]> oss.titaniummirror.com Git - msp430-gcc.git/blobdiff - libjava/java/lang/e_exp.c
Imported gcc-4.4.3
[msp430-gcc.git] / libjava / java / lang / e_exp.c
diff --git a/libjava/java/lang/e_exp.c b/libjava/java/lang/e_exp.c
deleted file mode 100644 (file)
index e11ca8b..0000000
+++ /dev/null
@@ -1,167 +0,0 @@
-
-/* @(#)e_exp.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_exp(x)
- * Returns the exponential of x.
- *
- * Method
- *   1. Argument reduction:
- *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
- *     Given x, find r and integer k such that
- *
- *               x = k*ln2 + r,  |r| <= 0.5*ln2.
- *
- *      Here r will be represented as r = hi-lo for better
- *     accuracy.
- *
- *   2. Approximation of exp(r) by a special rational function on
- *     the interval [0,0.34658]:
- *     Write
- *         R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
- *      We use a special Reme algorithm on [0,0.34658] to generate
- *     a polynomial of degree 5 to approximate R. The maximum error
- *     of this polynomial approximation is bounded by 2**-59. In
- *     other words,
- *         R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
- *     (where z=r*r, and the values of P1 to P5 are listed below)
- *     and
- *         |                  5          |     -59
- *         | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
- *         |                             |
- *     The computation of exp(r) thus becomes
- *                             2*r
- *             exp(r) = 1 + -------
- *                           R - r
- *                                 r*R1(r)
- *                    = 1 + r + ----------- (for better accuracy)
- *                               2 - R1(r)
- *     where
- *                              2       4             10
- *             R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
- *
- *   3. Scale back to obtain exp(x):
- *     From step 1, we have
- *        exp(x) = 2^k * exp(r)
- *
- * Special cases:
- *     exp(INF) is INF, exp(NaN) is NaN;
- *     exp(-INF) is 0, and
- *     for finite argument, only exp(0)=1 is exact.
- *
- * Accuracy:
- *     according to an error analysis, the error is always less than
- *     1 ulp (unit in the last place).
- *
- * Misc. info.
- *     For IEEE double
- *         if x >  7.09782712893383973096e+02 then exp(x) overflow
- *         if x < -7.45133219101941108420e+02 then exp(x) underflow
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one    = 1.0,
-halF[2]        = {0.5,-0.5,},
-huge   = 1.0e+300,
-twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
-o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
-u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
-ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
-            -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
-ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
-            -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
-invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
-P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
-
-
-#ifdef __STDC__
-       double __ieee754_exp(double x)  /* default IEEE double exp */
-#else
-       double __ieee754_exp(x) /* default IEEE double exp */
-       double x;
-#endif
-{
-       double y,hi,lo,c,t;
-       int32_t k,xsb;
-       uint32_t hx;
-
-       GET_HIGH_WORD(hx,x);
-       xsb = (hx>>31)&1;               /* sign bit of x */
-       hx &= 0x7fffffff;               /* high word of |x| */
-
-    /* filter out non-finite argument */
-       if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
-            if(hx>=0x7ff00000) {
-               uint32_t lx;
-               GET_LOW_WORD(lx,x);
-               if(((hx&0xfffff)|lx)!=0)
-                    return x+x;                /* NaN */
-               else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
-           }
-           if(x > o_threshold) return huge*huge; /* overflow */
-           if(x < u_threshold) return twom1000*twom1000; /* underflow */
-       }
-
-    /* argument reduction */
-       if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
-           if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
-               hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
-           } else {
-               k  = invln2*x+halF[xsb];
-               t  = k;
-               hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
-               lo = t*ln2LO[0];
-           }
-           x  = hi - lo;
-       }
-       else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
-           if(huge+x>one) return one+x;/* trigger inexact */
-       }
-       else k = 0;
-
-    /* x is now in primary range */
-       t  = x*x;
-       c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-       if(k==0)        return one-((x*c)/(c-2.0)-x);
-       else            y = one-((lo-(x*c)/(2.0-c))-hi);
-       if(k >= -1021) {
-           uint32_t hy;
-           GET_HIGH_WORD(hy,y);
-           SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */
-           return y;
-       } else {
-           uint32_t hy;
-           GET_HIGH_WORD(hy,y);
-           SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
-           return y*twom1000;
-       }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */