]> oss.titaniummirror.com Git - msp430-gcc.git/blobdiff - libstdc++-v3/include/ext/bitmap_allocator.h
Imported gcc-4.4.3
[msp430-gcc.git] / libstdc++-v3 / include / ext / bitmap_allocator.h
diff --git a/libstdc++-v3/include/ext/bitmap_allocator.h b/libstdc++-v3/include/ext/bitmap_allocator.h
new file mode 100644 (file)
index 0000000..3ad08fb
--- /dev/null
@@ -0,0 +1,1145 @@
+// Bitmap Allocator. -*- C++ -*-
+
+// Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
+// Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library.  This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// Under Section 7 of GPL version 3, you are granted additional
+// permissions described in the GCC Runtime Library Exception, version
+// 3.1, as published by the Free Software Foundation.
+
+// You should have received a copy of the GNU General Public License and
+// a copy of the GCC Runtime Library Exception along with this program;
+// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+// <http://www.gnu.org/licenses/>.
+
+/** @file ext/bitmap_allocator.h
+ *  This file is a GNU extension to the Standard C++ Library.
+ */
+
+#ifndef _BITMAP_ALLOCATOR_H
+#define _BITMAP_ALLOCATOR_H 1
+
+#include <cstddef> // For std::size_t, and ptrdiff_t.
+#include <bits/functexcept.h> // For __throw_bad_alloc().
+#include <utility> // For std::pair.
+#include <functional> // For greater_equal, and less_equal.
+#include <new> // For operator new.
+#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
+#include <ext/concurrence.h>
+#include <bits/move.h>
+
+/** @brief The constant in the expression below is the alignment
+ * required in bytes.
+ */
+#define _BALLOC_ALIGN_BYTES 8
+
+_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
+
+  using std::size_t;
+  using std::ptrdiff_t;
+
+  namespace __detail
+  {
+    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
+     *
+     *  @brief  __mini_vector<> is a stripped down version of the
+     *  full-fledged std::vector<>.
+     *
+     *  It is to be used only for built-in types or PODs. Notable
+     *  differences are:
+     * 
+     *  @detail
+     *  1. Not all accessor functions are present.
+     *  2. Used ONLY for PODs.
+     *  3. No Allocator template argument. Uses ::operator new() to get
+     *  memory, and ::operator delete() to free it.
+     *  Caveat: The dtor does NOT free the memory allocated, so this a
+     *  memory-leaking vector!
+     */
+    template<typename _Tp>
+      class __mini_vector
+      {
+       __mini_vector(const __mini_vector&);
+       __mini_vector& operator=(const __mini_vector&);
+
+      public:
+       typedef _Tp value_type;
+       typedef _Tp* pointer;
+       typedef _Tp& reference;
+       typedef const _Tp& const_reference;
+       typedef size_t size_type;
+       typedef ptrdiff_t difference_type;
+       typedef pointer iterator;
+
+      private:
+       pointer _M_start;
+       pointer _M_finish;
+       pointer _M_end_of_storage;
+
+       size_type
+       _M_space_left() const throw()
+       { return _M_end_of_storage - _M_finish; }
+
+       pointer
+       allocate(size_type __n)
+       { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
+
+       void
+       deallocate(pointer __p, size_type)
+       { ::operator delete(__p); }
+
+      public:
+       // Members used: size(), push_back(), pop_back(),
+       // insert(iterator, const_reference), erase(iterator),
+       // begin(), end(), back(), operator[].
+
+       __mini_vector() : _M_start(0), _M_finish(0), 
+                         _M_end_of_storage(0)
+       { }
+
+#if 0
+       ~__mini_vector()
+       {
+         if (this->_M_start)
+           {
+             this->deallocate(this->_M_start, this->_M_end_of_storage 
+                              - this->_M_start);
+           }
+       }
+#endif
+
+       size_type
+       size() const throw()
+       { return _M_finish - _M_start; }
+
+       iterator
+       begin() const throw()
+       { return this->_M_start; }
+
+       iterator
+       end() const throw()
+       { return this->_M_finish; }
+
+       reference
+       back() const throw()
+       { return *(this->end() - 1); }
+
+       reference
+       operator[](const size_type __pos) const throw()
+       { return this->_M_start[__pos]; }
+
+       void
+       insert(iterator __pos, const_reference __x);
+
+       void
+       push_back(const_reference __x)
+       {
+         if (this->_M_space_left())
+           {
+             *this->end() = __x;
+             ++this->_M_finish;
+           }
+         else
+           this->insert(this->end(), __x);
+       }
+
+       void
+       pop_back() throw()
+       { --this->_M_finish; }
+
+       void
+       erase(iterator __pos) throw();
+
+       void
+       clear() throw()
+       { this->_M_finish = this->_M_start; }
+      };
+
+    // Out of line function definitions.
