
+       Symbol* gsym = this->u_.gsym;
+       Sized_symbol<size>* sgsym;
+       // This cast is a bit ugly.  We don't want to put a
+       // virtual method in Symbol, because we want Symbol to be
+       // as small as possible.
+       sgsym = static_cast<Sized_symbol<size>*>(gsym);
+       val = sgsym->value();
+      }
+      break;
+
+    case CONSTANT_CODE:
+      val = this->u_.constant;
+      break;
+
+    default:
+      {
+        const unsigned int lsi = this->local_sym_index_;
+        const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
+        val = symval->value(this->u_.object, 0);
+      }
+      break;
+    }
+
+  elfcpp::Swap<size, big_endian>::writeval(pov, val);
+}
+
+// Output_data_got methods.
+
+// Add an entry for a global symbol to the GOT.  This returns true if
+// this is a new GOT entry, false if the symbol already had a GOT
+// entry.
+
+template<int size, bool big_endian>
+bool
+Output_data_got<size, big_endian>::add_global(
+    Symbol* gsym,
+    unsigned int got_type)
+{
+  if (gsym->has_got_offset(got_type))
+    return false;
+
+  this->entries_.push_back(Got_entry(gsym));
+  this->set_got_size();
+  gsym->set_got_offset(got_type, this->last_got_offset());
+  return true;
+}
+
+// Add an entry for a global symbol to the GOT, and add a dynamic
+// relocation of type R_TYPE for the GOT entry.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_with_rel(
+    Symbol* gsym,
+    unsigned int got_type,
+    Rel_dyn* rel_dyn,
+    unsigned int r_type)
+{
+  if (gsym->has_got_offset(got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  this->set_got_size();
+  unsigned int got_offset = this->last_got_offset();
+  gsym->set_got_offset(got_type, got_offset);
+  rel_dyn->add_global(gsym, r_type, this, got_offset);
+}
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_with_rela(
+    Symbol* gsym,
+    unsigned int got_type,
+    Rela_dyn* rela_dyn,
+    unsigned int r_type)
+{
+  if (gsym->has_got_offset(got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  this->set_got_size();
+  unsigned int got_offset = this->last_got_offset();
+  gsym->set_got_offset(got_type, got_offset);
+  rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
+}
+
+// Add a pair of entries for a global symbol to the GOT, and add
+// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
+// If R_TYPE_2 == 0, add the second entry with no relocation.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_pair_with_rel(
+    Symbol* gsym,
+    unsigned int got_type,
+    Rel_dyn* rel_dyn,
+    unsigned int r_type_1,
+    unsigned int r_type_2)
+{
+  if (gsym->has_got_offset(got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  unsigned int got_offset = this->last_got_offset();
+  gsym->set_got_offset(got_type, got_offset);
+  rel_dyn->add_global(gsym, r_type_1, this, got_offset);
+
+  this->entries_.push_back(Got_entry());
+  if (r_type_2 != 0)
+    {
+      got_offset = this->last_got_offset();
+      rel_dyn->add_global(gsym, r_type_2, this, got_offset);
+    }
+
+  this->set_got_size();
+}
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_global_pair_with_rela(
+    Symbol* gsym,
+    unsigned int got_type,
+    Rela_dyn* rela_dyn,
+    unsigned int r_type_1,
+    unsigned int r_type_2)
+{
+  if (gsym->has_got_offset(got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  unsigned int got_offset = this->last_got_offset();
+  gsym->set_got_offset(got_type, got_offset);
+  rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
+
+  this->entries_.push_back(Got_entry());
+  if (r_type_2 != 0)
+    {
+      got_offset = this->last_got_offset();
+      rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
+    }
+
+  this->set_got_size();
+}
+
+// Add an entry for a local symbol to the GOT.  This returns true if
+// this is a new GOT entry, false if the symbol already has a GOT
+// entry.
+
+template<int size, bool big_endian>
+bool
+Output_data_got<size, big_endian>::add_local(
+    Sized_relobj<size, big_endian>* object,
+    unsigned int symndx,
+    unsigned int got_type)
+{
+  if (object->local_has_got_offset(symndx, got_type))
+    return false;
+
+  this->entries_.push_back(Got_entry(object, symndx));
+  this->set_got_size();
+  object->set_local_got_offset(symndx, got_type, this->last_got_offset());
+  return true;
+}
+
+// Add an entry for a local symbol to the GOT, and add a dynamic
+// relocation of type R_TYPE for the GOT entry.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_local_with_rel(
+    Sized_relobj<size, big_endian>* object,
+    unsigned int symndx,
+    unsigned int got_type,
+    Rel_dyn* rel_dyn,
+    unsigned int r_type)
+{
+  if (object->local_has_got_offset(symndx, got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  this->set_got_size();
+  unsigned int got_offset = this->last_got_offset();
+  object->set_local_got_offset(symndx, got_type, got_offset);
+  rel_dyn->add_local(object, symndx, r_type, this, got_offset);
+}
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_local_with_rela(
+    Sized_relobj<size, big_endian>* object,
+    unsigned int symndx,
+    unsigned int got_type,
+    Rela_dyn* rela_dyn,
+    unsigned int r_type)
+{
+  if (object->local_has_got_offset(symndx, got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  this->set_got_size();
+  unsigned int got_offset = this->last_got_offset();
+  object->set_local_got_offset(symndx, got_type, got_offset);
+  rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
+}
+
+// Add a pair of entries for a local symbol to the GOT, and add
+// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
+// If R_TYPE_2 == 0, add the second entry with no relocation.
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_local_pair_with_rel(
+    Sized_relobj<size, big_endian>* object,
+    unsigned int symndx,
+    unsigned int shndx,
+    unsigned int got_type,
+    Rel_dyn* rel_dyn,
+    unsigned int r_type_1,
+    unsigned int r_type_2)
+{
+  if (object->local_has_got_offset(symndx, got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  unsigned int got_offset = this->last_got_offset();
+  object->set_local_got_offset(symndx, got_type, got_offset);
+  Output_section* os = object->output_section(shndx);
+  rel_dyn->add_output_section(os, r_type_1, this, got_offset);
+
+  this->entries_.push_back(Got_entry(object, symndx));
+  if (r_type_2 != 0)
+    {
+      got_offset = this->last_got_offset();
+      rel_dyn->add_output_section(os, r_type_2, this, got_offset);
+    }
+
+  this->set_got_size();
+}
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::add_local_pair_with_rela(
+    Sized_relobj<size, big_endian>* object,
+    unsigned int symndx,
+    unsigned int shndx,
+    unsigned int got_type,
+    Rela_dyn* rela_dyn,
+    unsigned int r_type_1,
+    unsigned int r_type_2)
+{
+  if (object->local_has_got_offset(symndx, got_type))
+    return;
+
+  this->entries_.push_back(Got_entry());
+  unsigned int got_offset = this->last_got_offset();
+  object->set_local_got_offset(symndx, got_type, got_offset);
+  Output_section* os = object->output_section(shndx);
+  rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
+
+  this->entries_.push_back(Got_entry(object, symndx));
+  if (r_type_2 != 0)
+    {
+      got_offset = this->last_got_offset();
+      rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
+    }
+
+  this->set_got_size();
+}
+
+// Write out the GOT.
+
+template<int size, bool big_endian>
+void
+Output_data_got<size, big_endian>::do_write(Output_file* of)
+{
+  const int add = size / 8;
+
+  const off_t off = this->offset();
+  const off_t oview_size = this->data_size();
+  unsigned char* const oview = of->get_output_view(off, oview_size);
+
+  unsigned char* pov = oview;
+  for (typename Got_entries::const_iterator p = this->entries_.begin();
+       p != this->entries_.end();
+       ++p)
+    {
+      p->write(pov);
+      pov += add;
+    }
+
+  gold_assert(pov - oview == oview_size);
+
+  of->write_output_view(off, oview_size, oview);
+
+  // We no longer need the GOT entries.
+  this->entries_.clear();
+}
+
+// Output_data_dynamic::Dynamic_entry methods.
+
+// Write out the entry.
+
+template<int size, bool big_endian>
+void
+Output_data_dynamic::Dynamic_entry::write(
+    unsigned char* pov,
+    const Stringpool* pool) const
+{
+  typename elfcpp::Elf_types<size>::Elf_WXword val;
+  switch (this->offset_)
+    {
+    case DYNAMIC_NUMBER:
+      val = this->u_.val;
+      break;
+
+    case DYNAMIC_SECTION_SIZE:
+      val = this->u_.od->data_size();
+      break;
+
+    case DYNAMIC_SYMBOL:
+      {
+       const Sized_symbol<size>* s =
+         static_cast<const Sized_symbol<size>*>(this->u_.sym);
+       val = s->value();
+      }
+      break;
+
+    case DYNAMIC_STRING:
+      val = pool->get_offset(this->u_.str);
+      break;
+
+    default:
+      val = this->u_.od->address() + this->offset_;
+      break;
+    }
+
+  elfcpp::Dyn_write<size, big_endian> dw(pov);
+  dw.put_d_tag(this->tag_);
+  dw.put_d_val(val);
+}
+
+// Output_data_dynamic methods.
+
+// Adjust the output section to set the entry size.
+
+void
+Output_data_dynamic::do_adjust_output_section(Output_section* os)
+{
+  if (parameters->target().get_size() == 32)
+    os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
+  else if (parameters->target().get_size() == 64)
+    os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
+  else
+    gold_unreachable();
+}
+
+// Set the final data size.
+
+void
+Output_data_dynamic::set_final_data_size()
+{
+  // Add the terminating entry if it hasn't been added.
+  // Because of relaxation, we can run this multiple times.
+  if (this->entries_.empty()
+      || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
+    this->add_constant(elfcpp::DT_NULL, 0);
+
+  int dyn_size;
+  if (parameters->target().get_size() == 32)
+    dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
+  else if (parameters->target().get_size() == 64)
+    dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
+  else
+    gold_unreachable();
+  this->set_data_size(this->entries_.size() * dyn_size);
+}
+
+// Write out the dynamic entries.
+
+void
+Output_data_dynamic::do_write(Output_file* of)
+{
+  switch (parameters->size_and_endianness())
+    {
+#ifdef HAVE_TARGET_32_LITTLE
+    case Parameters::TARGET_32_LITTLE:
+      this->sized_write<32, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_32_BIG
+    case Parameters::TARGET_32_BIG:
+      this->sized_write<32, true>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_LITTLE
+    case Parameters::TARGET_64_LITTLE:
+      this->sized_write<64, false>(of);
+      break;
+#endif
+#ifdef HAVE_TARGET_64_BIG
+    case Parameters::TARGET_64_BIG:
+      this->sized_write<64, true>(of);
+      break;
+#endif
+    default:
+      gold_unreachable();
+    }
+}
+
+template<int size, bool big_endian>
+void
+Output_data_dynamic::sized_write(Output_file* of)
+{
+  const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
+
+  const off_t offset = this->offset();
+  const off_t oview_size = this->data_size();
+  unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+  unsigned char* pov = oview;
+  for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
+       p != this->entries_.end();
+       ++p)
+    {
+      p->write<size, big_endian>(pov, this->pool_);
+      pov += dyn_size;
+    }
+
+  gold_assert(pov - oview == oview_size);
+
+  of->write_output_view(offset, oview_size, oview);
+
+  // We no longer need the dynamic entries.
