]> oss.titaniummirror.com Git - msp430-gcc.git/blobdiff - gcc/config/soft-fp/op-1.h
Imported gcc-4.4.3
[msp430-gcc.git] / gcc / config / soft-fp / op-1.h
diff --git a/gcc/config/soft-fp/op-1.h b/gcc/config/soft-fp/op-1.h
new file mode 100644 (file)
index 0000000..35cd0ba
--- /dev/null
@@ -0,0 +1,302 @@
+/* Software floating-point emulation.
+   Basic one-word fraction declaration and manipulation.
+   Copyright (C) 1997,1998,1999,2006 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Richard Henderson (rth@cygnus.com),
+                 Jakub Jelinek (jj@ultra.linux.cz),
+                 David S. Miller (davem@redhat.com) and
+                 Peter Maydell (pmaydell@chiark.greenend.org.uk).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   In addition to the permissions in the GNU Lesser General Public
+   License, the Free Software Foundation gives you unlimited
+   permission to link the compiled version of this file into
+   combinations with other programs, and to distribute those
+   combinations without any restriction coming from the use of this
+   file.  (The Lesser General Public License restrictions do apply in
+   other respects; for example, they cover modification of the file,
+   and distribution when not linked into a combine executable.)
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, write to the Free
+   Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
+   MA 02110-1301, USA.  */
+
+#define _FP_FRAC_DECL_1(X)     _FP_W_TYPE X##_f
+#define _FP_FRAC_COPY_1(D,S)   (D##_f = S##_f)
+#define _FP_FRAC_SET_1(X,I)    (X##_f = I)
+#define _FP_FRAC_HIGH_1(X)     (X##_f)
+#define _FP_FRAC_LOW_1(X)      (X##_f)
+#define _FP_FRAC_WORD_1(X,w)   (X##_f)
+
+#define _FP_FRAC_ADDI_1(X,I)   (X##_f += I)
+#define _FP_FRAC_SLL_1(X,N)                    \
+  do {                                         \
+    if (__builtin_constant_p(N) && (N) == 1)   \
+      X##_f += X##_f;                          \
+    else                                       \
+      X##_f <<= (N);                           \
+  } while (0)
+#define _FP_FRAC_SRL_1(X,N)    (X##_f >>= N)
+
+/* Right shift with sticky-lsb.  */
+#define _FP_FRAC_SRST_1(X,S,N,sz)      __FP_FRAC_SRST_1(X##_f, S, N, sz)
+#define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
+
+#define __FP_FRAC_SRST_1(X,S,N,sz)                     \
+do {                                                   \
+  S = (__builtin_constant_p(N) && (N) == 1             \
+       ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \
+  X = X >> (N);                                                \
+} while (0)
+
+#define __FP_FRAC_SRS_1(X,N,sz)                                                \
+   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1               \
+                    ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
+
+#define _FP_FRAC_ADD_1(R,X,Y)  (R##_f = X##_f + Y##_f)
+#define _FP_FRAC_SUB_1(R,X,Y)  (R##_f = X##_f - Y##_f)
+#define _FP_FRAC_DEC_1(X,Y)    (X##_f -= Y##_f)
+#define _FP_FRAC_CLZ_1(z, X)   __FP_CLZ(z, X##_f)
+
+/* Predicates */
+#define _FP_FRAC_NEGP_1(X)     ((_FP_WS_TYPE)X##_f < 0)
+#define _FP_FRAC_ZEROP_1(X)    (X##_f == 0)
+#define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
+#define _FP_FRAC_CLEAR_OVERP_1(fs,X)   (X##_f &= ~_FP_OVERFLOW_##fs)
+#define _FP_FRAC_EQ_1(X, Y)    (X##_f == Y##_f)
+#define _FP_FRAC_GE_1(X, Y)    (X##_f >= Y##_f)
+#define _FP_FRAC_GT_1(X, Y)    (X##_f > Y##_f)
+
+#define _FP_ZEROFRAC_1         0
+#define _FP_MINFRAC_1          1
+#define _FP_MAXFRAC_1          (~(_FP_WS_TYPE)0)
+
+/*
+ * Unpack the raw bits of a native fp value.  Do not classify or
+ * normalize the data.