+    template<typename _Tp>
+      void __mini_vector<_Tp>::
+      insert(iterator __pos, const_reference __x)
+      {
+       if (this->_M_space_left())
+         {
+           size_type __to_move = this->_M_finish - __pos;
+           iterator __dest = this->end();
+           iterator __src = this->end() - 1;
+
+           ++this->_M_finish;
+           while (__to_move)
+             {
+               *__dest = *__src;
+               --__dest; --__src; --__to_move;
+             }
+           *__pos = __x;
+         }
+       else
+         {
+           size_type __new_size = this->size() ? this->size() * 2 : 1;
+           iterator __new_start = this->allocate(__new_size);
+           iterator __first = this->begin();
+           iterator __start = __new_start;
+           while (__first != __pos)
+             {
+               *__start = *__first;
+               ++__start; ++__first;
+             }
+           *__start = __x;
+           ++__start;
+           while (__first != this->end())
+             {
+               *__start = *__first;
+               ++__start; ++__first;
+             }
+           if (this->_M_start)
+             this->deallocate(this->_M_start, this->size());
+
+           this->_M_start = __new_start;
+           this->_M_finish = __start;
+           this->_M_end_of_storage = this->_M_start + __new_size;
+         }
+      }
+
+    template<typename _Tp>
+      void __mini_vector<_Tp>::
+      erase(iterator __pos) throw()
+      {
+       while (__pos + 1 != this->end())
+         {
+           *__pos = __pos[1];
+           ++__pos;
+         }
+       --this->_M_finish;
+      }
+
+
+    template<typename _Tp>
+      struct __mv_iter_traits
+      {
+       typedef typename _Tp::value_type value_type;
+       typedef typename _Tp::difference_type difference_type;
+      };
+
+    template<typename _Tp>
+      struct __mv_iter_traits<_Tp*>
+      {
+       typedef _Tp value_type;
+       typedef ptrdiff_t difference_type;
+      };
+
+    enum 
+      { 
+       bits_per_byte = 8,
+       bits_per_block = sizeof(size_t) * size_t(bits_per_byte) 
+      };
+
+    template<typename _ForwardIterator, typename _Tp, typename _Compare>
+      _ForwardIterator
+      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
+                   const _Tp& __val, _Compare __comp)
+      {
+       typedef typename __mv_iter_traits<_ForwardIterator>::value_type
+         _ValueType;
+       typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
+         _DistanceType;
+
+       _DistanceType __len = __last - __first;
+       _DistanceType __half;
+       _ForwardIterator __middle;
+
+       while (__len > 0)
+         {
+           __half = __len >> 1;
+           __middle = __first;
+           __middle += __half;
+           if (__comp(*__middle, __val))
+             {
+               __first = __middle;
+               ++__first;
+               __len = __len - __half - 1;
+             }
+           else
+             __len = __half;
+         }
+       return __first;
+      }
+
+    template<typename _InputIterator, typename _Predicate>
+      inline _InputIterator
+      __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
+      {
+       while (__first != __last && !__p(*__first))
+         ++__first;
+       return __first;
+      }
+
+    /** @brief The number of Blocks pointed to by the address pair
+     *  passed to the function.
+     */
+    template<typename _AddrPair>
+      inline size_t
+      __num_blocks(_AddrPair __ap)
+      { return (__ap.second - __ap.first) + 1; }
+
+    /** @brief The number of Bit-maps pointed to by the address pair
+     *  passed to the function.
+     */
+    template<typename _AddrPair>
+      inline size_t
+      __num_bitmaps(_AddrPair __ap)
+      { return __num_blocks(__ap) / size_t(bits_per_block); }
+
+    // _Tp should be a pointer type.