+  this->entries_.clear();
+}
+
+// Class Output_symtab_xindex.
+
+void
+Output_symtab_xindex::do_write(Output_file* of)
+{
+  const off_t offset = this->offset();
+  const off_t oview_size = this->data_size();
+  unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+  memset(oview, 0, oview_size);
+
+  if (parameters->target().is_big_endian())
+    this->endian_do_write<true>(oview);
+  else
+    this->endian_do_write<false>(oview);
+
+  of->write_output_view(offset, oview_size, oview);
+
+  // We no longer need the data.
+  this->entries_.clear();
+}
+
+template<bool big_endian>
+void
+Output_symtab_xindex::endian_do_write(unsigned char* const oview)
+{
+  for (Xindex_entries::const_iterator p = this->entries_.begin();
+       p != this->entries_.end();
+       ++p)
+    {
+      unsigned int symndx = p->first;
+      gold_assert(symndx * 4 < this->data_size());
+      elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
+    }
+}
+
+// Output_section::Input_section methods.
+
+// Return the data size.  For an input section we store the size here.
+// For an Output_section_data, we have to ask it for the size.
+
+off_t
+Output_section::Input_section::data_size() const
+{
+  if (this->is_input_section())
+    return this->u1_.data_size;
+  else
+    return this->u2_.posd->data_size();
+}
+
+// Set the address and file offset.
+
+void
+Output_section::Input_section::set_address_and_file_offset(
+    uint64_t address,
+    off_t file_offset,
+    off_t section_file_offset)
+{
+  if (this->is_input_section())
+    this->u2_.object->set_section_offset(this->shndx_,
+                                        file_offset - section_file_offset);
+  else
+    this->u2_.posd->set_address_and_file_offset(address, file_offset);
+}
+
+// Reset the address and file offset.
+
+void
+Output_section::Input_section::reset_address_and_file_offset()
+{
+  if (!this->is_input_section())
+    this->u2_.posd->reset_address_and_file_offset();
+}
+
+// Finalize the data size.
+
+void
+Output_section::Input_section::finalize_data_size()
+{
+  if (!this->is_input_section())
+    this->u2_.posd->finalize_data_size();
+}
+
+// Try to turn an input offset into an output offset.  We want to
+// return the output offset relative to the start of this
+// Input_section in the output section.
+
+inline bool
+Output_section::Input_section::output_offset(
+    const Relobj* object,
+    unsigned int shndx,
+    section_offset_type offset,
+    section_offset_type *poutput) const
+{
+  if (!this->is_input_section())
+    return this->u2_.posd->output_offset(object, shndx, offset, poutput);
+  else
+    {
+      if (this->shndx_ != shndx || this->u2_.object != object)
+       return false;
+      *poutput = offset;
+      return true;
+    }
+}
+
+// Return whether this is the merge section for the input section
+// SHNDX in OBJECT.
+
+inline bool
+Output_section::Input_section::is_merge_section_for(const Relobj* object,
+                                                   unsigned int shndx) const
+{
+  if (this->is_input_section())
+    return false;
+  return this->u2_.posd->is_merge_section_for(object, shndx);
+}
+
+// Write out the data.  We don't have to do anything for an input
+// section--they are handled via Object::relocate--but this is where
+// we write out the data for an Output_section_data.
+
+void
+Output_section::Input_section::write(Output_file* of)
+{
+  if (!this->is_input_section())
+    this->u2_.posd->write(of);
+}
+
+// Write the data to a buffer.  As for write(), we don't have to do
+// anything for an input section.
+
+void
+Output_section::Input_section::write_to_buffer(unsigned char* buffer)
+{
+  if (!this->is_input_section())
+    this->u2_.posd->write_to_buffer(buffer);
+}
+
+// Print to a map file.
+
+void
+Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
+{
+  switch (this->shndx_)
+    {
+    case OUTPUT_SECTION_CODE:
+    case MERGE_DATA_SECTION_CODE:
+    case MERGE_STRING_SECTION_CODE:
+      this->u2_.posd->print_to_mapfile(mapfile);
+      break;
+
+    case RELAXED_INPUT_SECTION_CODE:
+      {
+        Output_relaxed_input_section* relaxed_section =
+         this->relaxed_input_section();
+        mapfile->print_input_section(relaxed_section->relobj(),
+                                    relaxed_section->shndx());
+      }
+      break;
+    default:
+      mapfile->print_input_section(this->u2_.object, this->shndx_);
+      break;
+    }
+}
+
+// Output_section methods.
+
+// Construct an Output_section.  NAME will point into a Stringpool.
+
+Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
+                              elfcpp::Elf_Xword flags)
+  : name_(name),
+    addralign_(0),
+    entsize_(0),
+    load_address_(0),
+    link_section_(NULL),
+    link_(0),
+    info_section_(NULL),
+    info_symndx_(NULL),
+    info_(0),
+    type_(type),
+    flags_(flags),
+    out_shndx_(-1U),
+    symtab_index_(0),
+    dynsym_index_(0),
+    input_sections_(),
+    first_input_offset_(0),
+    fills_(),
+    postprocessing_buffer_(NULL),
+    needs_symtab_index_(false),
+    needs_dynsym_index_(false),
+    should_link_to_symtab_(false),
+    should_link_to_dynsym_(false),
+    after_input_sections_(false),
+    requires_postprocessing_(false),
+    found_in_sections_clause_(false),
+    has_load_address_(false),
+    info_uses_section_index_(false),
+    may_sort_attached_input_sections_(false),
+    must_sort_attached_input_sections_(false),
+    attached_input_sections_are_sorted_(false),
+    is_relro_(false),
+    is_relro_local_(false),
+    is_small_section_(false),
+    is_large_section_(false),
+    tls_offset_(0),
+    checkpoint_(NULL),
+    merge_section_map_(),
+    merge_section_by_properties_map_(),
+    relaxed_input_section_map_(),
+    is_relaxed_input_section_map_valid_(true),
+    generate_code_fills_at_write_(false)
+{
+  // An unallocated section has no address.  Forcing this means that
+  // we don't need special treatment for symbols defined in debug
+  // sections.
+  if ((flags & elfcpp::SHF_ALLOC) == 0)
+    this->set_address(0);
+}
+
+Output_section::~Output_section()
+{
+  delete this->checkpoint_;
+}
+
+// Set the entry size.
+
+void
+Output_section::set_entsize(uint64_t v)
+{
+  if (this->entsize_ == 0)
+    this->entsize_ = v;
+  else
+    gold_assert(this->entsize_ == v);
+}
+
+// Add the input section SHNDX, with header SHDR, named SECNAME, in
+// OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
+// relocation section which applies to this section, or 0 if none, or
+// -1U if more than one.  Return the offset of the input section
+// within the output section.  Return -1 if the input section will
+// receive special handling.  In the normal case we don't always keep
+// track of input sections for an Output_section.  Instead, each
+// Object keeps track of the Output_section for each of its input
+// sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
+// track of input sections here; this is used when SECTIONS appears in
+// a linker script.
+
+template<int size, bool big_endian>
+off_t
+Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
+                                 unsigned int shndx,
+                                 const char* secname,
+                                 const elfcpp::Shdr<size, big_endian>& shdr,
+                                 unsigned int reloc_shndx,
+                                 bool have_sections_script)
+{
+  elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
+  if ((addralign & (addralign - 1)) != 0)
+    {
+      object->error(_("invalid alignment %lu for section \"%s\""),
+                   static_cast<unsigned long>(addralign), secname);
+      addralign = 1;
+    }
+
+  if (addralign > this->addralign_)
+    this->addralign_ = addralign;
+
+  typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
+  this->update_flags_for_input_section(sh_flags);
+
+  uint64_t entsize = shdr.get_sh_entsize();
+
+  // .debug_str is a mergeable string section, but is not always so
+  // marked by compilers.  Mark manually here so we can optimize.
+  if (strcmp(secname, ".debug_str") == 0)
+    {
+      sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
+      entsize = 1;
+    }
+
+  // If this is a SHF_MERGE section, we pass all the input sections to
+  // a Output_data_merge.  We don't try to handle relocations for such
+  // a section.  We don't try to handle empty merge sections--they
+  // mess up the mappings, and are useless anyhow.
+  if ((sh_flags & elfcpp::SHF_MERGE) != 0
+      && reloc_shndx == 0
+      && shdr.get_sh_size() > 0)
+    {
+      if (this->add_merge_input_section(object, shndx, sh_flags,
+                                       entsize, addralign))
+       {
+         // Tell the relocation routines that they need to call the
+         // output_offset method to determine the final address.
+         return -1;
+       }
+    }
+
+  off_t offset_in_section = this->current_data_size_for_child();
+  off_t aligned_offset_in_section = align_address(offset_in_section,
+                                                  addralign);
+
+  // Determine if we want to delay code-fill generation until the output
+  // section is written.  When the target is relaxing, we want to delay fill
+  // generating to avoid adjusting them during relaxation.
+  if (!this->generate_code_fills_at_write_
+      && !have_sections_script
+      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
+      && parameters->target().has_code_fill()
+      && parameters->target().may_relax())
+    {
+      gold_assert(this->fills_.empty());
+      this->generate_code_fills_at_write_ = true;
+    }
+
+  if (aligned_offset_in_section > offset_in_section
+      && !this->generate_code_fills_at_write_
+      && !have_sections_script
+      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
+      && parameters->target().has_code_fill())
+    {
+      // We need to add some fill data.  Using fill_list_ when
+      // possible is an optimization, since we will often have fill
+      // sections without input sections.
+      off_t fill_len = aligned_offset_in_section - offset_in_section;
+      if (this->input_sections_.empty())
+        this->fills_.push_back(Fill(offset_in_section, fill_len));
+      else
+        {
+          std::string fill_data(parameters->target().code_fill(fill_len));
+          Output_data_const* odc = new Output_data_const(fill_data, 1);
+          this->input_sections_.push_back(Input_section(odc));
+        }
+    }
+
+  this->set_current_data_size_for_child(aligned_offset_in_section
+                                       + shdr.get_sh_size());
+
+  // We need to keep track of this section if we are already keeping
+  // track of sections, or if we are relaxing.  Also, if this is a
+  // section which requires sorting, or which may require sorting in
+  // the future, we keep track of the sections.