+ */
+
+#define _FP_UNPACK_RAW_1(fs, X, val)                           \
+  do {                                                         \
+    union _FP_UNION_##fs _flo; _flo.flt = (val);               \
+                                                               \
+    X##_f = _flo.bits.frac;                                    \
+    X##_e = _flo.bits.exp;                                     \
+    X##_s = _flo.bits.sign;                                    \
+  } while (0)
+
+#define _FP_UNPACK_RAW_1_P(fs, X, val)                         \
+  do {                                                         \
+    union _FP_UNION_##fs *_flo =                               \
+      (union _FP_UNION_##fs *)(val);                           \
+                                                               \
+    X##_f = _flo->bits.frac;                                   \
+    X##_e = _flo->bits.exp;                                    \
+    X##_s = _flo->bits.sign;                                   \
+  } while (0)
+
+/*
+ * Repack the raw bits of a native fp value.
+ */
+
+#define _FP_PACK_RAW_1(fs, val, X)                             \
+  do {                                                         \
+    union _FP_UNION_##fs _flo;                                 \
+                                                               \
+    _flo.bits.frac = X##_f;                                    \
+    _flo.bits.exp  = X##_e;                                    \
+    _flo.bits.sign = X##_s;                                    \
+                                                               \
+    (val) = _flo.flt;                                          \
+  } while (0)
+
+#define _FP_PACK_RAW_1_P(fs, val, X)                           \
+  do {                                                         \
+    union _FP_UNION_##fs *_flo =                               \
+      (union _FP_UNION_##fs *)(val);                           \
+                                                               \
+    _flo->bits.frac = X##_f;                                   \
+    _flo->bits.exp  = X##_e;                                   \
+    _flo->bits.sign = X##_s;                                   \
+  } while (0)
+
+
+/*
+ * Multiplication algorithms:
+ */
+
+/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
+   multiplication immediately.  */
+
+#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)                         \
+  do {                                                                 \
+    R##_f = X##_f * Y##_f;                                             \
+    /* Normalize since we know where the msb of the multiplicands      \
+       were (bit B), we know that the msb of the of the product is     \
+       at either 2B or 2B-1.  */                                       \
+    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);                       \
+  } while (0)
+
+/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
+
+#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)                  \
+  do {                                                                 \
+    _FP_W_TYPE _Z_f0, _Z_f1;                                           \
+    doit(_Z_f1, _Z_f0, X##_f, Y##_f);                                  \
+    /* Normalize since we know where the msb of the multiplicands      \
+       were (bit B), we know that the msb of the of the product is     \
+       at either 2B or 2B-1.  */                                       \
+    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);                      \
+    R##_f = _Z_f0;                                                     \
+  } while (0)
+
+/* Finally, a simple widening multiply algorithm.  What fun!  */
+
+#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)                                \
+  do {                                                                 \
+    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;         \
+                                                                       \
+    /* split the words in half */                                      \
+    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);                                        \
+    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);                \
+    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);                                        \
+    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);                \
+                                                                       \
+    /* multiply the pieces */                                          \
+    _z_f0 = _xl * _yl;                                                 \
+    _a_f0 = _xh * _yl;                                                 \
+    _a_f1 = _xl * _yh;                                                 \
+    _z_f1 = _xh * _yh;                                                 \
+                                                                       \
+    /* reassemble into two full words */                               \
+    if ((_a_f0 += _a_f1) < _a_f1)                                      \
+      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);                   \
+    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);                              \
+    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);                              \
+    _FP_FRAC_ADD_2(_z, _z, _a);                                                \
+                                                                       \
+    /* normalize */                                                    \