+    template<typename _Tp>
+      class _Inclusive_between 
+      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
+      {
+       typedef _Tp pointer;
+       pointer _M_ptr_value;
+       typedef typename std::pair<_Tp, _Tp> _Block_pair;
+       
+      public:
+       _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
+       { }
+       
+       bool 
+       operator()(_Block_pair __bp) const throw()
+       {
+         if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
+             && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
+           return true;
+         else
+           return false;
+       }
+      };
+  
+    // Used to pass a Functor to functions by reference.
+    template<typename _Functor>
+      class _Functor_Ref 
+      : public std::unary_function<typename _Functor::argument_type, 
+                                  typename _Functor::result_type>
+      {
+       _Functor& _M_fref;
+       
+      public:
+       typedef typename _Functor::argument_type argument_type;
+       typedef typename _Functor::result_type result_type;
+
+       _Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
+       { }
+
+       result_type 
+       operator()(argument_type __arg) 
+       { return _M_fref(__arg); }
+      };
+
+    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
+     *
+     *  @brief  The class which acts as a predicate for applying the
+     *  first-fit memory allocation policy for the bitmap allocator.
+     */
+    // _Tp should be a pointer type, and _Alloc is the Allocator for
+    // the vector.
+    template<typename _Tp>
+      class _Ffit_finder 
+      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
+      {
+       typedef typename std::pair<_Tp, _Tp> _Block_pair;
+       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
+       typedef typename _BPVector::difference_type _Counter_type;
+
+       size_t* _M_pbitmap;
+       _Counter_type _M_data_offset;
+
+      public:
+       _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
+       { }
+
+       bool 
+       operator()(_Block_pair __bp) throw()
+       {
+         // Set the _rover to the last physical location bitmap,
+         // which is the bitmap which belongs to the first free
+         // block. Thus, the bitmaps are in exact reverse order of
+         // the actual memory layout. So, we count down the bitmaps,
+         // which is the same as moving up the memory.
+
+         // If the used count stored at the start of the Bit Map headers
+         // is equal to the number of Objects that the current Block can
+         // store, then there is definitely no space for another single
+         // object, so just return false.
+         _Counter_type __diff = 
+           __gnu_cxx::__detail::__num_bitmaps(__bp);
+
+         if (*(reinterpret_cast<size_t*>
+               (__bp.first) - (__diff + 1))
+             == __gnu_cxx::__detail::__num_blocks(__bp))
+           return false;
+
+         size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
+
+         for (_Counter_type __i = 0; __i < __diff; ++__i)
+           {
+             _M_data_offset = __i;
+             if (*__rover)
+               {
+                 _M_pbitmap = __rover;
+                 return true;
+               }
+             --__rover;
+           }
+         return false;
+       }
+
+    
+       size_t*
+       _M_get() const throw()
+       { return _M_pbitmap; }
+
+       _Counter_type
+       _M_offset() const throw()
+       { return _M_data_offset * size_t(bits_per_block); }
+      };
+
+
+    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
+     *
+     *  @brief  The bitmap counter which acts as the bitmap
+     *  manipulator, and manages the bit-manipulation functions and
+     *  the searching and identification functions on the bit-map.
+     */
+    // _Tp should be a pointer type.
+    template<typename _Tp>
+      class _Bitmap_counter
+      {
+       typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
+       _BPVector;
+       typedef typename _BPVector::size_type _Index_type;
+       typedef _Tp pointer;
+    
+       _BPVector& _M_vbp;
+       size_t* _M_curr_bmap;
+       size_t* _M_last_bmap_in_block;
+       _Index_type _M_curr_index;
+    
+      public:
+       // Use the 2nd parameter with care. Make sure that such an
+       // entry exists in the vector before passing that particular
+       // index to this ctor.
+       _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
+       { this->_M_reset(__index); }
+    
+       void 
+       _M_reset(long __index = -1) throw()
+       {
+         if (__index == -1)
+           {
+             _M_curr_bmap = 0;
+             _M_curr_index = static_cast<_Index_type>(-1);
+             return;
+           }
+
+         _M_curr_index = __index;
+         _M_curr_bmap = reinterpret_cast<size_t*>
+           (_M_vbp[_M_curr_index].first) - 1;
+         
+         _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
+       
+         _M_last_bmap_in_block = _M_curr_bmap
+           - ((_M_vbp[_M_curr_index].second 
+               - _M_vbp[_M_curr_index].first + 1) 
+              / size_t(bits_per_block) - 1);
+       }
+    
+       // Dangerous Function! Use with extreme care. Pass to this
+       // function ONLY those values that are known to be correct,
+       // otherwise this will mess up big time.
+       void
+       _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
+       { _M_curr_bmap = __new_internal_marker; }
+    
+       bool
+       _M_finished() const throw()
+       { return(_M_curr_bmap == 0); }
+    
+       _Bitmap_counter&
+       operator++() throw()
+       {
+         if (_M_curr_bmap == _M_last_bmap_in_block)
+           {
+             if (++_M_curr_index == _M_vbp.size())
+               _M_curr_bmap = 0;
+             else
+               this->_M_reset(_M_curr_index);
+           }
+         else
+           --_M_curr_bmap;
+         return *this;
+       }
+    
+       size_t*
+       _M_get() const throw()
+       { return _M_curr_bmap; }
+    
+       pointer 
+       _M_base() const throw()
+       { return _M_vbp[_M_curr_index].first; }
+
+       _Index_type
+       _M_offset() const throw()
+       {
+         return size_t(bits_per_block)
+           * ((reinterpret_cast<size_t*>(this->_M_base()) 
+               - _M_curr_bmap) - 1);
+       }
+    
+       _Index_type
+       _M_where() const throw()
+       { return _M_curr_index; }
+      };
+
+    /** @brief  Mark a memory address as allocated by re-setting the
+     *  corresponding bit in the bit-map.
+     */
+    inline void 
+    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
+    {
+      size_t __mask = 1 << __pos;
+      __mask = ~__mask;
+      *__pbmap &= __mask;
+    }
+  
+    /** @brief  Mark a memory address as free by setting the
+     *  corresponding bit in the bit-map.
+     */
+    inline void 
+    __bit_free(size_t* __pbmap, size_t __pos) throw()
+    {
+      size_t __mask = 1 << __pos;
+      *__pbmap |= __mask;
+    }
+  } // namespace __detail
+
+  /** @brief  Generic Version of the bsf instruction.
+   */
+  inline size_t 
+  _Bit_scan_forward(size_t __num)
+  { return static_cast<size_t>(__builtin_ctzl(__num)); }
+
+  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
+   *
+   *  @brief  The free list class for managing chunks of memory to be
+   *  given to and returned by the bitmap_allocator.
+   */
+  class free_list
+  {
+    typedef size_t*                            value_type;
+    typedef __detail::__mini_vector<value_type> vector_type;
+    typedef vector_type::iterator              iterator;
+    typedef __mutex                            __mutex_type;
+
+    struct _LT_pointer_compare
+    {
+      bool
+      operator()(const size_t* __pui, 
+                const size_t __cui) const throw()
+      { return *__pui < __cui; }
+    };
+
+#if defined __GTHREADS
+    __mutex_type&
+    _M_get_mutex()
+    {
+      static __mutex_type _S_mutex;
+      return _S_mutex;
+    }
+#endif
+
+    vector_type&
+    _M_get_free_list()
+    {
+      static vector_type _S_free_list;
+      return _S_free_list;
+    }
+
+    /** @brief  Performs validation of memory based on their size.
+     *
+     *  @param  __addr The pointer to the memory block to be
+     *  validated.
+     *
+     *  @detail  Validates the memory block passed to this function and
+     *  appropriately performs the action of managing the free list of
+     *  blocks by adding this block to the free list or deleting this
+     *  or larger blocks from the free list.
+     */
+    void
+    _M_validate(size_t* __addr) throw()
+    {
+      vector_type& __free_list = _M_get_free_list();
+      const vector_type::size_type __max_size = 64;
+      if (__free_list.size() >= __max_size)
+       {
+         // Ok, the threshold value has been reached.  We determine
+         // which block to remove from the list of free blocks.