+  if (have_sections_script
+      || !this->input_sections_.empty()
+      || this->may_sort_attached_input_sections()
+      || this->must_sort_attached_input_sections()
+      || parameters->options().user_set_Map()
+      || parameters->target().may_relax())
+    this->input_sections_.push_back(Input_section(object, shndx,
+                                                 shdr.get_sh_size(),
+                                                 addralign));
+
+  return aligned_offset_in_section;
+}
+
+// Add arbitrary data to an output section.
+
+void
+Output_section::add_output_section_data(Output_section_data* posd)
+{
+  Input_section inp(posd);
+  this->add_output_section_data(&inp);
+
+  if (posd->is_data_size_valid())
+    {
+      off_t offset_in_section = this->current_data_size_for_child();
+      off_t aligned_offset_in_section = align_address(offset_in_section,
+                                                     posd->addralign());
+      this->set_current_data_size_for_child(aligned_offset_in_section
+                                           + posd->data_size());
+    }
+}
+
+// Add a relaxed input section.
+
+void
+Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
+{
+  Input_section inp(poris);
+  this->add_output_section_data(&inp);
+  if (this->is_relaxed_input_section_map_valid_)
+    {
+      Input_section_specifier iss(poris->relobj(), poris->shndx());
+      this->relaxed_input_section_map_[iss] = poris;
+    }
+
+  // For a relaxed section, we use the current data size.  Linker scripts
+  // get all the input sections, including relaxed one from an output
+  // section and add them back to them same output section to compute the
+  // output section size.  If we do not account for sizes of relaxed input
+  // sections,  an output section would be incorrectly sized.
+  off_t offset_in_section = this->current_data_size_for_child();
+  off_t aligned_offset_in_section = align_address(offset_in_section,
+                                                 poris->addralign());
+  this->set_current_data_size_for_child(aligned_offset_in_section
+                                       + poris->current_data_size());
+}
+
+// Add arbitrary data to an output section by Input_section.
+
+void
+Output_section::add_output_section_data(Input_section* inp)
+{
+  if (this->input_sections_.empty())
+    this->first_input_offset_ = this->current_data_size_for_child();
+
+  this->input_sections_.push_back(*inp);
+
+  uint64_t addralign = inp->addralign();
+  if (addralign > this->addralign_)
+    this->addralign_ = addralign;
+
+  inp->set_output_section(this);
+}
+
+// Add a merge section to an output section.
+
+void
+Output_section::add_output_merge_section(Output_section_data* posd,
+                                        bool is_string, uint64_t entsize)
+{
+  Input_section inp(posd, is_string, entsize);
+  this->add_output_section_data(&inp);
+}
+
+// Add an input section to a SHF_MERGE section.
+
+bool
+Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
+                                       uint64_t flags, uint64_t entsize,
+                                       uint64_t addralign)
+{
+  bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
+
+  // We only merge strings if the alignment is not more than the
+  // character size.  This could be handled, but it's unusual.
+  if (is_string && addralign > entsize)
+    return false;
+
+  // We cannot restore merged input section states.
+  gold_assert(this->checkpoint_ == NULL);
+
+  // Look up merge sections by required properties.
+  Merge_section_properties msp(is_string, entsize, addralign);
+  Merge_section_by_properties_map::const_iterator p =
+    this->merge_section_by_properties_map_.find(msp);
+  if (p != this->merge_section_by_properties_map_.end())
+    {
+      Output_merge_base* merge_section = p->second;
+      merge_section->add_input_section(object, shndx);
+      gold_assert(merge_section->is_string() == is_string
+                 && merge_section->entsize() == entsize
+                 && merge_section->addralign() == addralign);
+
+      // Link input section to found merge section.
+      Input_section_specifier iss(object, shndx);
+      this->merge_section_map_[iss] = merge_section;
+      return true;
+    }
+
+  // We handle the actual constant merging in Output_merge_data or
+  // Output_merge_string_data.
+  Output_merge_base* pomb;
+  if (!is_string)
+    pomb = new Output_merge_data(entsize, addralign);
+  else
+    {
+      switch (entsize)
+       {
+        case 1:
+         pomb = new Output_merge_string<char>(addralign);
+         break;
+        case 2:
+         pomb = new Output_merge_string<uint16_t>(addralign);
+         break;
+        case 4:
+         pomb = new Output_merge_string<uint32_t>(addralign);
+         break;
+        default:
+         return false;
+       }
+    }
+
+  // Add new merge section to this output section and link merge section
+  // properties to new merge section in map.
+  this->add_output_merge_section(pomb, is_string, entsize);
+  this->merge_section_by_properties_map_[msp] = pomb;
+
+  // Add input section to new merge section and link input section to new
+  // merge section in map.
+  pomb->add_input_section(object, shndx);
+  Input_section_specifier iss(object, shndx);
+  this->merge_section_map_[iss] = pomb;
+
+  return true;
+}
+
+// Build a relaxation map to speed up relaxation of existing input sections.
+// Look up to the first LIMIT elements in INPUT_SECTIONS.
+
+void
+Output_section::build_relaxation_map(
+  const Input_section_list& input_sections,
+  size_t limit,
+  Relaxation_map* relaxation_map) const
+{
+  for (size_t i = 0; i < limit; ++i)
+    {
+      const Input_section& is(input_sections[i]);
+      if (is.is_input_section() || is.is_relaxed_input_section())
+       {
+         Input_section_specifier iss(is.relobj(), is.shndx());
+         (*relaxation_map)[iss] = i;
+       }
+    }
+}
+
+// Convert regular input sections in INPUT_SECTIONS into relaxed input
+// sections in RELAXED_SECTIONS.  MAP is a prebuilt map from input section
+// specifier to indices of INPUT_SECTIONS.
+
+void
+Output_section::convert_input_sections_in_list_to_relaxed_sections(
+  const std::vector<Output_relaxed_input_section*>& relaxed_sections,
+  const Relaxation_map& map,
+  Input_section_list* input_sections)
+{
+  for (size_t i = 0; i < relaxed_sections.size(); ++i)
+    {
+      Output_relaxed_input_section* poris = relaxed_sections[i];
+      Input_section_specifier iss(poris->relobj(), poris->shndx());
+      Relaxation_map::const_iterator p = map.find(iss);
+      gold_assert(p != map.end());
+      gold_assert((*input_sections)[p->second].is_input_section());
+      (*input_sections)[p->second] = Input_section(poris);
+    }
+}
+  
+// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
+// is a vector of pointers to Output_relaxed_input_section or its derived
+// classes.  The relaxed sections must correspond to existing input sections.
+
+void
+Output_section::convert_input_sections_to_relaxed_sections(
+  const std::vector<Output_relaxed_input_section*>& relaxed_sections)
+{
+  gold_assert(parameters->target().may_relax());
+
+  // We want to make sure that restore_states does not undo the effect of
+  // this.  If there is no checkpoint active, just search the current
+  // input section list and replace the sections there.  If there is
+  // a checkpoint, also replace the sections there.
+  
+  // By default, we look at the whole list.
+  size_t limit = this->input_sections_.size();
+
+  if (this->checkpoint_ != NULL)
+    {
+      // Replace input sections with relaxed input section in the saved
+      // copy of the input section list.
+      if (this->checkpoint_->input_sections_saved())
+       {
+         Relaxation_map map;
+         this->build_relaxation_map(
+                   *(this->checkpoint_->input_sections()),
+                   this->checkpoint_->input_sections()->size(),
+                   &map);
+         this->convert_input_sections_in_list_to_relaxed_sections(
+                   relaxed_sections,
+                   map,
+                   this->checkpoint_->input_sections());
+       }
+      else
+       {
+         // We have not copied the input section list yet.  Instead, just
+         // look at the portion that would be saved.
+         limit = this->checkpoint_->input_sections_size();
+       }
+    }
+
+  // Convert input sections in input_section_list.
+  Relaxation_map map;
+  this->build_relaxation_map(this->input_sections_, limit, &map);
+  this->convert_input_sections_in_list_to_relaxed_sections(
+           relaxed_sections,
+           map,
+           &this->input_sections_);
+}
+
+// Update the output section flags based on input section flags.
+
+void
+Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
+{
+  // If we created the section with SHF_ALLOC clear, we set the
+  // address.  If we are now setting the SHF_ALLOC flag, we need to
+  // undo that.
+  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
+      && (flags & elfcpp::SHF_ALLOC) != 0)
+    this->mark_address_invalid();
+
+  this->flags_ |= (flags
+                  & (elfcpp::SHF_WRITE
+                     | elfcpp::SHF_ALLOC
+                     | elfcpp::SHF_EXECINSTR));
+}
+
+// Find the merge section into which an input section with index SHNDX in
+// OBJECT has been added.  Return NULL if none found.
+
+Output_section_data*
+Output_section::find_merge_section(const Relobj* object,
+                                  unsigned int shndx) const
+{
+  Input_section_specifier iss(object, shndx);
+  Output_section_data_by_input_section_map::const_iterator p =
+    this->merge_section_map_.find(iss);
+  if (p != this->merge_section_map_.end())
+    {
+      Output_section_data* posd = p->second;
+      gold_assert(posd->is_merge_section_for(object, shndx));
+      return posd;
+    }
+  else
+    return NULL;
+}
+
+// Find an relaxed input section corresponding to an input section
+// in OBJECT with index SHNDX.
+
+const Output_section_data*
+Output_section::find_relaxed_input_section(const Relobj* object,
+                                          unsigned int shndx) const
+{
+  // Be careful that the map may not be valid due to input section export
+  // to scripts or a check-point restore.
+  if (!this->is_relaxed_input_section_map_valid_)
+    {
+      // Rebuild the map as needed.
+      this->relaxed_input_section_map_.clear();
+      for (Input_section_list::const_iterator p = this->input_sections_.begin();
+          p != this->input_sections_.end();
+          ++p)
+       if (p->is_relaxed_input_section())
+         {
+           Input_section_specifier iss(p->relobj(), p->shndx());
+           this->relaxed_input_section_map_[iss] =
+             p->relaxed_input_section();
+         }
+      this->is_relaxed_input_section_map_valid_ = true;
+    }
+
+  Input_section_specifier iss(object, shndx);
+  Output_section_data_by_input_section_map::const_iterator p =
+    this->relaxed_input_section_map_.find(iss);
+  if (p != this->relaxed_input_section_map_.end())
+    return p->second;
+  else
+    return NULL;
+}
+
+// Given an address OFFSET relative to the start of input section
+// SHNDX in OBJECT, return whether this address is being included in
+// the final link.  This should only be called if SHNDX in OBJECT has
+// a special mapping.
+
+bool
+Output_section::is_input_address_mapped(const Relobj* object,
+                                       unsigned int shndx,
+                                       off_t offset) const
+{
+  // Look at the Output_section_data_maps first.
+  const Output_section_data* posd = this->find_merge_section(object, shndx);
+  if (posd == NULL)
+    posd = this->find_relaxed_input_section(object, shndx);
+
+  if (posd != NULL)
+    {
+      section_offset_type output_offset;
+      bool found = posd->output_offset(object, shndx, offset, &output_offset);
+      gold_assert(found);   
+      return output_offset != -1;
+    }
+
+  // Fall back to the slow look-up.
+  for (Input_section_list::const_iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      section_offset_type output_offset;
+      if (p->output_offset(object, shndx, offset, &output_offset))
+       return output_offset != -1;
+    }
+
+  // By default we assume that the address is mapped.  This should
+  // only be called after we have passed all sections to Layout.  At
+  // that point we should know what we are discarding.
+  return true;
+}
+
+// Given an address OFFSET relative to the start of input section
+// SHNDX in object OBJECT, return the output offset relative to the
+// start of the input section in the output section.  This should only
+// be called if SHNDX in OBJECT has a special mapping.
+
+section_offset_type
+Output_section::output_offset(const Relobj* object, unsigned int shndx,
+                             section_offset_type offset) const
+{
+  // This can only be called meaningfully when we know the data size
+  // of this.
+  gold_assert(this->is_data_size_valid());
+
+  // Look at the Output_section_data_maps first.
+  const Output_section_data* posd = this->find_merge_section(object, shndx);
+  if (posd == NULL) 
+    posd = this->find_relaxed_input_section(object, shndx);
+  if (posd != NULL)
+    {
+      section_offset_type output_offset;
+      bool found = posd->output_offset(object, shndx, offset, &output_offset);
+      gold_assert(found);   
+      return output_offset;
+    }
+
+  // Fall back to the slow look-up.
+  for (Input_section_list::const_iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      section_offset_type output_offset;
+      if (p->output_offset(object, shndx, offset, &output_offset))
+       return output_offset;
+    }
+  gold_unreachable();
+}
+
+// Return the output virtual address of OFFSET relative to the start
+// of input section SHNDX in object OBJECT.
+
+uint64_t
+Output_section::output_address(const Relobj* object, unsigned int shndx,
+                              off_t offset) const
+{
+  uint64_t addr = this->address() + this->first_input_offset_;
+
+  // Look at the Output_section_data_maps first.
+  const Output_section_data* posd = this->find_merge_section(object, shndx);
+  if (posd == NULL) 
+    posd = this->find_relaxed_input_section(object, shndx);
+  if (posd != NULL && posd->is_address_valid())
+    {
+      section_offset_type output_offset;
+      bool found = posd->output_offset(object, shndx, offset, &output_offset);
+      gold_assert(found);
+      return posd->address() + output_offset;
+    }
+
+  // Fall back to the slow look-up.
+  for (Input_section_list::const_iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      addr = align_address(addr, p->addralign());
+      section_offset_type output_offset;
+      if (p->output_offset(object, shndx, offset, &output_offset))
+       {
+         if (output_offset == -1)
+           return -1ULL;
+         return addr + output_offset;
+       }
+      addr += p->data_size();
+    }
+
+  // If we get here, it means that we don't know the mapping for this
+  // input section.  This might happen in principle if
+  // add_input_section were called before add_output_section_data.
+  // But it should never actually happen.
+
+  gold_unreachable();
+}
+
+// Find the output address of the start of the merged section for
+// input section SHNDX in object OBJECT.
+
+bool
+Output_section::find_starting_output_address(const Relobj* object,
+                                            unsigned int shndx,
+                                            uint64_t* paddr) const
+{
+  // FIXME: This becomes a bottle-neck if we have many relaxed sections.
+  // Looking up the merge section map does not always work as we sometimes
+  // find a merge section without its address set.
+  uint64_t addr = this->address() + this->first_input_offset_;
+  for (Input_section_list::const_iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      addr = align_address(addr, p->addralign());
+
+      // It would be nice if we could use the existing output_offset
+      // method to get the output offset of input offset 0.
+      // Unfortunately we don't know for sure that input offset 0 is
+      // mapped at all.
+      if (p->is_merge_section_for(object, shndx))
+       {
+         *paddr = addr;
+         return true;
+       }
+
+      addr += p->data_size();
+    }
+
+  // We couldn't find a merge output section for this input section.
+  return false;
+}
+
+// Set the data size of an Output_section.  This is where we handle
+// setting the addresses of any Output_section_data objects.
+
+void
+Output_section::set_final_data_size()
+{
+  if (this->input_sections_.empty())
+    {
+      this->set_data_size(this->current_data_size_for_child());
+      return;
+    }
+
+  if (this->must_sort_attached_input_sections())
+    this->sort_attached_input_sections();
+
+  uint64_t address = this->address();
+  off_t startoff = this->offset();
+  off_t off = startoff + this->first_input_offset_;
+  for (Input_section_list::iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      off = align_address(off, p->addralign());
+      p->set_address_and_file_offset(address + (off - startoff), off,
+                                    startoff);
+      off += p->data_size();
+    }
+
+  this->set_data_size(off - startoff);
+}
+
+// Reset the address and file offset.
+
+void
+Output_section::do_reset_address_and_file_offset()
+{
+  // An unallocated section has no address.  Forcing this means that
+  // we don't need special treatment for symbols defined in debug
+  // sections.  We do the same in the constructor.
+  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
+     this->set_address(0);
+
+  for (Input_section_list::iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    p->reset_address_and_file_offset();
+}
+  
+// Return true if address and file offset have the values after reset.
+
+bool
+Output_section::do_address_and_file_offset_have_reset_values() const
+{
+  if (this->is_offset_valid())
+    return false;
+
+  // An unallocated section has address 0 after its construction or a reset.
+  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
+    return this->is_address_valid() && this->address() == 0;
+  else
+    return !this->is_address_valid();
+}
+
+// Set the TLS offset.  Called only for SHT_TLS sections.
+
+void
+Output_section::do_set_tls_offset(uint64_t tls_base)
+{
+  this->tls_offset_ = this->address() - tls_base;
+}
+
+// In a few cases we need to sort the input sections attached to an
+// output section.  This is used to implement the type of constructor
+// priority ordering implemented by the GNU linker, in which the
+// priority becomes part of the section name and the sections are
+// sorted by name.  We only do this for an output section if we see an
+// attached input section matching ".ctor.*", ".dtor.*",
+// ".init_array.*" or ".fini_array.*".
+
+class Output_section::Input_section_sort_entry
+{
+ public:
+  Input_section_sort_entry()
+    : input_section_(), index_(-1U), section_has_name_(false),
+      section_name_()
+  { }
+
+  Input_section_sort_entry(const Input_section& input_section,
+                          unsigned int index)
+    : input_section_(input_section), index_(index),
+      section_has_name_(input_section.is_input_section()
+                       || input_section.is_relaxed_input_section())
+  {
+    if (this->section_has_name_)
+      {
+       // This is only called single-threaded from Layout::finalize,
+       // so it is OK to lock.  Unfortunately we have no way to pass
+       // in a Task token.
+       const Task* dummy_task = reinterpret_cast<const Task*>(-1);
+       Object* obj = (input_section.is_input_section()
+                      ? input_section.relobj()
+                      : input_section.relaxed_input_section()->relobj());
+       Task_lock_obj<Object> tl(dummy_task, obj);
+
+       // This is a slow operation, which should be cached in
+       // Layout::layout if this becomes a speed problem.
+       this->section_name_ = obj->section_name(input_section.shndx());
+      }
+  }
+
+  // Return the Input_section.
+  const Input_section&
+  input_section() const
+  {
+    gold_assert(this->index_ != -1U);
+    return this->input_section_;
+  }
+
+  // The index of this entry in the original list.  This is used to
+  // make the sort stable.
+  unsigned int
+  index() const
+  {
+    gold_assert(this->index_ != -1U);
+    return this->index_;
+  }
+
+  // Whether there is a section name.
+  bool
+  section_has_name() const
+  { return this->section_has_name_; }
+
+  // The section name.
+  const std::string&
+  section_name() const
+  {
+    gold_assert(this->section_has_name_);
+    return this->section_name_;
+  }
+
+  // Return true if the section name has a priority.  This is assumed
+  // to be true if it has a dot after the initial dot.
+  bool
+  has_priority() const
+  {
+    gold_assert(this->section_has_name_);
+    return this->section_name_.find('.', 1);
+  }
+
+  // Return true if this an input file whose base name matches
+  // FILE_NAME.  The base name must have an extension of ".o", and
+  // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
+  // This is to match crtbegin.o as well as crtbeginS.o without
+  // getting confused by other possibilities.  Overall matching the
+  // file name this way is a dreadful hack, but the GNU linker does it
+  // in order to better support gcc, and we need to be compatible.
+  bool
+  match_file_name(const char* match_file_name) const
+  {
+    const std::string& file_name(this->input_section_.relobj()->name());
+    const char* base_name = lbasename(file_name.c_str());
+    size_t match_len = strlen(match_file_name);
+    if (strncmp(base_name, match_file_name, match_len) != 0)
+      return false;
+    size_t base_len = strlen(base_name);
+    if (base_len != match_len + 2 && base_len != match_len + 3)
+      return false;
+    return memcmp(base_name + base_len - 2, ".o", 2) == 0;
+  }
+
+ private:
+  // The Input_section we are sorting.
+  Input_section input_section_;
+  // The index of this Input_section in the original list.
+  unsigned int index_;
+  // Whether this Input_section has a section name--it won't if this
+  // is some random Output_section_data.
+  bool section_has_name_;
+  // The section name if there is one.
+  std::string section_name_;
+};
+
+// Return true if S1 should come before S2 in the output section.
+
+bool
+Output_section::Input_section_sort_compare::operator()(
+    const Output_section::Input_section_sort_entry& s1,
+    const Output_section::Input_section_sort_entry& s2) const
+{
+  // crtbegin.o must come first.
+  bool s1_begin = s1.match_file_name("crtbegin");
+  bool s2_begin = s2.match_file_name("crtbegin");
+  if (s1_begin || s2_begin)
+    {
+      if (!s1_begin)
+       return false;
+      if (!s2_begin)
+       return true;
+      return s1.index() < s2.index();
+    }
+
+  // crtend.o must come last.
+  bool s1_end = s1.match_file_name("crtend");
+  bool s2_end = s2.match_file_name("crtend");
+  if (s1_end || s2_end)
+    {
+      if (!s1_end)
+       return true;
+      if (!s2_end)
+       return false;
+      return s1.index() < s2.index();
+    }
+
+  // We sort all the sections with no names to the end.
+  if (!s1.section_has_name() || !s2.section_has_name())
+    {
+      if (s1.section_has_name())
+       return true;
+      if (s2.section_has_name())
+       return false;
+      return s1.index() < s2.index();
+    }
+
+  // A section with a priority follows a section without a priority.
+  // The GNU linker does this for all but .init_array sections; until
+  // further notice we'll assume that that is an mistake.
+  bool s1_has_priority = s1.has_priority();
+  bool s2_has_priority = s2.has_priority();
+  if (s1_has_priority && !s2_has_priority)
+    return false;
+  if (!s1_has_priority && s2_has_priority)
+    return true;
+
+  // Otherwise we sort by name.
+  int compare = s1.section_name().compare(s2.section_name());
+  if (compare != 0)
+    return compare < 0;
+
+  // Otherwise we keep the input order.
+  return s1.index() < s2.index();
+}
+
+// Sort the input sections attached to an output section.
+
+void
+Output_section::sort_attached_input_sections()
+{
+  if (this->attached_input_sections_are_sorted_)
+    return;
+
+  if (this->checkpoint_ != NULL
+      && !this->checkpoint_->input_sections_saved())
+    this->checkpoint_->save_input_sections();
+
+  // The only thing we know about an input section is the object and
+  // the section index.  We need the section name.  Recomputing this
+  // is slow but this is an unusual case.  If this becomes a speed
+  // problem we can cache the names as required in Layout::layout.
+
+  // We start by building a larger vector holding a copy of each
+  // Input_section, plus its current index in the list and its name.
+  std::vector<Input_section_sort_entry> sort_list;
+
+  unsigned int i = 0;
+  for (Input_section_list::iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p, ++i)
+    sort_list.push_back(Input_section_sort_entry(*p, i));
+
+  // Sort the input sections.
+  std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
+
+  // Copy the sorted input sections back to our list.
+  this->input_sections_.clear();
+  for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
+       p != sort_list.end();
+       ++p)
+    this->input_sections_.push_back(p->input_section());
+
+  // Remember that we sorted the input sections, since we might get
+  // called again.
+  this->attached_input_sections_are_sorted_ = true;
+}
+
+// Write the section header to *OSHDR.
+
+template<int size, bool big_endian>
+void
+Output_section::write_header(const Layout* layout,
+                            const Stringpool* secnamepool,
+                            elfcpp::Shdr_write<size, big_endian>* oshdr) const
+{
+  oshdr->put_sh_name(secnamepool->get_offset(this->name_));
+  oshdr->put_sh_type(this->type_);
+
+  elfcpp::Elf_Xword flags = this->flags_;
+  if (this->info_section_ != NULL && this->info_uses_section_index_)
+    flags |= elfcpp::SHF_INFO_LINK;
+  oshdr->put_sh_flags(flags);
+
+  oshdr->put_sh_addr(this->address());
+  oshdr->put_sh_offset(this->offset());
+  oshdr->put_sh_size(this->data_size());
+  if (this->link_section_ != NULL)
+    oshdr->put_sh_link(this->link_section_->out_shndx());
+  else if (this->should_link_to_symtab_)
+    oshdr->put_sh_link(layout->symtab_section()->out_shndx());
+  else if (this->should_link_to_dynsym_)
+    oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
+  else
+    oshdr->put_sh_link(this->link_);
+
+  elfcpp::Elf_Word info;
+  if (this->info_section_ != NULL)
+    {
+      if (this->info_uses_section_index_)
+       info = this->info_section_->out_shndx();
+      else
+       info = this->info_section_->symtab_index();
+    }
+  else if (this->info_symndx_ != NULL)
+    info = this->info_symndx_->symtab_index();
+  else
+    info = this->info_;
+  oshdr->put_sh_info(info);
+
+  oshdr->put_sh_addralign(this->addralign_);
+  oshdr->put_sh_entsize(this->entsize_);
+}
+
+// Write out the data.  For input sections the data is written out by
+// Object::relocate, but we have to handle Output_section_data objects
+// here.
+
+void
+Output_section::do_write(Output_file* of)
+{
+  gold_assert(!this->requires_postprocessing());
+
+  // If the target performs relaxation, we delay filler generation until now.
+  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
+
+  off_t output_section_file_offset = this->offset();
+  for (Fill_list::iterator p = this->fills_.begin();
+       p != this->fills_.end();
+       ++p)
+    {
+      std::string fill_data(parameters->target().code_fill(p->length()));
+      of->write(output_section_file_offset + p->section_offset(),
+               fill_data.data(), fill_data.size());
+    }
+
+  off_t off = this->offset() + this->first_input_offset_;
+  for (Input_section_list::iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      off_t aligned_off = align_address(off, p->addralign());
+      if (this->generate_code_fills_at_write_ && (off != aligned_off))
+       {
+         size_t fill_len = aligned_off - off;
+         std::string fill_data(parameters->target().code_fill(fill_len));
+         of->write(off, fill_data.data(), fill_data.size());
+       }
+
+      p->write(of);
+      off = aligned_off + p->data_size();
+    }
+}
+
+// If a section requires postprocessing, create the buffer to use.
+
+void
+Output_section::create_postprocessing_buffer()
+{
+  gold_assert(this->requires_postprocessing());
+
+  if (this->postprocessing_buffer_ != NULL)
+    return;
+
+  if (!this->input_sections_.empty())
+    {
+      off_t off = this->first_input_offset_;
+      for (Input_section_list::iterator p = this->input_sections_.begin();
+          p != this->input_sections_.end();
+          ++p)
+       {
+         off = align_address(off, p->addralign());
+         p->finalize_data_size();
+         off += p->data_size();
+       }
+      this->set_current_data_size_for_child(off);
+    }
+
+  off_t buffer_size = this->current_data_size_for_child();
+  this->postprocessing_buffer_ = new unsigned char[buffer_size];
+}
+
+// Write all the data of an Output_section into the postprocessing
+// buffer.  This is used for sections which require postprocessing,
+// such as compression.  Input sections are handled by
+// Object::Relocate.
+
+void
+Output_section::write_to_postprocessing_buffer()
+{
+  gold_assert(this->requires_postprocessing());
+
+  // If the target performs relaxation, we delay filler generation until now.
+  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
+
+  unsigned char* buffer = this->postprocessing_buffer();
+  for (Fill_list::iterator p = this->fills_.begin();
+       p != this->fills_.end();
+       ++p)
+    {
+      std::string fill_data(parameters->target().code_fill(p->length()));
+      memcpy(buffer + p->section_offset(), fill_data.data(),
+            fill_data.size());
+    }
+
+  off_t off = this->first_input_offset_;
+  for (Input_section_list::iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      off_t aligned_off = align_address(off, p->addralign());
+      if (this->generate_code_fills_at_write_ && (off != aligned_off))
+       {
+         size_t fill_len = aligned_off - off;
+         std::string fill_data(parameters->target().code_fill(fill_len));
+         memcpy(buffer + off, fill_data.data(), fill_data.size());
+       }
+
+      p->write_to_buffer(buffer + aligned_off);
+      off = aligned_off + p->data_size();
+    }
+}
+
+// Get the input sections for linker script processing.  We leave
+// behind the Output_section_data entries.  Note that this may be
+// slightly incorrect for merge sections.  We will leave them behind,
+// but it is possible that the script says that they should follow
+// some other input sections, as in:
+//    .rodata { *(.rodata) *(.rodata.cst*) }
+// For that matter, we don't handle this correctly:
+//    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
+// With luck this will never matter.
+
+uint64_t
+Output_section::get_input_sections(
+    uint64_t address,
+    const std::string& fill,
+    std::list<Simple_input_section>* input_sections)
+{
+  if (this->checkpoint_ != NULL
+      && !this->checkpoint_->input_sections_saved())
+    this->checkpoint_->save_input_sections();
+
+  // Invalidate the relaxed input section map.
+  this->is_relaxed_input_section_map_valid_ = false;
+
+  uint64_t orig_address = address;
+
+  address = align_address(address, this->addralign());
+
+  Input_section_list remaining;
+  for (Input_section_list::iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    {
+      if (p->is_input_section())
+       input_sections->push_back(Simple_input_section(p->relobj(),
+                                                      p->shndx()));
+      else if (p->is_relaxed_input_section())
+       input_sections->push_back(
+           Simple_input_section(p->relaxed_input_section()));
+      else
+       {
+         uint64_t aligned_address = align_address(address, p->addralign());
+         if (aligned_address != address && !fill.empty())
+           {
+             section_size_type length =
+               convert_to_section_size_type(aligned_address - address);
+             std::string this_fill;
+             this_fill.reserve(length);
+             while (this_fill.length() + fill.length() <= length)
+               this_fill += fill;
+             if (this_fill.length() < length)
+               this_fill.append(fill, 0, length - this_fill.length());
+
+             Output_section_data* posd = new Output_data_const(this_fill, 0);
+             remaining.push_back(Input_section(posd));
+           }
+         address = aligned_address;
+
+         remaining.push_back(*p);
+
+         p->finalize_data_size();
+         address += p->data_size();
+       }
+    }
+
+  this->input_sections_.swap(remaining);
+  this->first_input_offset_ = 0;
+
+  uint64_t data_size = address - orig_address;
+  this->set_current_data_size_for_child(data_size);
+  return data_size;
+}
+
+// Add an input section from a script.
+
+void
+Output_section::add_input_section_for_script(const Simple_input_section& sis,
+                                            off_t data_size,
+                                            uint64_t addralign)
+{
+  if (addralign > this->addralign_)
+    this->addralign_ = addralign;
+
+  off_t offset_in_section = this->current_data_size_for_child();
+  off_t aligned_offset_in_section = align_address(offset_in_section,
+                                                 addralign);
+
+  this->set_current_data_size_for_child(aligned_offset_in_section
+                                       + data_size);
+
+  Input_section is =
+    (sis.is_relaxed_input_section()
+     ? Input_section(sis.relaxed_input_section())
+     : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
+  this->input_sections_.push_back(is);
+}
+
+//
+
+void
+Output_section::save_states()
+{
+  gold_assert(this->checkpoint_ == NULL);
+  Checkpoint_output_section* checkpoint =
+    new Checkpoint_output_section(this->addralign_, this->flags_,
+                                 this->input_sections_,
+                                 this->first_input_offset_,
+                                 this->attached_input_sections_are_sorted_);
+  this->checkpoint_ = checkpoint;
+  gold_assert(this->fills_.empty());
+}
+
+void
+Output_section::restore_states()
+{
+  gold_assert(this->checkpoint_ != NULL);
+  Checkpoint_output_section* checkpoint = this->checkpoint_;
+
+  this->addralign_ = checkpoint->addralign();
+  this->flags_ = checkpoint->flags();
+  this->first_input_offset_ = checkpoint->first_input_offset();
+
+  if (!checkpoint->input_sections_saved())
+    {
+      // If we have not copied the input sections, just resize it.
+      size_t old_size = checkpoint->input_sections_size();
+      gold_assert(this->input_sections_.size() >= old_size);
+      this->input_sections_.resize(old_size);
+    }
+  else
+    {
+      // We need to copy the whole list.  This is not efficient for
+      // extremely large output with hundreads of thousands of input
+      // objects.  We may need to re-think how we should pass sections
+      // to scripts.
+      this->input_sections_ = *checkpoint->input_sections();
+    }
+
+  this->attached_input_sections_are_sorted_ =
+    checkpoint->attached_input_sections_are_sorted();
+
+  // Simply invalidate the relaxed input section map since we do not keep
+  // track of it.
+  this->is_relaxed_input_section_map_valid_ = false;
+}
+
+// Print to the map file.
+
+void
+Output_section::do_print_to_mapfile(Mapfile* mapfile) const
+{
+  mapfile->print_output_section(this);
+
+  for (Input_section_list::const_iterator p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    p->print_to_mapfile(mapfile);
+}
+
+// Print stats for merge sections to stderr.
+
+void
+Output_section::print_merge_stats()
+{
+  Input_section_list::iterator p;
+  for (p = this->input_sections_.begin();
+       p != this->input_sections_.end();
+       ++p)
+    p->print_merge_stats(this->name_);
+}
+
+// Output segment methods.
+
+Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
+  : output_data_(),
+    output_bss_(),
+    vaddr_(0),
+    paddr_(0),
+    memsz_(0),
+    max_align_(0),
+    min_p_align_(0),
+    offset_(0),
+    filesz_(0),
+    type_(type),
+    flags_(flags),
+    is_max_align_known_(false),
+    are_addresses_set_(false),
+    is_large_data_segment_(false)
+{
+}
+
+// Add an Output_section to an Output_segment.
+
+void
+Output_segment::add_output_section(Output_section* os,
+                                  elfcpp::Elf_Word seg_flags)
+{
+  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
+  gold_assert(!this->is_max_align_known_);
+  gold_assert(os->is_large_data_section() == this->is_large_data_segment());
+
+  // Update the segment flags.
+  this->flags_ |= seg_flags;
+
+  Output_segment::Output_data_list* pdl;
+  if (os->type() == elfcpp::SHT_NOBITS)
+    pdl = &this->output_bss_;
+  else
+    pdl = &this->output_data_;
+
+  // So that PT_NOTE segments will work correctly, we need to ensure
+  // that all SHT_NOTE sections are adjacent.  This will normally
+  // happen automatically, because all the SHT_NOTE input sections
+  // will wind up in the same output section.  However, it is possible
+  // for multiple SHT_NOTE input sections to have different section
+  // flags, and thus be in different output sections, but for the
+  // different section flags to map into the same segment flags and
+  // thus the same output segment.
+
+  // Note that while there may be many input sections in an output
+  // section, there are normally only a few output sections in an
+  // output segment.  This loop is expected to be fast.
+
+  if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
+    {
+      Output_segment::Output_data_list::iterator p = pdl->end();
+      do
+       {
+         --p;
+         if ((*p)->is_section_type(elfcpp::SHT_NOTE))
+           {
+             ++p;
+             pdl->insert(p, os);
+             return;
+           }
+       }
+      while (p != pdl->begin());
+    }
+
+  // Similarly, so that PT_TLS segments will work, we need to group
+  // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
+  // case: we group the SHF_TLS/SHT_NOBITS sections right after the
+  // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
+  // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
+  // and the PT_TLS segment -- we do this grouping only for the
+  // PT_LOAD segment.
+  if (this->type_ != elfcpp::PT_TLS
+      && (os->flags() & elfcpp::SHF_TLS) != 0)
+    {
+      pdl = &this->output_data_;
+      if (!pdl->empty())
+       {
+         bool nobits = os->type() == elfcpp::SHT_NOBITS;
+         bool sawtls = false;
+         Output_segment::Output_data_list::iterator p = pdl->end();
+         gold_assert(p != pdl->begin());
+         do
+           {
+             --p;
+             bool insert;
+             if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+               {
+                 sawtls = true;
+                 // Put a NOBITS section after the first TLS section.
+                 // Put a PROGBITS section after the first
+                 // TLS/PROGBITS section.
+                 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
+               }
+             else
+               {
+                 // If we've gone past the TLS sections, but we've
+                 // seen a TLS section, then we need to insert this
+                 // section now.
+                 insert = sawtls;
+               }
+
+             if (insert)
+               {
+                 ++p;
+                 pdl->insert(p, os);
+                 return;
+               }
+           }
+         while (p != pdl->begin());
+       }
+
+      // There are no TLS sections yet; put this one at the requested
+      // location in the section list.
+    }
+
+  // For the PT_GNU_RELRO segment, we need to group relro sections,
+  // and we need to put them before any non-relro sections.  Also,
+  // relro local sections go before relro non-local sections.
+  if (parameters->options().relro() && os->is_relro())
+    {
+      gold_assert(pdl == &this->output_data_);
+      Output_segment::Output_data_list::iterator p;
+      for (p = pdl->begin(); p != pdl->end(); ++p)
+       {
+         if (!(*p)->is_section())
+           break;
+
+         Output_section* pos = (*p)->output_section();
+         if (!pos->is_relro()
+             || (os->is_relro_local() && !pos->is_relro_local()))
+           break;
+       }
+
+      pdl->insert(p, os);
+      return;
+    }
+
+  // Small data sections go at the end of the list of data sections.
+  // If OS is not small, and there are small sections, we have to
+  // insert it before the first small section.
+  if (os->type() != elfcpp::SHT_NOBITS
+      && !os->is_small_section()
+      && !pdl->empty()
+      && pdl->back()->is_section()
+      && pdl->back()->output_section()->is_small_section())
+    {
+      for (Output_segment::Output_data_list::iterator p = pdl->begin();
+          p != pdl->end();
+          ++p)
+       {
+         if ((*p)->is_section()
+             && (*p)->output_section()->is_small_section())
+           {
+             pdl->insert(p, os);
+             return;
+           }
+       }
+      gold_unreachable();
+    }
+
+  // A small BSS section goes at the start of the BSS sections, after
+  // other small BSS sections.
+  if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
+    {
+      for (Output_segment::Output_data_list::iterator p = pdl->begin();
+          p != pdl->end();
+          ++p)
+       {
+         if (!(*p)->is_section()
+             || !(*p)->output_section()->is_small_section())
+           {
+             pdl->insert(p, os);
+             return;
+           }
+       }
+    }
+
+  // A large BSS section goes at the end of the BSS sections, which
+  // means that one that is not large must come before the first large
+  // one.
+  if (os->type() == elfcpp::SHT_NOBITS
+      && !os->is_large_section()
+      && !pdl->empty()
+      && pdl->back()->is_section()
+      && pdl->back()->output_section()->is_large_section())
+    {
+      for (Output_segment::Output_data_list::iterator p = pdl->begin();
+          p != pdl->end();
+          ++p)
+       {
+         if ((*p)->is_section()
+             && (*p)->output_section()->is_large_section())
+           {
+             pdl->insert(p, os);
+             return;
+           }
+       }
+      gold_unreachable();
+    }
+
+  pdl->push_back(os);
+}
+
+// Remove an Output_section from this segment.  It is an error if it
+// is not present.
+
+void
+Output_segment::remove_output_section(Output_section* os)
+{
+  // We only need this for SHT_PROGBITS.
+  gold_assert(os->type() == elfcpp::SHT_PROGBITS);
+  for (Output_data_list::iterator p = this->output_data_.begin();
+       p != this->output_data_.end();
+       ++p)
+   {
+     if (*p == os)
+       {
+         this->output_data_.erase(p);
+         return;
+       }
+   }
+  gold_unreachable();
+}
+
+// Add an Output_data (which is not an Output_section) to the start of
+// a segment.
+
+void
+Output_segment::add_initial_output_data(Output_data* od)
+{
+  gold_assert(!this->is_max_align_known_);
+  this->output_data_.push_front(od);
+}
+
+// Return whether the first data section is a relro section.
+
+bool
+Output_segment::is_first_section_relro() const
+{
+  return (!this->output_data_.empty()
+         && this->output_data_.front()->is_section()
+         && this->output_data_.front()->output_section()->is_relro());
+}
+
+// Return the maximum alignment of the Output_data in Output_segment.
+
+uint64_t
+Output_segment::maximum_alignment()
+{
+  if (!this->is_max_align_known_)
+    {
+      uint64_t addralign;
+
+      addralign = Output_segment::maximum_alignment_list(&this->output_data_);
+      if (addralign > this->max_align_)
+       this->max_align_ = addralign;
+
+      addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
+      if (addralign > this->max_align_)
+       this->max_align_ = addralign;
+
+      // If -z relro is in effect, and the first section in this
+      // segment is a relro section, then the segment must be aligned
+      // to at least the common page size.  This ensures that the
+      // PT_GNU_RELRO segment will start at a page boundary.
+      if (this->type_ == elfcpp::PT_LOAD
+         && parameters->options().relro()
+         && this->is_first_section_relro())
+       {
+         addralign = parameters->target().common_pagesize();
+         if (addralign > this->max_align_)
+           this->max_align_ = addralign;
+       }
+
+      this->is_max_align_known_ = true;
+    }
+
+  return this->max_align_;
+}
+
+// Return the maximum alignment of a list of Output_data.
+
+uint64_t
+Output_segment::maximum_alignment_list(const Output_data_list* pdl)
+{
+  uint64_t ret = 0;
+  for (Output_data_list::const_iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    {
+      uint64_t addralign = (*p)->addralign();
+      if (addralign > ret)
+       ret = addralign;
+    }
+  return ret;
+}
+
+// Return the number of dynamic relocs applied to this segment.
+
+unsigned int
+Output_segment::dynamic_reloc_count() const
+{
+  return (this->dynamic_reloc_count_list(&this->output_data_)
+         + this->dynamic_reloc_count_list(&this->output_bss_));
+}
+
+// Return the number of dynamic relocs applied to an Output_data_list.
+
+unsigned int
+Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
+{
+  unsigned int count = 0;
+  for (Output_data_list::const_iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    count += (*p)->dynamic_reloc_count();
+  return count;
+}
+
+// Set the section addresses for an Output_segment.  If RESET is true,
+// reset the addresses first.  ADDR is the address and *POFF is the
+// file offset.  Set the section indexes starting with *PSHNDX.
+// Return the address of the immediately following segment.  Update
+// *POFF and *PSHNDX.