+    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);                    \
+    R##_f = _z_f0;                                                     \
+  } while (0)
+
+
+/*
+ * Division algorithms:
+ */
+
+/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
+   division immediately.  Give this macro either _FP_DIV_HELP_imm for
+   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
+   choose will depend on what the compiler does with divrem4.  */
+
+#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)          \
+  do {                                                 \
+    _FP_W_TYPE _q, _r;                                 \
+    X##_f <<= (X##_f < Y##_f                           \
+              ? R##_e--, _FP_WFRACBITS_##fs            \
+              : _FP_WFRACBITS_##fs - 1);               \
+    doit(_q, _r, X##_f, Y##_f);                                \
+    R##_f = _q | (_r != 0);                            \
+  } while (0)
+
+/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
+   that may be useful in this situation.  This first is for a primitive
+   that requires normalization, the second for one that does not.  Look
+   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
+
+#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)                          \
+  do {                                                                 \
+    _FP_W_TYPE _nh, _nl, _q, _r, _y;                                   \
+                                                                       \
+    /* Normalize Y -- i.e. make the most significant bit set.  */      \
+    _y = Y##_f << _FP_WFRACXBITS_##fs;                                 \
+                                                                       \
+    /* Shift X op correspondingly high, that is, up one full word.  */ \
+    if (X##_f < Y##_f)                                                 \
+      {                                                                        \
+       R##_e--;                                                        \
+       _nl = 0;                                                        \
+       _nh = X##_f;                                                    \
+      }                                                                        \
+    else                                                               \
+      {                                                                        \
+       _nl = X##_f << (_FP_W_TYPE_SIZE - 1);                           \
+       _nh = X##_f >> 1;                                               \
+      }                                                                        \
+                                                                       \
+    udiv_qrnnd(_q, _r, _nh, _nl, _y);                                  \
+    R##_f = _q | (_r != 0);                                            \
+  } while (0)
+
+#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)               \
+  do {                                                 \
+    _FP_W_TYPE _nh, _nl, _q, _r;                       \
+    if (X##_f < Y##_f)                                 \
+      {                                                        \
+       R##_e--;                                        \
+       _nl = X##_f << _FP_WFRACBITS_##fs;              \
+       _nh = X##_f >> _FP_WFRACXBITS_##fs;             \
+      }                                                        \
+    else                                               \
+      {                                                        \
+       _nl = X##_f << (_FP_WFRACBITS_##fs - 1);        \
+       _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);       \
+      }                                                        \
+    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);               \
+    R##_f = _q | (_r != 0);                            \
+  } while (0)
+  
+  
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ */
+#define _FP_SQRT_MEAT_1(R, S, T, X, q)                 \
+  do {                                                 \
+    while (q != _FP_WORK_ROUND)                                \
+      {                                                        \
+        T##_f = S##_f + q;                             \
+        if (T##_f <= X##_f)                            \
+          {                                            \
+            S##_f = T##_f + q;                         \
+            X##_f -= T##_f;                            \
+            R##_f += q;                                        \
+          }                                            \
+        _FP_FRAC_SLL_1(X, 1);                          \
+        q >>= 1;                                       \
+      }                                                        \
+    if (X##_f)                                         \
+      {                                                        \
+       if (S##_f < X##_f)                              \
+         R##_f |= _FP_WORK_ROUND;                      \
+       R##_f |= _FP_WORK_STICKY;                       \
+      }                                                        \
+  } while (0)
+
+/*
+ * Assembly/disassembly for converting to/from integral types.  
+ * No shifting or overflow handled here.
+ */
+
+#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)       (r = X##_f)
+#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)    (X##_f = r)
+
+
+/*
+ * Convert FP values between word sizes
+ */
+
+#define _FP_FRAC_COPY_1_1(D, S)                (D##_f = S##_f)