+         if (*__addr >= *__free_list.back())
+           {
+             // Ok, the new block is greater than or equal to the
+             // last block in the list of free blocks. We just free
+             // the new block.
+             ::operator delete(static_cast<void*>(__addr));
+             return;
+           }
+         else
+           {
+             // Deallocate the last block in the list of free lists,
+             // and insert the new one in its correct position.
+             ::operator delete(static_cast<void*>(__free_list.back()));
+             __free_list.pop_back();
+           }
+       }
+         
+      // Just add the block to the list of free lists unconditionally.
+      iterator __temp = __gnu_cxx::__detail::__lower_bound
+       (__free_list.begin(), __free_list.end(), 
+        *__addr, _LT_pointer_compare());
+
+      // We may insert the new free list before _temp;
+      __free_list.insert(__temp, __addr);
+    }
+
+    /** @brief  Decides whether the wastage of memory is acceptable for
+     *  the current memory request and returns accordingly.
+     *
+     *  @param __block_size The size of the block available in the free
+     *  list.
+     *
+     *  @param __required_size The required size of the memory block.
+     *
+     *  @return true if the wastage incurred is acceptable, else returns
+     *  false.
+     */
+    bool 
+    _M_should_i_give(size_t __block_size, 
+                    size_t __required_size) throw()
+    {
+      const size_t __max_wastage_percentage = 36;
+      if (__block_size >= __required_size && 
+         (((__block_size - __required_size) * 100 / __block_size)
+          < __max_wastage_percentage))
+       return true;
+      else
+       return false;
+    }
+
+  public:
+    /** @brief This function returns the block of memory to the
+     *  internal free list.
+     *
+     *  @param  __addr The pointer to the memory block that was given
+     *  by a call to the _M_get function.
+     */
+    inline void 
+    _M_insert(size_t* __addr) throw()
+    {
+#if defined __GTHREADS
+      __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
+#endif
+      // Call _M_validate to decide what should be done with
+      // this particular free list.
+      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
+      // See discussion as to why this is 1!
+    }
+    
+    /** @brief  This function gets a block of memory of the specified
+     *  size from the free list.
+     *
+     *  @param  __sz The size in bytes of the memory required.
+     *
+     *  @return  A pointer to the new memory block of size at least
+     *  equal to that requested.
+     */
+    size_t*
+    _M_get(size_t __sz) throw(std::bad_alloc);
+
+    /** @brief  This function just clears the internal Free List, and
+     *  gives back all the memory to the OS.
+     */
+    void 
+    _M_clear();
+  };
+
+
+  // Forward declare the class.
+  template<typename _Tp> 
+    class bitmap_allocator;
+
+  // Specialize for void:
+  template<>
+    class bitmap_allocator<void>
+    {
+    public:
+      typedef void*       pointer;
+      typedef const void* const_pointer;
+
+      // Reference-to-void members are impossible.
+      typedef void  value_type;
+      template<typename _Tp1>
+        struct rebind
+       {
+         typedef bitmap_allocator<_Tp1> other;
+       };
+    };
+
+  /**
+   * @brief Bitmap Allocator, primary template.
+   * @ingroup allocators
+   */
+  template<typename _Tp>
+    class bitmap_allocator : private free_list
+    {
+    public:
+      typedef size_t                   size_type;
+      typedef ptrdiff_t                difference_type;
+      typedef _Tp*                     pointer;
+      typedef const _Tp*               const_pointer;
+      typedef _Tp&                     reference;
+      typedef const _Tp&               const_reference;
+      typedef _Tp                      value_type;
+      typedef free_list::__mutex_type  __mutex_type;
+
+      template<typename _Tp1>
+        struct rebind
+       {
+         typedef bitmap_allocator<_Tp1> other;
+       };
+
+    private:
+      template<size_t _BSize, size_t _AlignSize>
+        struct aligned_size
+       {
+         enum
+           { 
+             modulus = _BSize % _AlignSize,
+             value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
+           };
+       };
+
+      struct _Alloc_block
+      {
+       char __M_unused[aligned_size<sizeof(value_type),
+                       _BALLOC_ALIGN_BYTES>::value];
+      };
+
+
+      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
+
+      typedef typename 
+      __detail::__mini_vector<_Block_pair> _BPVector;
+
+#if defined _GLIBCXX_DEBUG
+      // Complexity: O(lg(N)). Where, N is the number of block of size
+      // sizeof(value_type).