+
+uint64_t
+Output_segment::set_section_addresses(const Layout* layout, bool reset,
+                                      uint64_t addr, off_t* poff,
+                                     unsigned int* pshndx)
+{
+  gold_assert(this->type_ == elfcpp::PT_LOAD);
+
+  if (!reset && this->are_addresses_set_)
+    {
+      gold_assert(this->paddr_ == addr);
+      addr = this->vaddr_;
+    }
+  else
+    {
+      this->vaddr_ = addr;
+      this->paddr_ = addr;
+      this->are_addresses_set_ = true;
+    }
+
+  bool in_tls = false;
+
+  bool in_relro = (parameters->options().relro()
+                  && this->is_first_section_relro());
+
+  off_t orig_off = *poff;
+  this->offset_ = orig_off;
+
+  addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
+                                         addr, poff, pshndx, &in_tls,
+                                         &in_relro);
+  this->filesz_ = *poff - orig_off;
+
+  off_t off = *poff;
+
+  uint64_t ret = this->set_section_list_addresses(layout, reset,
+                                                  &this->output_bss_,
+                                                 addr, poff, pshndx,
+                                                  &in_tls, &in_relro);
+
+  // If the last section was a TLS section, align upward to the
+  // alignment of the TLS segment, so that the overall size of the TLS
+  // segment is aligned.
+  if (in_tls)
+    {
+      uint64_t segment_align = layout->tls_segment()->maximum_alignment();
+      *poff = align_address(*poff, segment_align);
+    }
+
+  // If all the sections were relro sections, align upward to the
+  // common page size.
+  if (in_relro)
+    {
+      uint64_t page_align = parameters->target().common_pagesize();
+      *poff = align_address(*poff, page_align);
+    }
+
+  this->memsz_ = *poff - orig_off;
+
+  // Ignore the file offset adjustments made by the BSS Output_data
+  // objects.
+  *poff = off;
+
+  return ret;
+}
+
+// Set the addresses and file offsets in a list of Output_data
+// structures.
+
+uint64_t
+Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
+                                           Output_data_list* pdl,
+                                          uint64_t addr, off_t* poff,
+                                          unsigned int* pshndx,
+                                           bool* in_tls, bool* in_relro)
+{
+  off_t startoff = *poff;
+
+  off_t off = startoff;
+  for (Output_data_list::iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    {
+      if (reset)
+       (*p)->reset_address_and_file_offset();
+
+      // When using a linker script the section will most likely
+      // already have an address.
+      if (!(*p)->is_address_valid())
+       {
+          uint64_t align = (*p)->addralign();
+
+          if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
+            {
+              // Give the first TLS section the alignment of the
+              // entire TLS segment.  Otherwise the TLS segment as a
+              // whole may be misaligned.
+              if (!*in_tls)
+                {
+                  Output_segment* tls_segment = layout->tls_segment();
+                  gold_assert(tls_segment != NULL);
+                  uint64_t segment_align = tls_segment->maximum_alignment();
+                  gold_assert(segment_align >= align);
+                  align = segment_align;
+
+                  *in_tls = true;
+                }
+            }
+          else
+            {
+              // If this is the first section after the TLS segment,
+              // align it to at least the alignment of the TLS
+              // segment, so that the size of the overall TLS segment
+              // is aligned.
+              if (*in_tls)
+                {
+                  uint64_t segment_align =
+                      layout->tls_segment()->maximum_alignment();
+                  if (segment_align > align)
+                    align = segment_align;
+
+                  *in_tls = false;
+                }
+            }
+
+         // If this is a non-relro section after a relro section,
+         // align it to a common page boundary so that the dynamic
+         // linker has a page to mark as read-only.
+         if (*in_relro
+             && (!(*p)->is_section()
+                 || !(*p)->output_section()->is_relro()))
+           {
+             uint64_t page_align = parameters->target().common_pagesize();
+             if (page_align > align)
+               align = page_align;
+             *in_relro = false;
+           }
+
+         off = align_address(off, align);
+         (*p)->set_address_and_file_offset(addr + (off - startoff), off);
+       }
+      else
+       {
+         // The script may have inserted a skip forward, but it
+         // better not have moved backward.
+         if ((*p)->address() >= addr + (off - startoff))
+           off += (*p)->address() - (addr + (off - startoff));
+         else
+           {
+             if (!layout->script_options()->saw_sections_clause())
+               gold_unreachable();
+             else
+               {
+                 Output_section* os = (*p)->output_section();
+                 if (os == NULL)
+                   gold_error(_("dot moves backward in linker script "
+                                "from 0x%llx to 0x%llx"),
+                              addr + (off - startoff), (*p)->address());
+                 else
+                   gold_error(_("address of section '%s' moves backward "
+                                "from 0x%llx to 0x%llx"),
+                              os->name(), addr + (off - startoff),
+                              (*p)->address());
+               }
+           }
+         (*p)->set_file_offset(off);
+         (*p)->finalize_data_size();
+       }
+
+      // We want to ignore the size of a SHF_TLS or SHT_NOBITS
+      // section.  Such a section does not affect the size of a
+      // PT_LOAD segment.
+      if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
+         || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
+       off += (*p)->data_size();
+
+      if ((*p)->is_section())
+       {
+         (*p)->set_out_shndx(*pshndx);
+         ++*pshndx;
+       }
+    }
+
+  *poff = off;
+  return addr + (off - startoff);
+}
+
+// For a non-PT_LOAD segment, set the offset from the sections, if
+// any.
+
+void
+Output_segment::set_offset()
+{
+  gold_assert(this->type_ != elfcpp::PT_LOAD);
+
+  gold_assert(!this->are_addresses_set_);
+
+  if (this->output_data_.empty() && this->output_bss_.empty())
+    {
+      this->vaddr_ = 0;
+      this->paddr_ = 0;
+      this->are_addresses_set_ = true;
+      this->memsz_ = 0;
+      this->min_p_align_ = 0;
+      this->offset_ = 0;
+      this->filesz_ = 0;
+      return;
+    }
+
+  const Output_data* first;
+  if (this->output_data_.empty())
+    first = this->output_bss_.front();
+  else
+    first = this->output_data_.front();
+  this->vaddr_ = first->address();
+  this->paddr_ = (first->has_load_address()
+                 ? first->load_address()
+                 : this->vaddr_);
+  this->are_addresses_set_ = true;
+  this->offset_ = first->offset();
+
+  if (this->output_data_.empty())
+    this->filesz_ = 0;
+  else
+    {
+      const Output_data* last_data = this->output_data_.back();
+      this->filesz_ = (last_data->address()
+                      + last_data->data_size()
+                      - this->vaddr_);
+    }
+
+  const Output_data* last;
+  if (this->output_bss_.empty())
+    last = this->output_data_.back();
+  else
+    last = this->output_bss_.back();
+  this->memsz_ = (last->address()
+                 + last->data_size()
+                 - this->vaddr_);
+
+  // If this is a TLS segment, align the memory size.  The code in
+  // set_section_list ensures that the section after the TLS segment
+  // is aligned to give us room.
+  if (this->type_ == elfcpp::PT_TLS)
+    {
+      uint64_t segment_align = this->maximum_alignment();
+      gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
+      this->memsz_ = align_address(this->memsz_, segment_align);
+    }
+
+  // If this is a RELRO segment, align the memory size.  The code in
+  // set_section_list ensures that the section after the RELRO segment
+  // is aligned to give us room.
+  if (this->type_ == elfcpp::PT_GNU_RELRO)
+    {
+      uint64_t page_align = parameters->target().common_pagesize();
+      gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
+      this->memsz_ = align_address(this->memsz_, page_align);
+    }
+}
+
+// Set the TLS offsets of the sections in the PT_TLS segment.
+
+void
+Output_segment::set_tls_offsets()
+{
+  gold_assert(this->type_ == elfcpp::PT_TLS);
+
+  for (Output_data_list::iterator p = this->output_data_.begin();
+       p != this->output_data_.end();
+       ++p)
+    (*p)->set_tls_offset(this->vaddr_);
+
+  for (Output_data_list::iterator p = this->output_bss_.begin();
+       p != this->output_bss_.end();
+       ++p)
+    (*p)->set_tls_offset(this->vaddr_);
+}
+
+// Return the address of the first section.
+
+uint64_t
+Output_segment::first_section_load_address() const
+{
+  for (Output_data_list::const_iterator p = this->output_data_.begin();
+       p != this->output_data_.end();
+       ++p)
+    if ((*p)->is_section())
+      return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
+
+  for (Output_data_list::const_iterator p = this->output_bss_.begin();
+       p != this->output_bss_.end();
+       ++p)
+    if ((*p)->is_section())
+      return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
+
+  gold_unreachable();
+}
+
+// Return the number of Output_sections in an Output_segment.
+
+unsigned int
+Output_segment::output_section_count() const
+{
+  return (this->output_section_count_list(&this->output_data_)
+         + this->output_section_count_list(&this->output_bss_));
+}
+
+// Return the number of Output_sections in an Output_data_list.
+
+unsigned int
+Output_segment::output_section_count_list(const Output_data_list* pdl) const
+{
+  unsigned int count = 0;
+  for (Output_data_list::const_iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    {
+      if ((*p)->is_section())
+       ++count;
+    }
+  return count;
+}
+
+// Return the section attached to the list segment with the lowest
+// load address.  This is used when handling a PHDRS clause in a
+// linker script.
+
+Output_section*
+Output_segment::section_with_lowest_load_address() const
+{
+  Output_section* found = NULL;
+  uint64_t found_lma = 0;
+  this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
+
+  Output_section* found_data = found;
+  this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
+  if (found != found_data && found_data != NULL)
+    {
+      gold_error(_("nobits section %s may not precede progbits section %s "
+                  "in same segment"),
+                found->name(), found_data->name());
+      return NULL;
+    }
+
+  return found;
+}
+
+// Look through a list for a section with a lower load address.
+
+void
+Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
+                                           Output_section** found,
+                                           uint64_t* found_lma) const
+{
+  for (Output_data_list::const_iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    {
+      if (!(*p)->is_section())
+       continue;
+      Output_section* os = static_cast<Output_section*>(*p);
+      uint64_t lma = (os->has_load_address()
+                     ? os->load_address()
+                     : os->address());
+      if (*found == NULL || lma < *found_lma)
+       {
+         *found = os;
+         *found_lma = lma;
+       }
+    }
+}
+
+// Write the segment data into *OPHDR.
+
+template<int size, bool big_endian>
+void
+Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
+{
+  ophdr->put_p_type(this->type_);
+  ophdr->put_p_offset(this->offset_);
+  ophdr->put_p_vaddr(this->vaddr_);
+  ophdr->put_p_paddr(this->paddr_);
+  ophdr->put_p_filesz(this->filesz_);
+  ophdr->put_p_memsz(this->memsz_);
+  ophdr->put_p_flags(this->flags_);
+  ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
+}
+
+// Write the section headers into V.