+      void 
+      _S_check_for_free_blocks() throw()
+      {
+       typedef typename 
+         __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
+       _FFF __fff;
+       typedef typename _BPVector::iterator _BPiter;
+       _BPiter __bpi = 
+         __gnu_cxx::__detail::__find_if
+         (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
+          __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
+
+       _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
+      }
+#endif
+
+      /** @brief  Responsible for exponentially growing the internal
+       *  memory pool.
+       *
+       *  @throw  std::bad_alloc. If memory can not be allocated.
+       *
+       *  @detail  Complexity: O(1), but internally depends upon the
+       *  complexity of the function free_list::_M_get. The part where
+       *  the bitmap headers are written has complexity: O(X),where X
+       *  is the number of blocks of size sizeof(value_type) within
+       *  the newly acquired block. Having a tight bound.
+       */
+      void 
+      _S_refill_pool() throw(std::bad_alloc)
+      {
+#if defined _GLIBCXX_DEBUG
+       _S_check_for_free_blocks();
+#endif
+
+       const size_t __num_bitmaps = (_S_block_size
+                                     / size_t(__detail::bits_per_block));
+       const size_t __size_to_allocate = sizeof(size_t) 
+         + _S_block_size * sizeof(_Alloc_block) 
+         + __num_bitmaps * sizeof(size_t);
+
+       size_t* __temp = 
+         reinterpret_cast<size_t*>
+         (this->_M_get(__size_to_allocate));
+       *__temp = 0;
+       ++__temp;
+
+       // The Header information goes at the Beginning of the Block.
+       _Block_pair __bp = 
+         std::make_pair(reinterpret_cast<_Alloc_block*>
+                        (__temp + __num_bitmaps), 
+                        reinterpret_cast<_Alloc_block*>
+                        (__temp + __num_bitmaps) 
+                        + _S_block_size - 1);
+       
+       // Fill the Vector with this information.
+       _S_mem_blocks.push_back(__bp);
+
+       size_t __bit_mask = 0; // 0 Indicates all Allocated.
+       __bit_mask = ~__bit_mask; // 1 Indicates all Free.
+
+       for (size_t __i = 0; __i < __num_bitmaps; ++__i)
+         __temp[__i] = __bit_mask;
+
+       _S_block_size *= 2;
+      }
+
+
+      static _BPVector _S_mem_blocks;
+      static size_t _S_block_size;
+      static __gnu_cxx::__detail::
+      _Bitmap_counter<_Alloc_block*> _S_last_request;
+      static typename _BPVector::size_type _S_last_dealloc_index;
+#if defined __GTHREADS
+      static __mutex_type _S_mut;
+#endif
+
+    public:
+
+      /** @brief  Allocates memory for a single object of size
+       *  sizeof(_Tp).
+       *
+       *  @throw  std::bad_alloc. If memory can not be allocated.
+       *
+       *  @detail  Complexity: Worst case complexity is O(N), but that
+       *  is hardly ever hit. If and when this particular case is
+       *  encountered, the next few cases are guaranteed to have a
+       *  worst case complexity of O(1)!  That's why this function
+       *  performs very well on average. You can consider this
+       *  function to have a complexity referred to commonly as:
+       *  Amortized Constant time.
+       */
+      pointer 
+      _M_allocate_single_object() throw(std::bad_alloc)
+      {
+#if defined __GTHREADS
+       __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
+#endif
+
+       // The algorithm is something like this: The last_request
+       // variable points to the last accessed Bit Map. When such a
+       // condition occurs, we try to find a free block in the
+       // current bitmap, or succeeding bitmaps until the last bitmap
+       // is reached. If no free block turns up, we resort to First
+       // Fit method.
+
+       // WARNING: Do not re-order the condition in the while
+       // statement below, because it relies on C++'s short-circuit
+       // evaluation. The return from _S_last_request->_M_get() will
+       // NOT be dereference able if _S_last_request->_M_finished()
+       // returns true. This would inevitably lead to a NULL pointer
+       // dereference if tinkered with.