+
+template<int size, bool big_endian>
+unsigned char*
+Output_segment::write_section_headers(const Layout* layout,
+                                     const Stringpool* secnamepool,
+                                     unsigned char* v,
+                                     unsigned int *pshndx) const
+{
+  // Every section that is attached to a segment must be attached to a
+  // PT_LOAD segment, so we only write out section headers for PT_LOAD
+  // segments.
+  if (this->type_ != elfcpp::PT_LOAD)
+    return v;
+
+  v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
+                                                        &this->output_data_,
+                                                        v, pshndx);
+  v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
+                                                        &this->output_bss_,
+                                                        v, pshndx);
+  return v;
+}
+
+template<int size, bool big_endian>
+unsigned char*
+Output_segment::write_section_headers_list(const Layout* layout,
+                                          const Stringpool* secnamepool,
+                                          const Output_data_list* pdl,
+                                          unsigned char* v,
+                                          unsigned int* pshndx) const
+{
+  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+  for (Output_data_list::const_iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    {
+      if ((*p)->is_section())
+       {
+         const Output_section* ps = static_cast<const Output_section*>(*p);
+         gold_assert(*pshndx == ps->out_shndx());
+         elfcpp::Shdr_write<size, big_endian> oshdr(v);
+         ps->write_header(layout, secnamepool, &oshdr);
+         v += shdr_size;
+         ++*pshndx;
+       }
+    }
+  return v;
+}
+
+// Print the output sections to the map file.
+
+void
+Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
+{
+  if (this->type() != elfcpp::PT_LOAD)
+    return;
+  this->print_section_list_to_mapfile(mapfile, &this->output_data_);
+  this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
+}
+
+// Print an output section list to the map file.
+
+void
+Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
+                                             const Output_data_list* pdl) const
+{
+  for (Output_data_list::const_iterator p = pdl->begin();
+       p != pdl->end();
+       ++p)
+    (*p)->print_to_mapfile(mapfile);
+}
+
+// Output_file methods.
+
+Output_file::Output_file(const char* name)
+  : name_(name),
+    o_(-1),
+    file_size_(0),
+    base_(NULL),
+    map_is_anonymous_(false),
+    is_temporary_(false)
+{
+}
+
+// Try to open an existing file.  Returns false if the file doesn't
+// exist, has a size of 0 or can't be mmapped.
+
+bool
+Output_file::open_for_modification()
+{
+  // The name "-" means "stdout".
+  if (strcmp(this->name_, "-") == 0)
+    return false;
+
+  // Don't bother opening files with a size of zero.
+  struct stat s;
+  if (::stat(this->name_, &s) != 0 || s.st_size == 0)
+    return false;
+
+  int o = open_descriptor(-1, this->name_, O_RDWR, 0);
+  if (o < 0)
+    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
+  this->o_ = o;
+  this->file_size_ = s.st_size;
+
+  // If the file can't be mmapped, copying the content to an anonymous
+  // map will probably negate the performance benefits of incremental
+  // linking.  This could be helped by using views and loading only
+  // the necessary parts, but this is not supported as of now.
+  if (!this->map_no_anonymous())
+    {
+      release_descriptor(o, true);
+      this->o_ = -1;
+      this->file_size_ = 0;
+      return false;
+    }
+
+  return true;
+}
+
+// Open the output file.
+
+void
+Output_file::open(off_t file_size)
+{
+  this->file_size_ = file_size;
+
+  // Unlink the file first; otherwise the open() may fail if the file
+  // is busy (e.g. it's an executable that's currently being executed).
+  //
+  // However, the linker may be part of a system where a zero-length
+  // file is created for it to write to, with tight permissions (gcc
+  // 2.95 did something like this).  Unlinking the file would work
+  // around those permission controls, so we only unlink if the file
+  // has a non-zero size.  We also unlink only regular files to avoid
+  // trouble with directories/etc.
+  //
+  // If we fail, continue; this command is merely a best-effort attempt
+  // to improve the odds for open().
+
+  // We let the name "-" mean "stdout"
+  if (!this->is_temporary_)
+    {
+      if (strcmp(this->name_, "-") == 0)
+       this->o_ = STDOUT_FILENO;
+      else
+       {
+         struct stat s;
+         if (::stat(this->name_, &s) == 0
+             && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
+           {
+             if (s.st_size != 0)
+               ::unlink(this->name_);
+             else if (!parameters->options().relocatable())
+               {
+                 // If we don't unlink the existing file, add execute
+                 // permission where read permissions already exist
+                 // and where the umask permits.
+                 int mask = ::umask(0);
+                 ::umask(mask);
+                 s.st_mode |= (s.st_mode & 0444) >> 2;
+                 ::chmod(this->name_, s.st_mode & ~mask);
+               }
+           }
+
+         int mode = parameters->options().relocatable() ? 0666 : 0777;
+         int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
+                                 mode);
+         if (o < 0)
+           gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
+         this->o_ = o;
+       }
+    }
+
+  this->map();
+}
+
+// Resize the output file.
+
+void
+Output_file::resize(off_t file_size)
+{
+  // If the mmap is mapping an anonymous memory buffer, this is easy:
+  // just mremap to the new size.  If it's mapping to a file, we want
+  // to unmap to flush to the file, then remap after growing the file.
+  if (this->map_is_anonymous_)
+    {
+      void* base = ::mremap(this->base_, this->file_size_, file_size,
+                            MREMAP_MAYMOVE);
+      if (base == MAP_FAILED)
+        gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
+      this->base_ = static_cast<unsigned char*>(base);
+      this->file_size_ = file_size;
+    }
+  else
+    {
+      this->unmap();
+      this->file_size_ = file_size;
+      if (!this->map_no_anonymous())
+       gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
+    }
+}
+
+// Map an anonymous block of memory which will later be written to the
+// file.  Return whether the map succeeded.
+
+bool
+Output_file::map_anonymous()
+{
+  void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
+                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+  if (base != MAP_FAILED)
+    {
+      this->map_is_anonymous_ = true;
+      this->base_ = static_cast<unsigned char*>(base);
+      return true;
+    }
+  return false;
+}
+
+// Map the file into memory.  Return whether the mapping succeeded.
+
+bool
+Output_file::map_no_anonymous()
+{
+  const int o = this->o_;
+
+  // If the output file is not a regular file, don't try to mmap it;
+  // instead, we'll mmap a block of memory (an anonymous buffer), and
+  // then later write the buffer to the file.
+  void* base;
+  struct stat statbuf;
+  if (o == STDOUT_FILENO || o == STDERR_FILENO
+      || ::fstat(o, &statbuf) != 0
+      || !S_ISREG(statbuf.st_mode)
+      || this->is_temporary_)
+    return false;
+
+  // Ensure that we have disk space available for the file.  If we
+  // don't do this, it is possible that we will call munmap, close,
+  // and exit with dirty buffers still in the cache with no assigned
+  // disk blocks.  If the disk is out of space at that point, the
+  // output file will wind up incomplete, but we will have already
+  // exited.  The alternative to fallocate would be to use fdatasync,
+  // but that would be a more significant performance hit.
+  if (::posix_fallocate(o, 0, this->file_size_) < 0)
+    gold_fatal(_("%s: %s"), this->name_, strerror(errno));
+
+  // Map the file into memory.
+  base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
+               MAP_SHARED, o, 0);
+
+  // The mmap call might fail because of file system issues: the file
+  // system might not support mmap at all, or it might not support
+  // mmap with PROT_WRITE.
+  if (base == MAP_FAILED)
+    return false;
+
+  this->map_is_anonymous_ = false;
+  this->base_ = static_cast<unsigned char*>(base);
+  return true;
+}
+
+// Map the file into memory.
+
+void
+Output_file::map()
+{
+  if (this->map_no_anonymous())
+    return;
+
+  // The mmap call might fail because of file system issues: the file
+  // system might not support mmap at all, or it might not support
+  // mmap with PROT_WRITE.  I'm not sure which errno values we will
+  // see in all cases, so if the mmap fails for any reason and we
+  // don't care about file contents, try for an anonymous map.
+  if (this->map_anonymous())
+    return;
+
+  gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
+             this->name_, static_cast<unsigned long>(this->file_size_),
+             strerror(errno));
+}
+
+// Unmap the file from memory.
+
+void
+Output_file::unmap()
+{
+  if (::munmap(this->base_, this->file_size_) < 0)
+    gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
+  this->base_ = NULL;
+}
+
+// Close the output file.
+
+void
+Output_file::close()
+{
+  // If the map isn't file-backed, we need to write it now.
+  if (this->map_is_anonymous_ && !this->is_temporary_)
+    {
+      size_t bytes_to_write = this->file_size_;
+      size_t offset = 0;
+      while (bytes_to_write > 0)
+        {
+          ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
+                                          bytes_to_write);
+          if (bytes_written == 0)
+            gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
+          else if (bytes_written < 0)
+            gold_error(_("%s: write: %s"), this->name_, strerror(errno));
+          else
+            {
+              bytes_to_write -= bytes_written;
+              offset += bytes_written;
+            }
+        }
+    }
+  this->unmap();
+
+  // We don't close stdout or stderr
+  if (this->o_ != STDOUT_FILENO
+      && this->o_ != STDERR_FILENO
+      && !this->is_temporary_)
+    if (::close(this->o_) < 0)
+      gold_error(_("%s: close: %s"), this->name_, strerror(errno));
+  this->o_ = -1;
+}
+
+// Instantiate the templates we need.  We could use the configure
+// script to restrict this to only the ones for implemented targets.
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+off_t
+Output_section::add_input_section<32, false>(
+    Sized_relobj<32, false>* object,
+    unsigned int shndx,
+    const char* secname,
+    const elfcpp::Shdr<32, false>& shdr,
+    unsigned int reloc_shndx,
+    bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+off_t
+Output_section::add_input_section<32, true>(
+    Sized_relobj<32, true>* object,
+    unsigned int shndx,
+    const char* secname,
+    const elfcpp::Shdr<32, true>& shdr,
+    unsigned int reloc_shndx,
+    bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+off_t
+Output_section::add_input_section<64, false>(
+    Sized_relobj<64, false>* object,
+    unsigned int shndx,
+    const char* secname,
+    const elfcpp::Shdr<64, false>& shdr,
+    unsigned int reloc_shndx,
+    bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+off_t
+Output_section::add_input_section<64, true>(
+    Sized_relobj<64, true>* object,
+    unsigned int shndx,
+    const char* secname,
+    const elfcpp::Shdr<64, true>& shdr,
+    unsigned int reloc_shndx,
+    bool have_sections_script);
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_group<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_group<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_group<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_group<64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Output_data_got<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Output_data_got<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Output_data_got<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Output_data_got<64, true>;
+#endif
+
+} // End namespace gold.