+       while (_S_last_request._M_finished() == false
+              && (*(_S_last_request._M_get()) == 0))
+         {
+           _S_last_request.operator++();
+         }
+
+       if (__builtin_expect(_S_last_request._M_finished() == true, false))
+         {
+           // Fall Back to First Fit algorithm.
+           typedef typename 
+             __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
+           _FFF __fff;
+           typedef typename _BPVector::iterator _BPiter;
+           _BPiter __bpi = 
+             __gnu_cxx::__detail::__find_if
+             (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
+              __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
+
+           if (__bpi != _S_mem_blocks.end())
+             {
+               // Search was successful. Ok, now mark the first bit from
+               // the right as 0, meaning Allocated. This bit is obtained
+               // by calling _M_get() on __fff.
+               size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
+               __detail::__bit_allocate(__fff._M_get(), __nz_bit);
+
+               _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
+
+               // Now, get the address of the bit we marked as allocated.
+               pointer __ret = reinterpret_cast<pointer>
+                 (__bpi->first + __fff._M_offset() + __nz_bit);
+               size_t* __puse_count = 
+                 reinterpret_cast<size_t*>
+                 (__bpi->first) 
+                 - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
+               
+               ++(*__puse_count);
+               return __ret;
+             }
+           else
+             {
+               // Search was unsuccessful. We Add more memory to the
+               // pool by calling _S_refill_pool().
+               _S_refill_pool();
+
+               // _M_Reset the _S_last_request structure to the first
+               // free block's bit map.
+               _S_last_request._M_reset(_S_mem_blocks.size() - 1);
+
+               // Now, mark that bit as allocated.
+             }
+         }
+
+       // _S_last_request holds a pointer to a valid bit map, that
+       // points to a free block in memory.
+       size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
+       __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
+
+       pointer __ret = reinterpret_cast<pointer>
+         (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
+
+       size_t* __puse_count = reinterpret_cast<size_t*>
+         (_S_mem_blocks[_S_last_request._M_where()].first)
+         - (__gnu_cxx::__detail::
+            __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
+
+       ++(*__puse_count);
+       return __ret;
+      }
+
+      /** @brief  Deallocates memory that belongs to a single object of
+       *  size sizeof(_Tp).
+       *
+       *  @detail  Complexity: O(lg(N)), but the worst case is not hit
+       *  often!  This is because containers usually deallocate memory
+       *  close to each other and this case is handled in O(1) time by
+       *  the deallocate function.
+       */
+      void 
+      _M_deallocate_single_object(pointer __p) throw()
+      {
+#if defined __GTHREADS
+       __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
+#endif
+       _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
+
+       typedef typename _BPVector::iterator _Iterator;
+       typedef typename _BPVector::difference_type _Difference_type;
+
+       _Difference_type __diff;
+       long __displacement;
+
+       _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
+
+       
+       if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
+           (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
+         {
+           _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
+                                 <= _S_mem_blocks.size() - 1);
+
+           // Initial Assumption was correct!
+           __diff = _S_last_dealloc_index;
+           __displacement = __real_p - _S_mem_blocks[__diff].first;
+         }
+       else
+         {
+           _Iterator _iter = __gnu_cxx::__detail::
+             __find_if(_S_mem_blocks.begin(), 
+                       _S_mem_blocks.end(), 
+                       __gnu_cxx::__detail::
+                       _Inclusive_between<_Alloc_block*>(__real_p));
+
+           _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
+
+           __diff = _iter - _S_mem_blocks.begin();
+           __displacement = __real_p - _S_mem_blocks[__diff].first;
+           _S_last_dealloc_index = __diff;
+         }
+
+       // Get the position of the iterator that has been found.
+       const size_t __rotate = (__displacement
+                                % size_t(__detail::bits_per_block));
+       size_t* __bitmapC = 
+         reinterpret_cast<size_t*>
+         (_S_mem_blocks[__diff].first) - 1;
+       __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
+      
+       __detail::__bit_free(__bitmapC, __rotate);
+       size_t* __puse_count = reinterpret_cast<size_t*>
+         (_S_mem_blocks[__diff].first)
+         - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
+       
+       _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
+
+       --(*__puse_count);
+
+       if (__builtin_expect(*__puse_count == 0, false))
+         {
+           _S_block_size /= 2;
+         
+           // We can safely remove this block.
+           // _Block_pair __bp = _S_mem_blocks[__diff];
+           this->_M_insert(__puse_count);
+           _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
+
+           // Reset the _S_last_request variable to reflect the
+           // erased block. We do this to protect future requests
+           // after the last block has been removed from a particular
+           // memory Chunk, which in turn has been returned to the
+           // free list, and hence had been erased from the vector,
+           // so the size of the vector gets reduced by 1.
+           if ((_Difference_type)_S_last_request._M_where() >= __diff--)
+             _S_last_request._M_reset(__diff); 
+
+           // If the Index into the vector of the region of memory
+           // that might hold the next address that will be passed to
+           // deallocated may have been invalidated due to the above
+           // erase procedure being called on the vector, hence we
+           // try to restore this invariant too.
+           if (_S_last_dealloc_index >= _S_mem_blocks.size())
+             {
+               _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
+               _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
+             }
+         }
+      }
+
+    public:
+      bitmap_allocator() throw()
+      { }
+
+      bitmap_allocator(const bitmap_allocator&)
+      { }
+
+      template<typename _Tp1>
+        bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
+        { }
+
+      ~bitmap_allocator() throw()
+      { }
+
+      pointer 
+      allocate(size_type __n)
+      {
+       if (__builtin_expect(__n > this->max_size(), false))
+         std::__throw_bad_alloc();
+
+       if (__builtin_expect(__n == 1, true))
+         return this->_M_allocate_single_object();
+       else
+         { 
+           const size_type __b = __n * sizeof(value_type);
+           return reinterpret_cast<pointer>(::operator new(__b));
+         }
+      }
+
+      pointer 
+      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
+      { return allocate(__n); }
+
+      void 
+      deallocate(pointer __p, size_type __n) throw()
+      {
+       if (__builtin_expect(__p != 0, true))
+         {
+           if (__builtin_expect(__n == 1, true))
+             this->_M_deallocate_single_object(__p);
+           else
+             ::operator delete(__p);
+         }
+      }
+
+      pointer 
+      address(reference __r) const
+      { return &__r; }
+
+      const_pointer 
+      address(const_reference __r) const
+      { return &__r; }
+
+      size_type 
+      max_size() const throw()
+      { return size_type(-1) / sizeof(value_type); }
+
+      void 
+      construct(pointer __p, const_reference __data)
+      { ::new((void *)__p) value_type(__data); }
+
+#ifdef __GXX_EXPERIMENTAL_CXX0X__
+      template<typename... _Args>
+        void
+        construct(pointer __p, _Args&&... __args)
+       { ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
+#endif
+
+      void 
+      destroy(pointer __p)
+      { __p->~value_type(); }
+    };
+
+  template<typename _Tp1, typename _Tp2>
+    bool 
+    operator==(const bitmap_allocator<_Tp1>&, 
+              const bitmap_allocator<_Tp2>&) throw()
+    { return true; }
+  
+  template<typename _Tp1, typename _Tp2>
+    bool 
+    operator!=(const bitmap_allocator<_Tp1>&, 
+              const bitmap_allocator<_Tp2>&) throw() 
+  { return false; }
+
+  // Static member definitions.
+  template<typename _Tp>
+    typename bitmap_allocator<_Tp>::_BPVector
+    bitmap_allocator<_Tp>::_S_mem_blocks;
+
+  template<typename _Tp>
+    size_t bitmap_allocator<_Tp>::_S_block_size = 
+    2 * size_t(__detail::bits_per_block);
+
+  template<typename _Tp>
+    typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
+    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
+
+  template<typename _Tp>
+    __gnu_cxx::__detail::_Bitmap_counter 
+  <typename bitmap_allocator<_Tp>::_Alloc_block*>
+    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
+
+#if defined __GTHREADS
+  template<typename _Tp>
+    typename bitmap_allocator<_Tp>::__mutex_type
+    bitmap_allocator<_Tp>::_S_mut;
+#endif
+
+_GLIBCXX_END_NAMESPACE
+
+#endif 
+